
A Proof

Theorem 2. In deterministic environments, all agents will converge to the optimal policies, if each
agent i performs Q-learning on the transition function s′∗ = argmaxs′∈N (s,ai)Q

ss
i (s, s

′).

Proof. According to Theorem 1, we know that if each agent i performs Q-learning on ideal transition
function, all agents will converge to the global optimal policies. Therefore, to prove Theorem 2 is
to prove that s′∗ = argmaxs′∈N (s,ai)Q

ss
i (s, s

′) is a transition function under one of the optimal
conditional joint policies of other agents π∗

−i(s, ai). Since

Q(s,a) = Q(s, ai,a−i) = r(s, s′) + γmax
a′

Q(s′,a′),

where s′ is the deterministic next state of a−i when given s and ai, according to (10), we have

Q(s, ai,a−i) = r(s, s′) + γmax
a′

Q(s′,a′) = r(s, s′) + γmax
s′′

Qss
i (s

′, s′′) = Qss
i (s, s

′).

Thus, maxs′ Q
ss
i (s, s

′) = maxa−i Q(s, ai,a−i), which means Qss
i (s, s

′∗) = Q(s, ai,π
∗
−i(s, ai)).

Therefore, when there are multiple s′∗ = argmaxs′∈N (s,ai)Q
ss
i (s, s

′), any one of them is an ideal
transition function under one of the optimal conditional joint policies of other agents, and Theorem 2
holds.
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Therefore, we have
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.

The bound in Theorem 3 show that Qi of I2Q is closer to the true value if the transition probability
of s′∗ is higher in stochastic environments. Since we sample transitions from Di to update fi by
maximizing (12):

Es,ai,s′∼Di

[
λQss

i (s, fi(s, ai))− (fi(s, ai)− s′)2
]
,

the second term makes the predicted next state fi(s, ai) be close to the high-frequency next states
given s and ai in replay buffer Di, which means that the transition probability of the predicted next
state Penv

(
fi(s, ai)|s, ai,π∗

−i(s, ai)
)

would not be too small. Thus, Qi of I2Q will be close to the
true value and the worst cases where the predicted next states have very small transition probabilities
can be avoided according to our implementation (12). That is the reason why I2Q can be successfully
applied in stochastic environments, as shown in Figure 8 and Figure 10.
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Theorem 4. Qo
i (s, ai) is the value function learned on the ideal transition function s′o =

fo
i (s, ai), Qi(s, ai) is the value function learned on the modeled ideal transition function s′ =

fi(s, ai), considering the continues state space, ∥Qo
i −Qi∥∞ ≤ T+γG
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i − fi∥∞, where

G = maxs,a |∂Qi(s,a)
∂s |, T = maxs,s′ |∂r(s,s

′)
∂s′ |, when fi(s, ai) is close to fo

i (s, ai).
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Omiting the remainder term, we have

∥Qo
i −Qi∥∞ ≤ T + γG

1− γ
∥fo

i − fi∥∞ .

Theorem 4 shows that the difference between ideal values Qo
i and learned values Qi is bounded by

the error of modeled transition function. As shown in Figure 5, the learned values of I2Q are very
close to the ideal values, because I2Q accurately models the ideal transition function.

B Additional Results

B.1 Hyperparameter λ

In Section 4.2, we have shown the effectiveness of λ. Here, we further discuss the cases where
λ = 0. When λ = 0, I2Q degenerates into a popular model-based method MBPO [9]. In existing
model-based methods, the modeled transition functions follow the transition probabilities in the
replay buffer, which are non-stationary and outdated, so existing model-based methods also face
the non-stationary problem. As shown in Figure 7 and Figure 11, I2Q outperforms I2Q with λ = 0,
which verifies the effectiveness of the proposed objective function of the transition function fi in I2Q.
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Figure 11: Learning curves with λ = 0.

B.2 Two Update Rules

We propose two update rules for Qi: rule 1 (14) and rule 2 (15). Figure 12 shows that the two rules
achieve similar performance, especially in the tasks with long horizons where the reward of one
timestep is insignificant compared with the cumulated return value. We use rule 2 in differential
games and use rule 1 in SMAC and Multi-Agent MuJoCo.
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Figure 12: Learning curves of two update rules.

B.3 Independent PPO

Independent PPO (IPPO) [4] is a strong on-policy decentralized MARL baseline. However, it is not
fair to compare off-policy algorithms with on-policy algorithms, since on-policy algorithms do not
use old data, which makes them weaker on sample efficiency [1], as shown in Figure 13.
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Figure 13: Learning curves of IPPO.

B.4 Scalability

We test I2Q on 6-agent Walker and 8-agent Ant with full observation setting, the results are shown
in Figure 14. Taking state information as input, IDDPG is strong enough, but I2Q can still obtain
performance gain on 8-agent Ant.
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Figure 14: Learning curves on Multi-Agent MuJoCo.

B.5 Multiple Optimal Joint Policies

In Section 3.4, we have analyzed that I2Q can easily solve the task with multiple optimal joint policies.
Here, we give another way to solve this problem. When agent i selects one of the optimal independent
action, the neighboring state set N (s, ai) contains one of the optimal next states, which have the
max Qss

i (s, s
′). The union of the neighboring state sets ∩iN (s, ai) is a singleton set, which contains

the next state of the joint action. If each N (s, ai) contains different optimal next states, the union
∩iN (s, ai) might contain none of the optimal ones. We let each agent independently and randomly
initialize a same fixed noise function η(s), using the same random seed, as a partial order, and makes
decisions by the partial order

argmaxa∗
i
η(s′∗), s′∗ = argmaxs′∈N(s,a∗

i )
Qss

i (s, s
′).

Thus, each N (s, ai) will contain the optimal next state with the max η value, which is the next state
of the joint action. Thus, the agents are coordinated by η. Since the noise function η is randomly
initialized, it is a small probability event to find multiple next states with the same η value. We could
also adopt other partial orders, e.g., l1 norm of s′.
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We test I2Q on a one-stage matrix game with two optimal joint policies (1, 2) and (2, 1), as shown in
Figure 15. If the agents independently select actions, they might choose the miscoordinated joint
policies (1, 1) and (2, 2). IQL learns the suboptimal policy (1, 1), but I2Q agents always select
coordinated actions, though the value gap between the optimal policy and suboptimal policy is so
small. Published as a conference paper at ICLR 2021

a2

a1 A(1) A(2) A(3)

A(1) 9.99 10 0
A(2) 10 0
A(3) 0 0

(a) Payoff of a harder matrix game
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Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN

6

0
0

(a) matrix game

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

9.980

9.985

9.990

9.995

10.000

10.005

10.010

re
w

ar
d

I2Q

IQL

(b) learning curves
Figure 15: Learning curves on a one-stage matrix game with multiple optimal joint policies.

B.6 Discussion on D3G

D3G predicts the optimal next state s′∗ with the highest QSS value and decodes actions in execution by
training a inverse model ai = g(s, s′∗). Different from D3G, I2Q builds transition function fi(s, ai)
using QSS value and trains Q-learning on fi(s, ai). Several drawbacks limit the performance of D3G
in decentralized MARL. First, over-generalization of g(s, s′∗) would lead to wrong ai. Considering
two inverse maps (s, s′1)→ a1 and (s, s′2)→ a2, where s′1 and s′2 are very similar but a1 and a2

are very different, which is common in complex continuous environments, trained by supervised
learning, the inverse model g may mistakenly predict g(s, s′1) as the average of a1 and a2, due to the
generalization of neural network on state space. Since a1 and a2 are very different, the prediction error
is large and leads to poor performance. Experimentally, we find it is hard to perfectly train the inverse
model g(s, s′), and the prediction error of actions greatly influences the performance in practice. I2Q
could avoid this problem since it learns accurate values Qi(s, a

1) and Qi(s, a
2) and selects the action

with the highest value. Second, as stated in the experiment section, the implementation of D3G adopts
a forward model, which requires the transition probabilities in replay buffer Di to be deterministic,
which is impossible in decentralized MARL. The motivation and implementation of I2Q are very
different from that of D3G, which makes I2Q more suitable and practical in decentralized MARL,
as shown in Figure 6 and Figure 9. The original D3G can only be used in continuous action space,
and we extend it to discrete space and compare it in SMAC. Due to the analyzed drawbacks, discrete
D3G cannot obtain a winning rate in SMAC, as shown in Table 1.

Table 1: Winning rate on SMAC.

8m 3s_vs_4z 2s3z 5m_vs_6m

I2Q 89% 68% 85% 42%
discrete D3G 0 0 0 0

B.7 I2Q without Forward Model

For practicability, we design an approximation of I2Q without forward model fi, which is enlightened
by implicit Q-learning[12]. Implicit Q-learning learns the optimal value without predicting next
actions, similarly, we can obtain QSS value without predicting next states. Following Implicit
Q-learning, we introduce Vi(s) and utilize expectile regression. Specifically, we update Qss

i by
minimizing

Es,s′,r∼Di [(Q
ss
i (s, s

′)− r − γVi(s
′))2],

update Vi(s
′) by minimizing expectile loss

Es,s′∼Di [L
τ
2(Q

ss
i (s, s

′)− Vi(s
′))], Lτ

2(u) = |τ − 1(u < 0)|u2.

Using the approximate QSS value, we have

Qss
i (s, s

′∗) = max
s′∈N (s,ai)

Qss
i (s, s

′)
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According to Eq 15 and the mathematical derivation between line 161 and line 162, we update
Qi(s, ai) to be Qss

i (s, s
′∗) by minimizing

Es,ai,s′∼Di
[(Qi(s, ai)−max(Q̄i(s, ai), Q̄

ss
i (s, s

′)))2].

Although QSS value is a biased estimation in this implementation, the implementation without
forward model is practical. We test I2Q w/o forward model in SMAC. The results are shown in
Figure 16. I2Q w/o f shows similar performance with I2Q, and does not need to learn the forward
model, thus it would be more practical in complex environments.
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Figure 16: Learning curves on SMAC.

C Hyperparameters

In 2× 3 HalfCheetah, there are two agents and each of them controls 3 joints of HalfCheetah. In 2|4
HalfCheetah, there are two agents. One of them controls 2 joints, and one of them controls 4 joints.
And so on.

In MPE-based (MIT license) differential games and Multi-Agent MuJoCo (MIT license), we adopt
the implementation of SpinningUp [1] (MIT license), the SOTA implementation of DDPG, and follow
all hyperparameters in SpinningUp. The discount factor γ = 0.99, the learning rate is 0.001 with
Adam optimizer, the batch size is 100, the replay buffer contains 1× 106 transitions, the hidden units
are 256.

In SMAC (MIT license), we adopt the implementation of PyMARL [23] (Apache-2.0 license) and
follow all hyperparameters in PyMARL. The discount factor γ = 0.99, the learning rate is 0.0005
with RMSprop optimizer, the batch size is 32 episodes, the replay buffer contains 5000 episodes, the
hidden units are 64. We adopt the version SC2.4.10.

The hyperparameter λ has been fully tested in MPE-based differential games. In Multi-Agent
MuJoCo, we set λ = 0.01, and in SMAC, we set λ = 0.05.

The experiments are carried out on Intel i7-8700 CPU and NVIDIA GTX 1080Ti GPU. The training
of each MPE and Multi-Agent MuJoCo task could be finished in 5 hours, and the training of each
SMAC task could be finished in 20 hours.

The code is available at https://github.com/jiechuanjiang/I2Q.
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