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Abstract

Hamiltonian mechanics is a well-established theory for modeling the time evolution
of systems with conserved quantities (called Hamiltonian), such as the total energy
of the system. Recent works have parameterized the Hamiltonian by machine
learning models (e.g., neural networks), allowing Hamiltonian dynamics to be
obtained from state trajectories without explicit mathematical modeling. However,
the performance of existing models is limited as we can observe only noisy and
sparse trajectories in practice. This paper proposes a probabilistic model that can
learn the dynamics of conservative or dissipative systems from noisy and sparse
data. We introduce a Gaussian process that incorporates the symplectic geometric
structure of Hamiltonian systems, which is used as a prior distribution for estimat-
ing Hamiltonian systems with additive dissipation. We then present its spectral
representation, Symplectic Spectrum Gaussian Processes (SSGPs), for which we
newly derive random Fourier features with symplectic structures. This allows us to
construct an efficient variational inference algorithm for training the models while
simulating the dynamics via ordinary differential equation solvers. Experiments on
several physical systems show that SSGP offers excellent performance in predicting
dynamics that follow the energy conservation or dissipation law from noisy and
sparse data.

1 Introduction

There is great interest in the data-driven approach for learning the dynamics of physical systems.
Modeling, simulating, and forecasting dynamics from data are fundamental in engineering and
physical sciences; the data-driven approach also has the potential to discover new laws in physics [16,
37]. Many real-world systems can be described by ordinary differential equations (ODEs). Classical
data-driven approaches make strong assumptions about the form of the equations; thus, they are
not applicable if the system’s equation is unknown [8, 31, 32, 36, 41]. The pioneering work of
neural ordinary differential equation (NODE) [4] has been presented as a general black-box model
for learning vector fields, represented by functions, to output time derivatives of the system’s state;
the state of the system is continuously transformed along the vector fields (see the right part of
Figure 1). The Hamiltonian neural network (HNN) [14] and variants (e.g., [6, 12, 48]) allow one
to learn vector fields such that the total energy of the system (called Hamiltonian) is conserved.
This formulation is advantageous for learning dynamics that follow the basic laws of physics (i.e.,
the energy conservation law). Several extended models cover Hamiltonian systems with additive
dissipation [25, 47]. However, neural network based models implicitly assume that a large amount of
training data with high temporal resolution is available.

This paper addresses the problem of learning Hamiltonian dynamics from noisy and sparse trajectories
and predicting the dynamics from an arbitrary initial condition. We illustrate our problem in Figure 1.
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Figure 1: Problem setting. Color indicates time-
evolution, starting at blue and ending at red.

The state trajectories are assumed to be sparse

in the following senses: 1) Limited observa-
tion trials and 2) low temporal resolution (see
Figure 1). One promising approach to alleviate
overfitting in sparse settings is a Gaussian pro-
cess (GP) [34], which allows for model learn-
ing while considering that the data contains
uncertainties. GP models have been proposed
for inferring unknown dynamics from trajec-
tories [15, 27, 28], in which GPs are used for
modeling the vector fields. They utilize a GP
approximation with random Fourier features
(RFFs) [33] to learn the dynamics via ODE
solvers. The approximation is needed for the
following reasons. Since we can obtain only trajectory data, not derivative observations (i.e., direct
observations of vector fields), we cannot use the standard GP posterior conditioned on data points;
thus, we require posterior approximation. The RFF-based approximation avoids the prohibitive
computational complexity of generating sample paths (i.e., realizations of the vector field) from
the GP posterior (details are discussed in [44, 45]). This advantage in computation is essential for
ODE-based learning. Since they do not, however, consider Hamiltonian mechanics, it is difficult to
accurately capture dynamics that follow physical laws such as energy conservation and dissipation.

GP regression models for derivative observations have been proposed [38], in which the covariance
function is given by matrix-valued kernels for estimating vector fields. Recently, symplectic Gaus-
sian process regression (SympGPR) [35] has been proposed; the covariance function for learning
conservative vector fields is derived by incorporating the theory of Hamiltonian mechanics into GP
modeling. However, SympGPR assumes that one can obtain derivative observations, not trajectories,
for training. Although it can be naively applicable to our problem by using finite differences, it is
difficult to learn the dynamics accurately from noisy state observations with low temporal resolution.
Also, it is not applicable to Hamiltonian systems with dissipation.

This paper proposes a GP framework that can infer Hamiltonian systems with additive dissipative
terms from noisy and sparse trajectories. We first extend the GP prior for Hamiltonian dynamics
proposed in [35] to handle additive dissipation. The conserved quantity of the systems (i.e., Hamil-
tonian) is assumed to be a single-output GP. By employing Hamilton’s equations, the vector fields
are derived as a multi-output GP whose covariance function incorporates the symplectic structure

for the energy conservation law. Moreover, one can handle Hamiltonian dynamics with friction by
introducing the dissipation matrix. The most significant contribution of this work is the derivation
of the RFFs that encode the symplectic structure to obtain the GP approximation for dissipative
Hamiltonian systems, which we call Symplectic Spectrum Gaussian Processes (SSGPs). This can
efficiently generate samples of the Hamiltonian vector fields from the GP posterior and construct the
scalable learning algorithm based on ODE solvers. Inference in SSGP is based on variational Bayes,
which allows for learning the Hamiltonian vector fields while considering the uncertainties posed by
noisy and sparse data. Another benefit of SSGP is that it can be used for decomposing the dynamics
into conservative and dissipative terms allowing the dynamics for unseen friction coefficients to be
predicted. Such a task cannot be handled with models (e.g., NODE) that do not use prior knowledge
available in physics.

The main contributions of this work are as follows:

• We introduce a GP prior for modeling Hamiltonian systems with additive dissipation.

• We propose its spectral representation (called SSGP) by deriving RFFs that incorporate the
symplectic structure of Hamiltonian systems.

• We develop a variational inference procedure for SSGP that offers numerical integration by
ODE solvers as a subroutine.

• Experiments on several physical systems show that SSGP can accurately predict the dynam-
ics that follow the conservation or dissipation laws from noisy and sparse trajectories 1.

1Code is available at https://github.com/yusuk-e/SSGP
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Table 1: Comparison of the proposed model (SSGP) with the existing models. We compare the
models for four items. The first and second items represent that the models can use the physics priors,
i.e., (a) energy conservation law and (b) energy dissipation law, respectively, as an inductive bias for
training. The third item (c) states that the models can be learned using ODE solvers from trajectory
data; the models without a checkmark require derivative observations for training. The last item (d)
shows that the models can handle uncertainties present in data.

HNN D-HNN NODE SymODEN D-SymODEN SympGPR SSGP
[14] [9, 39] [4] [48] [47] [35]

(a) Energy conservation law X X X X X X
(b) Energy dissipation law X X X
(c) Learning with ODE solver X X X X
(d) Uncertainty X X

2 Related Work

This work is positioned in the series of studies for learning black-box models that can estimate
Hamiltonian dynamics from data. Here, black-box means that explicit mathematical modeling of
differential equations is not required. We describe below prior works in this research line. Table 1
shows the comparison of the proposed model with the existing representative models.

Neural network models. Time-evolution of system states is generally described by differential
equations. The neural ordinary differential equation (NODE) [4] and its variants [3, 19] have been
proposed for learning the continuous-time evolution of the states from data. In these studies, the
vector fields that determine the state evolution are parameterized by deep neural networks (DNNs) and
estimated by back-propagating errors of observed trajectories via the ODE solver. The Hamiltonian
neural network (HNN) [14] introduced prior knowledge of Hamiltonian mechanics as an inductive
bias for training DNNs; the core concept is to parameterize the Hamiltonian (i.e., energy function)
using DNNs. This formulation allows one to obtain dynamics that follow the energy conservation
laws. Although the HNN assumes derivative observations for training, a learning procedure with
ODE solvers from state trajectories was proposed in [6, 48]. Several models have been extended
to handle Hamiltonian systems with additive dissipation [39, 47]. Most recent studies have further
expanded the scope of application, including Hamiltonian systems with controllable inputs [9],
stiff Hamiltonian dynamics [23], energy-conserving partial differential equation systems [25], odd-
dimensional chaotic systems [7], and Poisson systems [5, 17]. Another approach, SympNets [18, 46],
models the symplectic map using neural networks, which are shown to be universal approximators.
However, existing DNN-based models implicitly assume a situation wherein a large amount of
training data with high temporal resolution is available; they might fail to capture dynamics in the
noisy and sparse settings this work focuses on.

Gaussian process models. Gaussian process (GP) modeling has the advantage that it makes it
possible to learn models while considering uncertainties present in data [34]. Solak et al. [38]
proposed GP regression models for derivative observations, in which the covariance function is given
by matrix-valued kernels for inferring vector fields. Curl-free and the divergence-free kernels have
been introduced for learning conservative vector fields [1, 24]; however, they lack the flexibility to
be extended to cover various physical dynamics as described in the previous paragraph. Rath et al.
extended the model in [38] to learn Hamiltonian vector fields, which is called symplectic Gaussian
process regression (SympGPR) [35]. In SympGPR, the conserved quantity (i.e., Hamiltonian) is
defined by a single-output GP; the covariance function for Hamiltonian vector fields can then be
naturally derived on the basis of Hamilton’s equations. However, these GP regression models assume
derivative observations, not state trajectories. Although the use of finite differences allows for naively
applying them to the problem of learning from trajectories, they might fail to capture dynamics,
especially when the temporal resolution is lower, because each finite difference is computed from state
pairs at neighboring discrete time steps. Most recently, a few models combined GPs with symplectic
integrators [11, 29]; however, all the GP models [11, 29, 35] are not applicable to Hamiltonian
systems with additive dissipation.

Learning with ODE solvers. Numerical integration methods play an essential role in learning
dynamics from trajectory data. Chen et al. [4] provide a convenient tool for solving ODEs and
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Figure 2: Schematic diagram of SSGP: Generative processes of noisy trajectories. (a) We model
the unknown Hamiltonian H(x) by a single-output GP. Here, the color represents the magnitude of
energy. (b) The vector field f(x) is calculated by applying the differential operator L to H(x). (c)
We sample the initial condition from the standard Gaussian distribution and solve the ODE defined by
f(x) to obtain the noiseless trajectory {xij} depicted by black dots. (d) The noisy trajectory {yij}

depicted by red dots is observed by adding Gaussian noise.

learning parameters via back-propagation or memory-efficient adjoint methods, which are widely
used for learning Hamiltonian dynamics (e.g., [9, 12, 48]). One can also use advanced learning
methods based on symplectic integrators [10, 26, 49] or discrete gradients [25], which can evaluate
the loss function and its gradient while preserving energy accurately. These studies are related to ours
but different in the research focus. They focus on how to estimate the parameters given the models
(e.g., DNNs); whereas our proposal is a model whose learning method can be chosen as needed. It
might be possible to employ the above techniques for learning our model. Different from the above
studies, this work can also consider uncertainties to learn the model from noisy and sparse data.

3 Hamiltonian Mechanics

In this section, we briefly review Hamiltonian mechanics [13]. Let us consider a system with N

degrees of freedom. In the Hamiltonian formalism, the continuous-time evolution of the system is
described in phase space, that is, the product space of generalized coordinates xq

= (x
q
1, . . . , x

q
N )

and generalized momenta xp
= (x

p
1 , . . . , x

p
N ). Let x = (xq

,xp
) 2 RD be a state of the system,

where D = 2N . The system’s evolution is determined by the Hamiltonian H(x) : RD
! R, which

denotes the system’s total energy. Traditionally, the Hamiltonian is manually designed to suit the
system. The dynamics of a Hamiltonian system with additive dissipative terms is given by

dx

dt
= (S�R)rH(x) =: f(x), where S =

✓
O I

�I O

◆
. (1)

Here, rH(x) : RD
! RD is the gradient of the Hamiltonian with respect to state x, S 2 RD⇥D

is the skew-symmetric matrix, R 2 RD⇥D is the positive semi-definite dissipation matrix, I is
the identity matrix, and O is the zero matrix. In (1), we define the time derivatives of the state
by the function f(x) : RD

! RD, which is a special kind of vector field that has a symplectic
geometric structure (called Hamiltonian vector field or symplectic gradient). The dynamics on this
vector field conserve the total energy when R = O. One example of the dissipation matrix is
R = diag(0, . . . , 0, r1, . . . , rN ), representing a dissipative system with friction coefficient rn � 0.
Although we assume this kind of dissipation matrix in the following, this work is extendable to the
general dissipation matrix, such as the state-dependent damping term [9]. Given vector field f(x)
and initial condition x1 at time t1, one can predict state xt at time t by integrating f(x) from t1 to t,
as follows: xt = x1 +

R t
t1
f(x) dt.

4 Model

We propose SSGP (Symplectic Spectrum Gaussian Process), a probabilistic model for learning
Hamiltonian systems with additive dissipation from noisy and sparse trajectories. Figure 2 shows a
schematic diagram of the proposed generative processes of noisy trajectories. In the following, we
first introduce a Gaussian process (GP) prior for modeling conservative and dissipative vector fields
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by incorporating the theory of Hamiltonian mechanics. We then derive its spectral representation,
for which we propose random Fourier features that encode symplectic structures. This spectral
representation is used for constructing a scalable inference algorithm described in Section 5. Finally,
we describe the generative processes of noisy state observations.

GP priors for Hamiltonian systems with additive dissipation. In the proposed model, the unknown

Hamiltonian H(x) is assumed to be a single-output GP with zero mean. Let L := (S�R)r denote
a differential operator. According to (1), the vector field can be represented using L, as follows:

f(x) = LH(x), where H(x) ⇠ GP(0, �(x,x0
)). (2)

Here, �(x,x0
) : RD

⇥ RD
! R is a covariance function. Since differentiation is a linear operator,

the derivative of a GP is again a GP [38]; thus, f(x) is given by a multi-output GP,

f(x) ⇠ GP(0,K(x,x0
)), (3)

where 0 is a column vector of 0’s, and K(x,x0
) : RD

⇥ RD
! RD⇥D is the matrix-valued

covariance function represented by

K(x,x0
) = LL

>
�(x,x0

) = (S�R)r
2
(S�R)

>
�(x,x0

). (4)

Here, r2 is the Hessian operator. As described above, we can obtain the GP prior (3) with the
covariance function (4) that encodes the geometric structure of Hamiltonian systems with additive
dissipation. This formulation can be regarded as a generalization of the GP for non-dissipative
Hamiltonian systems [35]. Though one can opt for any positive definite kernel as �(x,x0

), we
assume that �(x,x0

) is shift-invariant in the approximation described in the next paragraph. One
of the most widely used shift-invariant kernels is the ARD (Automatic Relevance Determination)
Gaussian kernel,

�(x,x0
) = �

2
0 exp

✓
�
1

2
(x� x0

)
>
⇤

�1
(x� x0

)

◆
, where ⇤ = diag

�
�
2
1, . . . ,�

2
D

�
. (5)

Here, �2
0 2 R>0 and �

2
d 2 R>0 are the signal variance and the length scale, respectively.

Spectral representations. We present the approximation of the GP prior (3), for which we newly
derive random Fourier features (RFF) that encode symplectic structures of Hamiltonian systems.
The RFF-based approximation is advantageous for 1) estimating the GP posterior for vector fields
without derivative observations and 2) efficiently sampling the vector field from the GP posterior,
which has been suggested in recent studies on learning ODEs [15, 27, 28, 44]. These advantages
make it feasible to train our GP model for Hamiltonian systems with dissipation by utilizing ODE
solvers, even when only trajectory data, not derivative observations, are available (see also the On
computational complexity paragraph in Section 5 and Appendix E). We begin by modeling the
Hamiltonian H(x) as a GP approximation,

H(x) =
MX

m=1

wm�m(x), where wm ⇠ N

✓
0,

�
2
0

M
I

◆
. (6)

Here, we adopt the M pairs of basis functions2, �m(x) =
⇥
cos(2⇡s>mx), sin(2⇡s>mx)

⇤>, parame-
terized by a D-dimensional column vector sm of spectral points. The point sm is sampled from the
kernel’s spectral density, which is given by

p(s) = N
�
0, (4⇡

2
⇤)

�1
�
, (7)

in the case in which the ARD Gaussian kernel (5) is used [22]. In (6), wm 2 R2 is a row vector
of weights for the mth pair of basis. We apply the differential operator L to the approximation (6);
which yields the spectral representation (i.e., SSGP) of (3), represented by

f(x) = LH(x) =:  (x)w>
, (8)

where w = (w1, . . . ,wM ), and the resulting feature maps are defined by  (x) =

( 1(x), . . . , M (x)); the mth feature map m(x) : RD
! RD⇥2 is given by

 m(x) = 2⇡(S�R)sm
⇥
� sin(2⇡s>mx), cos(2⇡s>mx)

⇤
, (9)

2An alternative version of basis functions [40] is known, and our proposal can easily adopt the alternative.
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which we call symplectic random Fourier features (S-RFF). The derivation of (8) is described in
Appendix A. S-RFF (9) is the first to incorporate symplectic structures into the random features for
modeling vector fields by leveraging the knowledge of Hamiltonian mechanics. This result is not
trivial in that we bridge two clearly distinct research topics, random features for kernel machines (i.e.,
GPs) and Hamiltonian mechanics. Let us explore the connection between the exact GP (3) and its
spectral approximation (8). Denoting Dirac’s delta function by p(f |w), the distribution of f is given
by integrating out w from (8), as follows3:

p(f) =

Z
p(f |w)p(w)dw = N

⇣
0, K̃(x,x0

)

⌘
, where K̃(x,x0

) =
�
2
0

M
 (x) (x0

)
>
. (10)

Here, K̃(x,x0
) : RD

⇥RD
! RD⇥D is the covariance function for GP approximation. We observed

that approximation quality improves with the number of spectral points (i.e., the number of basis
functions) by comparing the gram matrix of K(x,x0

) (4) with that of K̃(x,x0
) in (10), where the

spectral points sm are sampled from (7). We show the gram matrices in Appendix B.

Generative processes of noisy observations. Suppose that we have a collection of I trajectories
{(tij ,yij)|i = 1, . . . , I; j = 1, . . . , Ji}, where Ji is the number of samples in the ith trajectory. Each
sample is specified by a pair (tij ,yij), which represents the observation of noisy state yij at time
tij . We treat the noiseless state xij , the counterpart of yij , as a latent variable. We assume that the
observation model of yij is a Gaussian distribution with a variance of �2. Letting Y = {yij}, the
marginal likelihood (i.e., evidence) is given by

p(Y) =

Z
p(f)

IY

i=1

2

4
Z

p(yi1|xi1)p(xi1)

JiY

j=2

p(yij |xij)p(xij |f ,xi1)dxi1

3

5 df , (11)

where p(f) is the GP prior (10) of the vector field, and p(xi1) is the prior distribution4 of the initial
condition xi1. Given f and xi1, the state xij is deterministically given by solving the ODE; thus, we
can write the conditional distribution p(xij |f ,xi1) in (11) using Dirac’s delta function, as follows:

p(xij |f ,xi1) = �

✓
xij �


xi1 +

Z tij

ti1

f(x) dt

�◆
. (12)

Note that, although we omit the observation time points {tij} in (11), it is actually conditioned on
{tij}. For simplicity, we adopt this notation hereinafter.

5 Inference

Although we would like to estimate the model parameters w, ⇤, �2
0 , �2 and R by maximizing the

logarithm of (11), we cannot calculate the exact marginal likelihood (11) analytically as it includes
the process of solving the ODEs. We then present a variational inference procedure for learning
Hamiltonian systems with additive dissipation from noisy and sparse trajectories. The spectral
representation of SSGP is used for efficient sampling of the conservative or dissipative vector fields
from the GP posterior, allowing the learning to proceed with ODE solvers while handling uncertainties
in the vector fields.

Parameter learning. We consider the following evidence lower bound (ELBO),

log p (Y) �

IX

i=1

2

4
JiX

j=1

Eq(xij) [log p (yij |xij)]�KL [q(xi1)||p(xi1)]

3

5�KL [q(w)||p(w)] , (13)

where q(xij) and q(w) are the variational distributions of the noiseless state xij and the weights w,
respectively. We assume that the variational distribution of w is given by a Gaussian distribution,
q(w) = N (b,C), where b 2 R2M and C 2 R2M⇥2M are the mean and the covariance matrix,
respectively. For j = 1, we assume that the variational distribution of initial condition xi1 is given

3The derivation procedure is similar to that described in [2, Chapter 4.5.2].
4For simplicity, the prior is set to the standard Gaussian distribution in the implementation.
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by a Gaussian distribution with the mean being the observed state yi1, q(xi1) = N (yi1,A), where
A 2 RD⇥D is the covariance matrix. For j � 2, the variational distribution of xij is given by

q(xij) =

ZZ
p(xij |f ,xi1)

Z
p(f |w)q(w)dw

�
q(xi1)dxi1df , (14)

where the factor in square brackets is the variational distribution of f . The derivation of (13) is
described in Appendix C. We approximate the expectation in (13) using Monte Carlo integration,

Eq(xij) [log p (yij |xij)] ⇡
1

K

KX

k=1

log p(yij |x
(k)
ij ), (15)

where the Monte Carlo samples are given by

x(k)
i1 = yi1 +

p

A ✏(k)i , where ✏(k)i ⇠ N (0, I), (16)

x(k)
i2 , . . . ,x(k)

iJi
= ODESolve

⇣
x(k)
i1 ,f (k)

(x), ti2, . . . , tiJi

⌘
, (17)

where we use the reparameterization trick [20] in (16), and we perform the numerical integration
by the ODE solvers (e.g., the Runge-Kutta method) in (17). Here, K is the number of Monte Carlo
samples to obtain (15), and

p
· denotes a matrix square root. f (k)

(x) in (17) is the sample of the
vector field generated from the variational posterior of f ,

f (k)
(x) =  (x)

"
1

L

LX

l=1

w(k,l)

#>

, where w(k,l)
= b+

p

C ✏(k,l). (18)

Here, L is the number of Monte Carlo samples to obtain (18), and ✏(k,l) ⇠ N (0, I). In the spectral
representation, the randomness of function f is totally controlled by the distribution of weights w.
Accordingly, we can optimize both model parameters and variational parameters while considering
uncertainties in the vector field by sampling w at each training iteration. The inference procedure
is shown in Appendix D. We can easily extend our proposed approach to learn Hamiltonians from
high-dimensional data (such as images) by combining an autoencoder with an SSGP, as in [14, 42].
The states x and x0 in the covariance function K(x,x0

) (4) are modeled as the latent vectors of the
autoencoder. This formulation can be regarded as an extension of the SSGP based on deep kernel
learning [43].

Prediction. The variational posterior, q(f) =
R
p(f |w)q(w)dw, has a closed-form solution, a

Gaussian distribution whose mean function and covariance function are given by m̃⇤
(x) =  (x)b>

and K̃
⇤
(x,x0

) =  (x)C >
(x0

), respectively. One can predict the dynamics from an arbitrary
initial condition by numerically integrating the mean function m̃⇤

(x). Also, one can evaluate the
predictive uncertainty for the vector field by using the covariance function K̃

⇤
(x,x0

).

On computational complexity. The computational bottleneck is the sampling of w; the cost of
computing

p
C in (18) is O(M

3
). The cost increases with the number of basis functions; however,

the most important thing is that the bottleneck is outside of the ODE solver. The sampling of w
makes it possible to efficiently evaluate function values at arbitrary point x, as in (18), and to use
it in the ODE solver in (17). The advantage in computational costs is discussed in Appendix E. In
addition, previous studies have shown experimentally that the GP models approximated by RFF
have, in many cases, high predictive performance even when setting M lower than 10

3 (e.g., [22]).
Actually, our experiments show that SSGP yields an accurate prediction using a small set of RFFs.
The average training time when setting M = 250 was 2943.0 seconds for the dataset of the pendulum
with friction; the experiments were conducted on the AMD EPYC 7313 CPU (3.0GHz).

6 Experiments

Data. We evaluated the proposed model, SSGP, using two physical systems: pendulum, and Duffing

oscillator. The Hamiltonian of the pendulum system is

H(x) = 2mgl(1� cosx
q
) +

l
2
(x

p
)
2

2m
, (19)
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where we denote the gravitational constant by g, the mass constant by m, and the length of the
pendulum by l. In the experiments, we set g = 3 and m = l = 1. The Hamiltonian of the Duffing
oscillator system is

H(x) =
1

2
(x

p
)
2
+

↵

2
(x

q
)
2
+

�

4
(x

q
)
4
, (20)

where we set the parameters, ↵ = � = 1. For each system, the dissipation matrix was set to R = O

(energy conservation) or R = diag(0, 0.05) (energy dissipation). We generated trajectory data by
employing a numerical integrator, i.e., the Dormand–Prince method with adaptive time-stepping,
implemented in torchdiffeq5 [3, 4]. We sampled initial conditions with total energies uniformly
distributed across a predefined range. The energy ranges for pendulum and Duffing oscillator were
[1.3, 2.3] and [0.5, 1.5], respectively. To evaluate the robustness of our model against the degree of
sparsity, we prepared {10, 15, 20, 30, 50} trajectories sampled at a frequency of {3, 5, 10} Hz for 10
seconds, and added Gaussian noise with variance �

2
= 0.1 to each sample. We randomly split the

trajectory data and used 70% for training and 30% for validation. Here, if the number of trajectories
for validation was less than five, we used five trajectories for validation and the rest for training.
We generated a test set of 25 trajectories independently from training and validation sets; each test
trajectory was sampled at a frequency of 100 Hz for 15 seconds. The experiments were conducted
five times by resampling the training and validation sets.

Task 1: Normal prediction. We evaluated performance by comparing the predicted state trajectories
{x̂ij} with the ground truth {xtrue

ij } (i.e., the test set described above). The evaluation metric is the
mean squared error (MSE), 1

I

PI
i=1(

1
Ji

PJi

j=1 k x̂ij �xtrue
ij k

2
), where k · k

2 is the Euclidean norm.
In the evaluation, we used the datasets from four settings: pendulum and Duffing oscillator with or
without energy dissipation.

Task 2: Predicting the dynamics for unseen friction coefficients. One benefit of SSGP is that it
can decompose the dynamics into its conservative and dissipative terms, thus predicting the dynamics
for arbitrary friction coefficients. To show this, we evaluated SSGP by the following procedure: 1) we
trained the model using the dataset from pendulum or Duffing oscillator with the friction coefficients,
R = diag(0, 0.05); 2) we predicted its conservative system by using the learned Hamiltonian, where
we set the friction coefficients, R = O. The evaluation metric is the same as that in Task 1.

Setup of the SSGP. We trained the model using the Adam optimizer [21] with learning rate of 10�3

for 104 epochs, implemented in PyTorch [30]. We performed numerical integration by the adaptive
Dormand–Prince method [3, 4] with the relative and absolute tolerances of 10�8. We set the numbers
of Monte Carlo samples to K = 1 and L = 100. The number M of spectral points was chosen
from {100, 250, 500} based on the validation error. We used a block-diagonal approximation of C,
namely, q(w) is factorized as two factors separating the weights for the sines and cosines, where
the computational complexity is the same as that of the original. We fixed the friction coefficients
R = O when training the conservative systems in Task 1.

Baselines. We compared the SSGP with the existing models (see Table 1): Hamiltonian neural net-
work (HNN) [14], dissipative HNN (D-HNN) [39], neural ordinary differential equation (NODE) [4],
symplectic ODE-Net (SymODEN) [48], dissipative SymODEN (D-SymODEN) [47] and symplectic
Gaussian process regression (SympGPR) [35]. Since HNN, D-HNN and SympGPR require derivative
observations for training, we used the finite difference instead. Another baseline is the GP model
using standard random Fourier features (RFF), which corresponds to the case that the vector field
f(x) in SSGP is modeled as a multi-output GP approximated by the standard RFF (not consider-
ing Hamiltonian mechanics). In the experiments, we call it RFF. The details of each baseline are
described in Appendix F.

Results. We present the experimental results that are picked up from the case where the sampling
frequency was 5 Hz. Appendix G shows all the results, including those for the frequencies of 3 and
10 Hz. Figure 3 shows MSE and standard errors for SSGP and the baselines in Task 1 and Task 2. As
expected, in many cases, MSE decreased as the number of trajectories increased. The performance
of HNN, D-HNN and SympGPR was limited because their training was based on finite differences.
NODE and RFF had large errors except for the case of Figure 3 (b) because they cannot use the prior
knowledge of Hamiltonian mechanics as the inductive bias. SymODEN and D-SymODEN were
more competitive with SSGP; nevertheless, SSGP matched or bettered their predictive performance.

5https://github.com/rtqichen/torchdiffeq (MIT License)
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Figure 3: MSE and standard errors for the predicted trajectories when the sampling frequency was 5
Hz. The first and second columns are the results for conservative and dissipative systems, respectively,
in Task 1. The third column holds the results predicted for conservative systems in Task 2.

Table 2: MSE of the friction coefficient. All values are multiplied by 10
3.

pendulum Duffing

SSGP 0.519 0.506
D-SymODEN 1.010 0.630
D-HNN 2.486 2.861

Moreover, SSGP improved the performance rather than all baselines, especially when the number of
trajectories was small. These results show that SSGP is advantageous in sparse settings. In Figure 3
(b), NODE and RFF yielded relatively low errors; however, since they cannot distinguish between
the conservative and dissipative terms, their performance was worse in Task 2, as shown in Figure 3
(c). In contrast, SSGP can estimate the conservative and dissipative terms separately by incorporating
knowledge of Hamiltonian mechanics, which yields better performance in both Task 1 and Task 2
than all baselines. Table 2 shows MSE of the friction coefficients estimated by SSGP, D-SymODEN
and D-HNN when inferring the dissipative systems. Here, MSE was averaged for all experimental
settings. This result shows that SSGP can accurately estimate the friction coefficients.

In the following, we deeply explore the results when the number of observed trajectories was 20.
Figure 4 shows the visualization of the trajectories predicted by SSGP. One observes that SSGP
appropriately captured the dynamics of the dissipative Hamiltonian systems (the third column of
Figure 4) and better discerned the conservative and dissipative terms (the fourth and fifth columns of
Figure 4). Figure (5) shows the cumulative errors for the trajectories and energies for the pendulum
data. Let Itest denote the number of time steps in the test set, and jt denote a time step at time t.
We calculated the cumulative error of trajectories at time t:

Pjt
j=1(

1
Itest

PItest

i=1 k x̂ij � xtrue
ij k

2
).

The cumulative error of energies was obtained similarly by calculating the squared error of the
energy, Htrue

(x̂ij), evaluated using the predicted trajectories and the true energy, Htrue
(xtrue

ij ).
Here, Htrue

(·) is the true Hamiltonian of each system. As shown in Figure 5, SSGP achieved lower
errors than the baselines for both trajectories and energies at all time points. The performance
improvement of SSGP was more significant in the period [10, 15], which is out of the simulation
period (10 seconds) when generating the training data. These results show that SSGP can accurately
predict the dynamics with energy conservation and dissipation in both short-term and long-term
simulations.
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Figure 4: Prediction results of SSGP. The color indicates time-evolution, starting at blue and ending
at red. The first and second columns are the true trajectories for the dissipative systems and their
conservative terms, respectively. The third column is the prediction for the dissipative systems in
Task 1. The fourth and fifth columns are the predicted conservative and dissipative terms in Task 2,
respectively. Here, the dissipative terms are multiplied by 30 for enhanced clarity. Comparisons with
other models are shown in Appendix G.

Figure 5: Cumulative error for the predicted trajectories and energies when using pendulum data.
The horizontal axis is simulation time in the test phase.

7 Conclusion

We have proposed the Symplectic Spectrum Gaussian Process (SSGP), which allows one to predict
systems whose dynamics follow energy conservation and dissipation laws from noisy and sparse data.
Our result, the symplectic random Fourier feature, is a general tool and has the potential to use the
design of kernel machines with prior knowledge in physics. As described in Section 5, the SSGP can
easily extend to learn Hamiltonians from high-dimensional data (e.g., images). Our future work is to
evaluate the effectiveness of its extension.
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