
A Appendix

This Appendix is structured as follows. We provide a summary of frequently used notations in
Section B and additional related works in Section C. We show how Self-FL learns in the setting of
a general parametric model in Section D. In Section E, we discuss how the uncertainty quantity in
Algorithm 1 can be computed in an online fashion. In Section F, we introduce a variant of Self-FL
named “Augmented Self-FL”, which serves as a natural alternative to Algorithm 1. Then, in Section G,
we conduct ablation studies and provide additional experimental results. Finally, we provide the
proof of Proposition 3.1 in Section H.

B Summary of Notations
We summarize the frequently used notations in Table 3.

Table 3: Frequently used notations

Notation Meaning
M number of clients
�
2
m variance of client m’s estimated parameters, or the “intra-client uncertainty” in general

�
2
0 variance of different clients’ underlying parameters, or the “inter-client uncertainty” in general

✓
(L)
m , v(L)

m posterior mean and variance of client m’s personal parameter
✓
(FL)
m , v(FL)

m posterior mean and variance of client m’s personal parameter conditional on all the data
✓
(G), v(G) global model’s posterior mean and variance
⌘ learning rate
` learning steps
t FL round
✓
t
m client m’s FL-optimal parameter
✓m, t client m’s local optimal parameter at round t

✓
t global parameter at around t

C Further Remarks on Related Work

Federated learning. A general goal of FL is to train massively distributed models at a large
scale (Bonawitz et al., 2019). FedAvg (McMahan et al., 2017) is perhaps the most widely adopted
FL baseline, which reduces communication costs by allowing clients to train the local models for
multiple iterations. To further reduce communication costs, data compression techniques such as
quantization and sketching have been developed for FL (Konevcny et al., 2016; Alistarh et al., 2017;
Ivkin et al., 2019). To further reduce computation costs, techniques to train a large model using
small-capacity devices such as HeteroFL (Diao et al., 2020) have been developed.

Bayesian Federated Learning. There have been prior work that use the Bayesian perspective in
FL. For instance, FedPA Al-Shedivat et al. (2020) formulates FL as a posterior inference problem
where the global posterior is obtained by averaging the clients’ local posteriors. FedBE Chen and
Chao (2020) proposes an aggregation method by interpreting local models as samples from the global
model distribution and leveraging Bayesian model ensemble to aggregate the predictions. There are
two main differences between Self-FL and the above works. First, both FedPA and FedBE aim to
learn a global FL model on the server side instead of personalized models for clients (the focus of
our paper). Thus, the developed update rules and use scenarios are entirely different. Second, our
approach is based on a novel two-level hierarchical Bayes perspective that leverages the inter-client
and intra-client uncertainty to drive FL optimization. FedPA and FedBE use standard (one-level)
Bayesian posterior to update the global model.

Adaptive Federated Learning. There has been a direction of research to automate the hyperparame-
ter tuning process in FL. For example, FedOPT Reddi et al. (2020) proposes an FL framework with
server and client optimizers to improve FL convergence instead of personalization (our focus). The
adaptive server optimization in Reddi et al. (2020) is orthogonal to Self-FL. FedOPT involves tuning
hyperparameters for the server’s adaptive optimizer (e.g., selecting �1, �2, and ✏ for Adam). Also, its
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aggregation rule is the same as standard FL and can be possibly replaced by our method for better
performance. FedEx Khodak et al. (2021) proposes a hyperparameter tuning method inspired by
weight sharing in neural architecture search. Although FedEx can auto-tune local hyperparameters, it
may need extra efforts to determine its own hyperparameters, such as ⌘t, �t, and configurations c. In
terms of the update rules, FedEx and Self-FL are also very different. In particular, a client in FedEx
will sample a configuration c from a hyperparameter distribution D, and the server will perform an
exponentiated update for D; Self-FL will estimate empirical variances (online) to simultaneously
determine local initialization, training steps, and global model aggregation.

Heterogeneous FL. Earlier studies of FL typically assumed that local models share the same
architecture as the global model (Li et al., 2020c) to produce a single global inference model. This
assumption limits the global model’s complexity for the most data-indigent client. To personalize
the computation and communication capabilities of each client, the work of (Diao et al., 2020)
proposed a new FL framework named HeteroFL to train heterogeneous local models and still
produce a single global inference model. Although this model heterogeneity can be regarded as
personalization of client-side resources, it differs significantly from personalized FL in this work,
where our goal is to derive client-specific models due to clients’ heterogeneous data. To address
system heterogeneity, methods based on asynchronous communication and active client sampling
have also been developed (Bonawitz et al., 2019; Nishio and Yonetani, 2019). To encourage a fair
distribution of accuracy across clients, a method based on client-weighted loss was developed in Li
et al. (2019).
Assisted learning. Beyond edge computing, emerging real-world applications concern the collab-
oration among organizational learners such as research labs, government agencies, or companies.
However, to avoid leaking useful and possibly proprietary information, an organization typically
enforces stringent security measures, significantly limiting such collaboration. Assisted learning
(AL) (Xian et al., 2020; Diao et al., 2021a,b) has been developed as a decentralized framework for
organizational learners (with rich data and computation resources) to autonomously assist each other
without sharing data, task labels, or models. Consequently, each learner also obtains a “personalized
model” to serve its own task. A critical difference between AL and FL is that participating learners
in AL do not share task labels or a global model to meet organizational model privacy Wang et al.
(2021). Also, since a learner is resource-rich, AL often focuses on reducing the assistance rounds
instead of communication costs at each round. As such, the techniques developed under AL are
entirely different from those in the personalized FL literature.

D General parametric models
In a more general parametric model setting, the nature of the personalized FL problem remains the
same as the simple case in Subsection 2.1. Suppose that there are M clients, and their data are
assumed to be generated from:

✓m | ✓0
IID⇠ N (✓0,�

2
0), wm,i

IID⇠ pm(· | ✓m), i 2 [Nm].

For simplicity, we suppose that each observation wm,i is a scalar. The related discussions can be
easily extended to multivariate settings. Compared with Eqn. (1), each client may have a different
amount of data and follow client-specific distributions (denoted by pm). Let zm

�
= ✓

(L)
m denote

the minimum of the negative log-likelihood function Lm(✓m) =
PNm

i=1 loss(wm,i, ✓m). Standard
asymptotic statistics for M -estimators (Van der Vaart, 2000, Ch.5) under regularity conditions show
that
p
Nm(zm�✓m)!d N (0, v2m) as Nm !1, with a constant v2m (the inverse Fisher information).

Thus, we approximately have:

zm | ✓m ⇠ N (✓m, N
�1
m v

2
m).

In other words, we may treat the statistic ✓
(L)
m as the “data” zm in the two-level Gaussian model in

Subsections 2.1. Letting �
2
m

�
= N

�1
m v

2
m and taking it into the equations in Subsection 2.1, we can

approximate posterior quantities accordingly. Also, the objective function Lm(✓m) is approximated
by its second-order Taylor expansion in the form of Eqn. (4). It is worth mentioning that the
asymptotic results for parametric models may not hold for neural networks.
In particular, we let:
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✓(FL)
1

�
=

N1v
�2
1 ✓(L)

1 +
P

m 6=1(�
2
0 +N�1

m v2m)�1✓(L)
m

N1v
�2
1 +

P
m 6=1(�

2
0 +N�1

m v2m)�1
,

✓(G) �
=

P
m2[M ](�

2
0 +N�1

m v2m)�1✓(L)
m

P
m2[M ](�

2
0 +N�1

m v2m)�1
.

Each client, say client 1, can obtain its personal optimal solution ✓
(FL)
1 through the following initial

value and optimization parameters ⌘, `.

✓INIT
1 =

P
m 6=1(�

2
0 +N�1

m v2m)�1✓(L)
m

P
m 6=1(�

2
0 +N�1

m v2m)�1
, (15)

(1�N1v
�2
1 ⌘)` =

P
m 6=1(�

2
0 +N�1

m v2m)�1

N1v
�2
1 +

P
m 6=1(�

2
0 +N�1

m v2m)�1
. (16)

Remark D.1 (Interpretations of the choice of ⌘ and `). Let us consider the following extreme cases.

• (Large sample size, few clients) Suppose that N1 = · · · = NM � M > 1, and v
2
1 ,�

2
0 are

comparable. Then, for client 1, Eqn. (16) becomes:

(1�N1v
�2
1 ⌘)` ⇡ (M � 1)��2

0

N1v
�2
1 + (M � 1)��2

0

⇡ M
N1

v21
�2
0

,

which implies that client 1 needs to run aggressively with its local data. Also, the smaller �2
1 = v

2
1/N1

(namely better data quality or larger sample size), the more local training steps is favored.

• (Small sample size, many clients) Suppose that 1⌧ N1 = · · · = NM ⌧M , and v
2
1 = · · · = v

2
M .

We have:

(1�N1v
�2
1 ⌘)` ⇡ (M � 1)(�2

0 +N�1
1 v21)

�1

N1v
�2
1 + (M � 1)(�2

0 +N�1
1 v21)

�1

⇡ 1� N1

M
�2
0

v21
, (17)

which implies that client 1 needs to set:

N1v
�2
1 ⌘ · ` ⇡ N1

M

�
2
0

v21

, or ⌘ · ` ⇡ �
2
0

M
.

It is interesting to see that the choice of ⌘, ` is independent of the client in this scenario.
• (Homogeneous clients) Suppose that �2

0 = 0, meaning no discrepancy between clients’ data
distributions. We have

(1�N1v
�2
1 ⌘)` =

P
m 6=1 Nmv

�2
mP

m2[M ] Nmv
�2
m

.

If we further assume that v1 = · · · = vM , M is large, and N1, . . . , NM are at the same order, client 1
needs to set N1v

�2
1 ⌘ · ` ⇡ N1/N, where N �

= N1 + · · ·+NM . In other words, ⌘ · ` ⇡ v
2
1/N , which

is the same among all clients.

E Implementation Details of Algorithm 1

In Algorithm 1, we need to evaluate the empirical variance of a set of models. This can be a memory
concern for edge devices in practice. We use the following way to perform online calculation, so that
the required hardware memory does not grow with the number of rounds or clients.

To calculate the sample variance

c
�2
t

�
=

1

t

X

i2[t]

(xi � x̄t)
2 (18)
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where x̄t
�
= t

�1
P

i2[t] xi, we do not need to store x1, . . . , xt. Instead, we only need to store x̄t at
time step t, and calculate the sample variance in the following recursive way.

For t = 1, 2, . . .

x̄t =
t� 1

t
x̄t�1 +

1

t
xt,

c
�2
t =

t� 1

t

d
�2
t�1 +

t� 1

t
(x̄t � x̄t�1) +

(xt � x̄t)2

t
, (19)

with x̄0 = c
�2
0 = 0. It can be verified that the c

�2
t in (19) is equivalent to that in (18). The recursive

computation is particularly favorable for large neural networks with millions of parameters and small
hardware memory.

Remark E.1 (Client sampling). Suppose that in each round, only a subset of clients is activated. The
subscript t in the online update of �2

m is client m’s the local time counter, namely the total counts
that client m is activated in FL communications. This local time counter shall be distinguished from
the global counter t that indicates the system communication round. Also, a client’s intra-client
uncertainty is only online updated in those rounds that it is activated.

F An Alternative Version of Algorithm 1
In this section, we present a slightly more complicated version of Self-FL in Algorithm 2, as an
alternative of Algorithm 1. Its pseudocode can be found at the end of the Appendix, and the main
changes are highlighted with blue fonts. The motivation goes back to the discussions in Subsection 3.2,
where we mentioned the use of a client m’s local parameter at each round as a bootstrapped estimate
of the underlying ✓

(L)
m . In Algorithm 2, each client needs to run additional local training until

convergence (denoted by ✓m,t) in each FL round and communicates two local models with the server.

This alternative variant requires the computation and communication of local-optimal solutions (✓m,t).
Thus, the implementation of Self-FL in Algorithm 2 incurs higher computation costs for local clients
(due to additional local fine-tuning) and doubles the communication overhead compared with the
standard FedAvg (McMahan et al., 2017). We will perform ablation studies in Subsection G.2 to
compare these two algorithms.

G Additional Experiments
We perform extended experiments of Self-FL and summarize the results in this section. Particularly,
in Subsection G.2, we compare the performance of two implementation variants of Self-FL. In
Subsection G.4, we revisit the audio data in a client sampling setting, as a supplement to the full
participation setting studied in Subsection 4.3. In Subsections G.5 and G.6, we show the impact of
the client activity rate C 2 (0, 1] and provide insights into the adaptive local training steps of Self-FL,
respectively.

G.1 Convergence study on synthetic data
For FedAvg on the synthetic dataset, we use a gradient descent-based local update rule: ✓

l
1 =

✓
l�1
1 � ⌘(✓l�1

1 � ✓
(L)
1 )/�2

1 . For DITTO, an additional regularization term is used and the update
rule is: ✓l1 = ✓

l�1
1 � ⌘(✓l�1

1 � ✓
(L)
1 )/�2

1 � �(✓l�1
1 � ✓

(G)). A skeptical reader may wonder whether
DITTO is equivalent to Self-FL for a particular choice of �. This is not the case, even in our earlier
example of the two-layer Gaussian model. The two methods differ in the aggregation rule and the
initialization of each client.

Case 1: Homogeneous setting. We use a small inter-client uncertainty in this setup and assume that
clients have similar local sample sizes. There are M = 20 clients in the FL system where the local
sample size Nm is uniformly sampled from the range [10, 20]. We set the parent parameter ✓0 = 1.6.
The inter-client and intra-client uncertainty are �

2
0 = 0.001, �2

m = 0.1, respectively. The experiment
is repeated 200 times, and we report the mean value as the final metric. The standard error of the
experiment is within 0.001. Note that the effective �

2
m shall be divided by Nm.

Figure 4 compares the parameter estimation performance of Self-FL algorithm with FedAvg and
three existing personalized FL techniques: DITTO (Li et al., 2021), pFedMe (Dinh et al., 2020), and
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Algorithm 2 Self-Aware Personal Federated Learning by Introducing Local Minimum ✓m,t (Aug-
mented Self-FL).
The main differences with Algorithm 1 are highlighted with blue fonts.
Input: A server and M clients. System-wide objects, including the initial model parameters ✓0m =

✓m,0 = ✓
0, initial uncertainty of clients’ parameters c�2

0 = 0, the activity rate C, the number
of communication rounds T , server batch size Bs, and client batch size Bm, and the loss
function (z, ✓) 7! loss(z, ✓) corresponding to a common model architecture. Each client m’s
local resources, including Nm data observations, parameter ✓m, number of local training
steps `m, and learning rate ⌘m.

System executes:
for each communication round t = 1, . . . T do

Mt  max(bC ·Mc, 1) active clients uniformly sampled without replacement
for each client m 2Mt in parallel do

Distribute server model parameters ✓t�1 to local client m
(✓tm, ✓m,t,

c�2
m) ClientUpdate(zm,1, . . . , zm,Nm , ✓

t�1
,
c
�2
0)

(✓t,c�2
0) ServerUpdate(✓tm, ✓m,t,

c�2
m,m 2Mt)

ClientUpdate (zm,1, . . . , zm,Nm , ✓
t�1

,
c
�2
0):

Calculate the uncertainty of the local optimal solution ✓
(L)
m of client m:

c�2
m = empirical variance of {✓m,1, . . . , ✓m,t�1}. (20)

Calculate the initial parameter

✓
t
m

�
= ✓

t�1 � (c�2
0 +

c�2
m)�1

P
k:k 6=m(c�2

0 +
c
�2
k)

�1
(✓m,t�1 � ✓

t�1), (21)

Choose `m � 1 according to
✓
1� ⌘m

Bm
c�2
m

◆`m

=

P
k:k 6=m(c�2

0 +
c
�2
k)

�1

1/c�2
m +

P
k:k 6=m(c�2

0 +
c
�2
k)

�1

for local step s from 1 to `m do
Sample a batch I ⇢ [Nm] of size Bm

Update ✓
t
m  ✓

t
m � ⌘mr✓

P
i2I loss(wm,i, ✓

t
m),

Let ✓m,t  ✓
t
m.

for local step s from `m + 1 to1 do
Sample a batch Is ⇢ [Nm] of size Bm

Update ✓m,t  ✓m,t � ⌘mr✓
P

i2Is
loss(wm,i, ✓m,t),

If it converges, then Break.
Store ✓m,t locally
Return (✓tm, ✓m,t,

c�2
m) and send them to the server

ServerUpdate (✓tm, ✓m,t,
c�2
m,m 2Mt):

Calculate the uncertainty of clients’ underlying parameters

c
�2
0 = empirical variance of {✓m,t,m 2Mt}. (22)

Calculate model parameters

✓
t �
=

P
m2Mt

(c�2
0 +

c�2
m)�1

✓m,t
P

m2Mt
(c�2

0 +
c�2
m)�1

. (23)

Return (✓t,c�2
0)

PerFedAvg (Fallah et al., 2020b). The estimation error is measured in `1 norm. All FL algorithms
use the same learning rate 10�4 and are trained for 200 rounds. For Self-FL, the local training steps
lm’s are computed using Eqn. (16). For other FL methods, the local training steps are set to 50.
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We consider the activity rate C 2 {0.1, 0.2, 0.5, 0.8, 1} and compare different algorithms in each
setting. We draw two conclusions from Figure 4. (i) When there are sufficient active clients in each
communication round, Self-FL and PerFedAvg achieve the lowest estimation error for both global
and local parameters compared with others. (ii) When the number of active clients is small, Self-FL
outperforms the other methods.
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Figure 4: Performance of different FL algorithms on synthetic data of high homogeneity. Estimations
errors of the global and local parameters (averaged over clients) are shown in (a) and (b), respectively.

Case 2: Heterogeneous setting. To generate heterogeneous data across clients, we use a large value
for inter-client uncertainty �

2
0 and assume that clients have different scales of local samples size Nm.

We consider �2
0 = 1 and �

2
m = 0.1. The sample size of each client is uniformly drawn from [10, 200]

(which is much broader than that in Case 1). Other settings are the same as Case 1.

Recall that if the inter-client uncertainty is larger, the clients’ data are more irrelevant, and the
FL posterior approaches the local posterior. Then, the client learns on its own. The global model
becomes a simple equal-weighted averaging of local models (detailed in Remark 2.1). We show the
performance comparison results of different FL algorithms on the heterogeneous dataset in Figure 5.
One can see from the figure that Self-FL’s estimation of both the global parameter and the local ones
are insensitive to the client participation ratio.
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Figure 5: Performance comparison on synthetic datasets of high heterogeneity. Estimation errors are
shown for global parameter (a) and local parameter (b).

G.2 Ablation study of Self-FL’s performance with Algorithms 1 and 2
Results on synthetic data. In this experiment, we conduct an ablation study of Self-FL’s performance
with two different implementation variants outlined in Algorithm 1 (using the early-stop parameter
✓
t
m) and Algorithm 2 (using the sufficiently trained local parameter ✓m,t). We use the same synthetic

datasets and learning parameters as Section 4. We repeat the experiments for 200 times and report
the mean value. The standard error is kept within 0.001. The results are visualized in Figure 6. One
can see from the comparison that the performance gap between these two variants is negligible on
both homogeneous and heterogeneous data.

Results on MNIST and FEMNIST images. Figure 7 shows the evaluation results, where the y-axis
denotes the weighted training accuracy of all personalized models. The two curves in Figure 7b are
very close and the accuracy difference is small than 1%.

20



0

0.005

0.01

0.1 0.2 0.5 0.8 1
Activity Rate

Estimation Error for Global Param
exact-local approx-local

(a) Homogeneous data

0
0.05
0.1
0.15
0.2
0.25

0.1 0.2 0.5 0.8 1
Activity Rate

Estimation Error for Global Param
exact-local approx-local

(b) Heterogeneous data

Figure 6: Performance comparison of Algorithms 1 and 2 on synthetic data.
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Figure 7: Performance comparison of Algorithms 1 and 2 on the MNIST and FEMNIST image data.

Results on the Amazon Alexa audio dataset. We also perform ablation experiments to assess the
performance of two versions of Self-FL on the wake-word audio dataset. The results in Table 4 show
that their performance is similar.

Table 4: Detection performance (relative FA) of the global model on the test dataset of wake-word
audio data. The devices are in the normal state.

FL methods Device Types
A B C D E

Self-FL (Algorithm 2) 0.93 0.94 0.96 0.89 0.98
Self-FL (Algorithm 1) 0.92 0.94 0.91 0.91 1.01

G.3 Experiments on Sent140 Dataset

Sent140 Go et al. (2009) is a text sentiment classification dataset. We generate non-i.i.d. FL training
data of Sent140 following the same procedure as FedProx Li (2020). As for the ML model, we
use a two-layer LSTM binary classifier for this experiment. The model has two LSTM layers
with 256 hidden units, and the last layer is a fully-connected layer. We use the pre-trained 300D
GloVe embedding Pennington et al. (2014) to transform the input sequence of 25 characters into the
embedding space. For each FL algorithm, we train the local models with a learning rate of 0.3, a
batch size of 10, and randomly sub-sample 77 clients in each communication round (corresponding
to a client activity rate C = 0.1). Each selected local client trains his model for 2 epochs. This
hyper-parameter configuration is suggested in the previous paper Li et al. (2020b). Since the number
of local epochs is small, we skip Self-FL’s computation of the local training steps lm and use the
same local epochs lm = 2.

We use warm start in the Sent140 experiment. Particularly, we train a global model from scratch
with FedAvg for 200 rounds and use it as the initialization of the global model for all the other FL
algorithms. With this warm start, we continue training the global model with various FL algorithms
for another 400 rounds. Figure 8 shows the training and test accuracy of the local model obtained by
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(a) Training accuracy. (b) Test accuracy.

Figure 8: Performance of FL training from scratch using FedAvg (warm-start stage).

FedAvg McMahan et al. (2017). We report the weighted accuracy across all users in the FL system
where the weight ratio of each user is proportional to his local sample size.

With the pre-trained global model from FedAvg (at round 200) as the ‘warm-start’ initialization, we
continue FL training with different algorithms for another 400 rounds. Figure 9 compares the training
and test accuracy of the personalized/local models obtained by different FL algorithms. The accuracy
is aggregated across clients where the aggregation weight is proportional to the local sample size.
Note that Figure 9 shows the accuracy change from round 200 (where warm start ends) to round
600. We can see from Figure 9a that both Self-FL and FedAvg demonstrates better convergence
performance compared to DITTO Li et al. (2021), pFedMe Dinh et al. (2020), and PerFedAvg Fallah
et al. (2020b). Recall that the first 200 rounds are trained with FedAvg and continued by other FL
algorithms. As the result, the test accuracy in Figure 9b does not change much from round 200 to
round 600 since it ‘saturates’ during the warm-start stage (Figure 8b).

(a) Training accuracy. (b) Test accuracy.

Figure 9: Performance comparison of different FL algorithms on Sent140 text data. Note that the
x-axis starts from round 200 since we use warm-start in this experiment.

G.4 Self-FL’s performance on wake-word data in clients selection setting

In this experiment, we evaluate the performance of FL algorithms in a client selection scenario. More
specifically, we assume there are 4 clients for each of the five device types (A⇠E). Each client has a
uniform partition of the training set for a specific device type. The FL system has a total of 20 clients.
We set the activity rate to C = 0.25.
We consider two variants of Self-FL in the clients selection scenario: (i) Client-level variant. This
implementation aggregates local models from the currently active clients in each round. (ii) Cluster-
level variant. This method groups clients into clusters and then perform aggregation at the cluster level.
In our experiments, we cluster clients using device types. We can also use the intra-client uncertainty
(�2

m) as the clustering criteria since this information is available for the server (Algorithm 1). With
the technique of clients clustering, the server stores the latest model parameter for each cluster as its
‘representative’. In each communication round, the server loads the weight for each non-active cluster.

22



The global model is updated by aggregating across all clusters. It is worth noting that storing the
latest model for each cluster is much more scalable than saving the model separately for each client.

Table 5: Detection performance (relative FA) of the global model obtained using two variants of
Self-FL on test data.

FL methods State Device Type
A B C D E

Self-FL (client-level)
normal 0.91 0.92 0.97 0.91 0.99

playback 0.93 0.96 1.80 1.00 1.00
alarm NA 0.89 NA 1.04 1.00

Self-FL (cluster-level)
normal 0.96 0.95 1.00 0.91 0.97

playback 0.86 0.99 1.00 0.97 1.01
alarm NA 0.89 NA 1.00 1.00

The performance of the above two variants is shown in Table 5. We can see that the cluster-level
aggregation obtains more conservative global models, and its performance improvement is more
stable across different device types and operation states compared to the client-level variant. This
observation is intuitive, because keeping track of the latest weights for each cluster representative for
aggregation can prevent the global model from catastrophic forgetting when only a small subset of
clients are active in each round.

G.5 Impact of the activity rate C

We use the client activity rate as the weight for smoothing the average in the above experiments.
While this yields a more stable update, it could cause a slow convergence. To investigate the impact
of the weights in our smoothing average update for the global model, we set the activity rate to 0.02
and compare the performance of Self-FL with FedAvg and DITTO. Figure 10 shows the empirical
results in this sparse client participation case. One can see that Self-FL converges slower than FedAvg
and DITTO when we use the activity rate (0.02) as the weight for the current estimation of the global
model in smoothing average. This is expected since a small weight for ✓̂t means that the update of
the global model is more conservative.

Figure 10: Convergence performance of different FL algorithms on the MNIST dataset when the
activity rate is set to 0.02.

We also perform an ablation study on the wake-word dataset to investigate the impact of the activity
rate. The results are summarized in Table 6. We use the client-level implementation of Self-FL in
Subsection G.4 in this experiments. one can see that Self-FL framework obtains better wake-word
detection performance (i.e., smaller relative FA values) when the activity rate is not too small.
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Table 6: Self-FL’s performance with two different activity rates on the wake-word dataset. The
relative FA values of the updated global models are reported.

Activity Rate State Device Types
A B C D E

C = 0.25
normal 0.91 0.92 0.97 0.91 1.00

playback 0.93 0.96 1.80 1.00 1.00
alarm NA 0.89 NA 1.04 1.00

C = 0.1
normal 0.95 0.95 1.00 0.91 0.97

playback 0.86 0.97 1.00 0.96 1.01
alarm NA 0.89 NA 1.00 1.00

G.6 Study of Self-FL’s adaptive local training

A key component of Self-FL is the data-adaptive local training procedure as discussed in Section 3.
The local optimization trajectory is designed in such a way that it achieves a good balance between
local model improvement and global model update. We study the theoretical values of local training
steps lm computed using Eqn. (8). Figure 11 shows the histogram of lm of the active clients in round
t = 100. We also visualize the dynamics of the local training steps for a randomly selected client
across FL rounds in Figure 12. The value of lm exists for a subset of rounds since we use the activity
rate C = 0.1. We can see that the computed number of steps lm has an overall decreasing trend
after round 150, suggesting a drop of the intra-client uncertainty �

2
m. In other words, the quality of

personalized model ✓tm improves eventually.

(a) MNIST (b) FEMNIST
Figure 11: Histogram of the computed number of local training steps for active clients at the round
t = 100.

(a) MNIST (b) FEMNIST
Figure 12: Trajectory of the computed local training steps for a randomly selected client in different
FL rounds.
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G.7 Limitations of Self-FL and Future Directions

There are some new problems left from the work that deserve further research. First, in many practical
applications, clients only have unlabeled data, and it is not easy to annotate those data. This poses a
significant challenge in training personalized models and evaluating them. An important problem is
to integrate self-supervised FL techniques Diao et al. (2021c) into personalization to address such a
lack-of-label issue. Second, we considered heterogeneity in terms of clients’ data distributions. There
are other aspects of heterogeneity, e.g., those at the system and model levels. A more integrated view
of FL heterogeneity is lacking. Third, a critical problem in personalized FL is to assess whether any
particular client model, for a given set of local data, has achieved its theoretical limit from, e.g., a
goodness-of-fit perspective Zhang et al. (2021). We refer to Ding et al. (2022) for an outlook on other
challenges related to personalized FL.

H Proof of Proposition 3.1

In this section, we provide detailed proof of Proposition 3.1 introduced in the main paper. For brevity,
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we have E(D) = 0, and
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Therefore, from (24), we have V(D) = O(M�1) as M !1. By the Markov inequality, we further
have
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Consequently, taking equations (25), (39), and (51) into (41), we obtain
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where C is the constant upper bound of maxm2[M ] |⇣0m| (by the assumption). This proves the
convergence of each client’s personalized model.
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