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Abstract

The stochastic multi-armed bandit setting has been recently studied in the non-
stationary regime, where the mean payoff of each action is a non-decreasing
function of the number of rounds passed since it was last played. This model
captures natural behavioral aspects of the users which crucially determine the
performance of recommendation platforms, ad placement systems, and more.
Even assuming prior knowledge of the mean payoff functions, computing an
optimal planning in the above model is NP-hard, while the state-of-the-art is a
1/4-approximation algorithm for the case where at most one arm can be played per
round. We first focus on the setting where the mean payoff functions are known. In
this setting, we significantly improve the best-known guarantees for the planning
problem by developing a polynomial-time (1 � 1/e)-approximation algorithm
(asymptotically and in expectation), based on a novel combination of randomized
LP rounding and a time-correlated (interleaved) scheduling method. Furthermore,
our algorithm achieves improved guarantees – compared to prior work – for the
case where more than one arm can be played at each round. Moving to the bandit
setting, when the mean payoff functions are initially unknown, we show how our
algorithm can be transformed into a bandit algorithm with sublinear regret.

1 Introduction

In the last two decades, the predominant rise of the social media industry has made the notion of a
newsfeed an integral part of our lives. In a newsfeed, a user observes a structured sequence of content
items (posts, photos etc.) particularly selected by the platform according to her/his preferences. Apart
from social media, an analogous idea – potentially relabeled – also appears in different domains
as, for example, “frequently bought together” in e-commerce, “shuffling similar songs” in music
recommendation, or “recommended articles” in scholarly literature indexing databases. Whether it
is measured in terms of click-rate or time devoted, the high-level objective of newsfeeds is fairly
well-known: to maximize the user’s engagement with the platform. In many applications, however,
achieving this objective is not as simple as identifying the user’s “favorite” content, given that her/his
satisfaction can depend on the time passed since the same (or similar) content has been observed. As
an example, a user’s engagement can worsen if a social media feed (resp., a music recommendation
platform) constantly presents content from the same source (resp., same artist).
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Motivated by such scenarios, researchers have recently studied online decision making problems
capturing the notion of “recovering” payoffs, namely, scenarios where the payoff of an action
drops (to zero) after each play and then slowly increases back to a baseline. In the context of
online learning, these non-stationary models interpolate between multi-armed bandits, where the
environment is assumed to be intact, and reinforcement learning, since the actions may now alter the
future environment in a structured manner. These models are wide enough to capture many real-life
applications, yet special enough to accept efficiently computable (near-)optimal solutions. In this
direction, the following general model was first introduced (under slightly different assumptions) by
Immorlica and Kleinberg [IK18] and has been recently studied by Simchi-Levi et al. [SLZZ21]:
Problem (Multi-armed bandits under recharging payoffs). We consider a set of actions (or arms),
where each arm i is associated with a mean payoff function pi. For each ⌧ , pi(⌧) is the expected
payoff collected for playing action i, when i has been played before exactly ⌧ rounds (we refer to ⌧

as the delay of an arm at a specific round). For each arm, we assume that its payoff function: (a) is
monotone non-decreasing in ⌧ , and (b) has a known finite recovery time, namely, a specific delay
after which the function remains constant. At each round, the player pulls a subset of at most k
actions, observes the realized payoffs of the arms played (each computed with respect to the delay
of the corresponding action), and collects their sum. The objective is to maximize the expected
cumulative payoff collected within an unknown time horizon.

We denote by k-RB an instance of the problem where at most k arms can be played at each round.
Further, we distinguish between the planning setting, where the payoff functions are known to the
player a priori (thus, payoffs can be considered deterministic), and the learning setting, where these
are initially unknown and the user assumes semi-bandit feedback on the payoffs of the played actions.
In the former case, the goal is to design an efficient algorithm which closely-approximates the optimal
planning (since this is generally an NP-hard problem), while in the latter, the objective is to construct
a bandit algorithm of sublinear regret, defined as the difference in expected payoff between a planning
algorithm and its bandit variant due to the initial absence of information of the latter.

1.1 Background and Related Work

Immorlica and Kleinberg [IK18] first study the 1-RB problem and provide a (1� ✏)-approximation
(asymptotically) for the planning setting, under the additional assumption that the payoff functions
are weakly concave over the whole time horizon. On the other extreme, Basu et al. [BSSS19] provide
a long-run (1� 1/e)-approximation for the case where, after each play, an arm cannot be played
again for a fixed number of rounds – a problem which can be cast as a special instance of 1-RB
using Heaviside step payoff functions.1 Shortly after the introduction of the problem, a number
of special cases and variations have been studied [CCB20, PC21, PBG19, BPCS21, BCMTT20,
CCB20, LCCBGB22, APB+21] (we address the reader to Appendix A for an overview).

In their recent work, Simchi-Levi et al. [SLZZ21] study the k-RB problem and prove the first
O(1)-approximation guarantee under no additional assumptions. For large k, this result is the state-
of-the-art. However, for small k, understanding the magnitude of the constant becomes the primary
theoretical question. Specifically, the motivating case of newsfeeds (when, for instance, the content
items are presented to a user sequentially) can be modeled as an instance of 1-RB. In this case,
the approximation guarantee of [SLZZ21] becomes 1/4, which is significantly weaker compared to
both the (1� ✏)-approximation of [IK18] for concave functions and the (1� 1/e)-approximation of
[BSSS19] for the most “extreme” example of monotone convex functions, i.e., that of Heaviside step
functions. The above observation indicates that either the approximability status of the problem is not
well-understood, or that the problem does not gradually become “easier” by increasing the concavity
of the payoff functions.

1.2 Technical Contributions

In our work, we resolve this discrepancy by designing a long-run (1� 1/e)-approximation algorithm
(in expectation) for 1-RB, which improves the state-of-the-art due to [SLZZ21]. Simultaneously, our
algorithm enjoys the same asymptotic guarantee of (1�O(1/

p
k)) for the general case of k-RB as

in Simchi-Levi et al. [SLZZ21] with improved and explicit constants, as opposed to the guarantees
of [SLZZ21] which do not come in a closed-form (see Table 1 for a summary of the best-known

1Recall that the Heaviside step function is defined such that H(⌧) = 1 for ⌧ � 0, and H(⌧) = 0, otherwise.

2



Payoff functions State-of-the-art Reference This work
Non-decreasing, concave, Lipschitz (1� ✏)-PTAS for k = 1 [IK18] –
Scaled/translated Heaviside step 1�

1

e for k = 1 [BSSS19, PC21] –
// max

a2Z+

a
a+1

k
k+a for any k [SLZZ21] 1�

kk

ekk!

Non-decreasing (finite recovery) 1

4
for k = 1 [SLZZ21] 1�

1

e

// max
a2Z+

a
a+1

k
k+a for any k [SLZZ21] 1�

kk

ekk!

Table 1: Summary of existing results (approximation guarantees) and our improvements.

approximation guarantees). Our algorithm is based on a novel combination of linear programming
(LP) rounding and a time-correlated (interleaved) scheduling method, and is significantly simpler
to implement compared to prior work. For the case where the mean payoff functions are initially
unknown, we show how our algorithm can be transformed into a bandit algorithm with sublinear
regret guarantees.

1.3 Key Ideas and Intuition

Henceforth, we refer to any instance where the payoff function of each action i has the form
qi(⌧) = pi · H(⌧ � di), where pi 2 [0, 1], di 2 N, and H(·) the Heaviside step function, as the
Heaviside k-RB problem. The fact that our (1� 1/e)-approximation for 1-RB matches the state-of-the-
art bound obtained for Heaviside 1-RB [BSSS19, PC21] is no coincidence. Our solution technique
shows that each k-RB problem is in fact (approximately) hiding a Heaviside k-RB problem.

Structural characterization of a natural LP relaxation. A key idea in both [IK18] and [SLZZ21]
is to construct a concave relaxation of the optimal solution. Instead, we take a more direct approach
and construct a natural LP relaxation (see Section 3) of the optimal average payoff (our construction
uses a uniform upper bound on the recovery time of any arm). By carefully analyzing the structure of
our LP, we prove that its extreme point solutions follow a particularly interesting sparsity pattern:
there exist unique delays {⌧i} associated with the arms (which we refer to as “critical” delays), such
that playing each arm i exactly once every ⌧i rounds matches the average payoff of the relaxation. As
we show, an exception to the above rule can be at most a single arm, which we refer to as irregular.
The above observation already hints that our problem could potentially be reduced to an instance of
Heaviside k-RB for which better approximation guarantees (compared to [SLZZ21]) are known to
exist (at least for small k) [BSSS19, PC21].

Improved approximation guarantees for the planning k-RB. Constructing a planning where
each arm is played at a rate indicated by its critical delay (as described above) is generally infeasible,
since these rates stem from a relaxation of the problem. However, targeting these rates becomes
the starting point of our approximation. In Section 4, we design a novel algorithm for the k-RB
problem, called “Randomize-Then-Interleave”, which starts from computing an optimal solution to
our LP relaxation. By combining the sparse structure of this solution with a randomized rounding
step for determining a critical delay for the (possible) irregular arm, our algorithm produces a “proxy”
instance of the Heaviside k-RB problem. Finally, the algorithm applies the interleaved scheduling
method of [PC21] on the resulting Heaviside k-RB instance. As we prove, the above algorithm
achieves a long-run (1�O(1/

p
k))-approximation guarantee (in expectation), but with improved and

explicit constants compared to [SLZZ21]. Importantly, for the particular case of k-RB, our guarantee
is stronger than the one provided in the original work of [PC21].

As a first step, in Section 4.1 we study the performance of our algorithm under the simplifying
assumption that the solution returned by our LP relaxation does not contain an irregular arm, that is,
every arm is associated with a unique critical delay. For this case, the approximation guarantee of our
algorithm follows by critically leveraging existing results on the correlation gap of the weighted rank
function of uniform matroids due to [Yan11] (see Section 2). In Section 4.2, we relax this simplifying
assumption by carefully studying the contribution of the irregular arm to the produced solution. Our
strategy relies on the novel idea of considering parallel (fictitious) copies of the irregular arm, one for
each possible critical delay. While the marginal probabilities of each copy being played under the
corresponding delay at any round are consistent with the initial LP solution, these events are mutually
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exclusive. Nevertheless, we show that expected payoff collected can only decrease by assuming that
the parallel copies were instead independent. Having established that, the analysis reduces back to
the “easier” case where an irregular arm does not exist.

A bandit adaptation with sublinear regret. Finally, we turn our focus to the learning setting,
where the mean payoff functions are initially unknown, and the player has semi-bandit feedback on
the realized payoffs of the played arms of each round. In this setting, we begin by analyzing the
robustness of our planning algorithm under small perturbations of the payoff functions. Then, we
provide sample complexity results to bound the number of samples required to get accurate estimates
of the mean payoff functions. By combining the above elements, we transform our planning algorithm
into a bandit one, based on an Explore-then-Commit (ETC) scheme, and prove that the latter achieves
sublinear regret relative to its planning counterpart. We present these results in Section 5.

All the omitted proofs of our results have been moved to the Appendix.

2 Preliminaries

Problem definition and notation. We consider a set A = {1, 2, . . . , n} of n actions (or arms),
where each arm i 2 A is associated with a (mean) payoff function pi : N! [0, 1]. For each ⌧ 2 N,
pi(⌧) is the expected payoff for playing action i 2 A, when i has been played before exactly ⌧

rounds (i.e., ⌧ = 1 if the action has been played in the previous round). We refer to the number of
rounds since the last play of an arm as the delay. For each arm i 2 A, we assume that the function
pi(⌧): (a) is monotone non-decreasing in ⌧ , and (b) has a polynomial recovery time ⌧

max

i such that
pi(⌧) = pi(⌧

max

i ) for every ⌧ � ⌧
max

i . We assume knowledge of a universal upper bound ⌧
max on

the recovery time of all arms, i.e., ⌧max
� maxi2A ⌧

max

i .2 At each round, the player plays a subset
of at most k < n actions and collects the sum of their associated payoffs (each computed with respect
to the delay of the corresponding action at the time it is played). The objective is to maximize the
cumulative payoff collected within an (unknown) horizon of T rounds. We refer to the above instance
as k-RB.

As a convention, we assume that the delay of each arm i is initially equal to 1 (i.e., all arms are played
at time t = 0). Note that, even if we assume that all arms start with delay ⌧

max (i.e., the arms have
never been played before), our results do not change qualitatively.

For any non-negative integer n 2 N, we define [n] = {1, 2, . . . , n}. For any vector w 2 Rn and
set S ✓ [n], we denote w(S) =

P
i2S wi. Finally, throughout this work we assume that, when

comparing between different payoffs, ties are broken arbitrarily.

Continuous extensions and the correlation gap. Let f : 2
[n]
! [0,1) be a set function defined

over a finite set of n elements. For any vector y 2 [0, 1]
n, we denote by D(y) a distribution over

2
[n] with marginal probabilities y = (yi)i2[n]. We denote by S ⇠ D(y) a random subset S ✓ [n]

sampled from the distribution D(y). Further, we denote by S ⇠ I(y) a random subset S ✓ [n]

which is constructed by adding each element i 2 [n] to S, independently, with probability yi.

We recall two canonical continuous extensions of a set function (see [CCPV07, Sch03]):
Definition 2.1 (Multi-linear extension). For any vector y 2 [0, 1]

n, the multi-linear extension of a
set function f is defined as

F (y) = E
S⇠I(y)

[f(S)] =

X

S✓[n]

f(S)

Y

i2S

yi

Y

i/2S

(1� yi).

Definition 2.2 (Concave closure). For any vector y 2 [0, 1]
n, the concave closure of a set function f

is defined as

f
+
(y) = sup

D(y)
E

S⇠D(y)
[f(S)] = sup

↵

⇢ X

S✓[n]

↵Sf(S) |

X

S✓[n]

↵S1S = y,
X

S✓[n]

↵S = 1,↵ ⌫ 0

�
,

where 1S 2 {0, 1}
n is an indicator vector such that (1S)i = 1, if i 2 S, and (1S)i = 0, otherwise.

2Due to the polynomial recovery time assumption, oracle access to the payoff functions is not required.
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For any non-negative weight vector w 2 [0,1)
n, of particular importance in the analysis of our

algorithm is the function fw,k : 2
[n]
! [0,1), defined as

fw,k(S) = max{w(I) | I ✓ S and |I|  k}. (1)

We remark that fw,k corresponds to the weighted rank function of the (rank-k) uniform matroid under
a weight vector w and, hence, is non-decreasing submodular [Sch03].3 We denote by Fw,k and f

+

w,k

the multi-linear extension and the concave closure of fw,k, respectively.

The correlation gap [ADSY10] of a set function is defined as supy2[0,1]n
f+

(y)
F (y) . The following result

due to [Yan11] provides an upper bound on the correlation gap of fw,k(·):

Lemma 2.3 (Correlation gap [Yan11]). Let fw,k : 2
[n]
! [0,1) be the weighted rank function of

the rank-k uniform matroid. Then, for any vector y 2 [0, 1]
n we have

f
+

w,k(y) � Fw,k(y) �

✓
1�

k
k

ekk!

◆
· f

+

w,k(y) ⇡

✓
1�

1
p
2⇡k

◆
· f

+

w,k(y).

3 Structural Properties of a Natural LP Relaxation

We consider the following LP relaxation which applies to any planning instance of k-RB:

maximize:
x⌫0

X

i2A

X

⌧2N
pi(⌧) · xi,⌧ (LPk)

s.t.:
X

i2A

X

⌧2N
xi,⌧  k, (C.1)

X

⌧2N
⌧ · xi,⌧  1, 8i 2 A . (C.2)

In the above formulation, each variable xi,⌧ denotes the fraction of time where arm i is played under
delay ⌧ – namely, exactly ⌧ time steps after it was played for the last time. In (LPk), constraint (C.1)
follows by the fact that the total fraction of time where any action can be played (under any delay)
cannot be more than k. Further, constraints (C.2) are valid constraints for the fractional plays of any
individual arm under different delays.

We start by proving that the optimal solution of (LPk) is asymptotically an upper bound on the
optimal average expected payoff:
Lemma 3.1. For any instance of the k-RB problem, let V ⇤ be the optimal value of (LPk) and OPT(T )

be the maximum payoff that can be collected in a time horizon of T rounds. Then T ·V
⇤
� OPT(T ).

Assuming knowledge of an upper bound ⌧
max
� maxi2A{⌧

max

i } on the maximum recovery time of
any action, an optimal extreme point solution to (LPk) can be computed in polynomial time:
Fact 3.2. There exists an optimal solution to (LPk) which is supported in (xi,⌧ )i2A,⌧2[⌧max

i ]. Further,
given an upper bound ⌧

max on the maximum recovery time of any action, an optimal extreme point
solution to (LPk) can be computed in polynomial time.

Let us introduce the notion of supported actions:
Definition 3.3 (Supported actions). For any (potentially infeasible) solution x to (LPk), we say that
an action i 2 A is supported in x, denoted by i 2 A(x), if there exists ⌧ 2 N such that xi,⌧ > 0.

We introduce the following class of solutions:
Definition 3.4 (Delay-feasible solutions). We say that a vector x = (xi,⌧ )i2A,⌧2N is delay-feasible,
if for each supported action i 2 A(x) there exists at most one non-zero variable xi,⌧i , and for this
variable it holds xi,⌧i =

1/⌧i. Further, we say that x is almost-delay-feasible, if it is delay-feasible,
possibly with the exception of a single arm ◆ 2 A(x), for which there exist at most two non-zero
variables x◆,⌧◆,a , x◆,⌧◆,b , such that x◆,⌧◆,a < 1/⌧◆,a and x◆,⌧◆,b < 1/⌧◆,b. In the case of almost-delay-
feasible solutions, we refer to ◆ as the irregular arm.

3A function f : 2[n] ! R is submodular, if for any S, T ✓ [n], it holds f(S[T )+f(S\T )  f(S)+f(T ).
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We remark that delay-feasible solutions subsume by definition almost-delay-feasible solutions and
that a (almost-)delay-feasible solution is not necessarily a feasible solution to (LPk).

As we prove in the next key-lemma, any extreme point solution of (LPk) is almost-delay-feasible:
Lemma 3.5 (Sparsity pattern of extreme point solutions). Let x be any extreme point solution of
(LPk). Then, x is almost-delay-feasible.

4 Improved Approximation Guarantees for Planning

For any instance of k-RB, our algorithm (see Algorithm 1 below), called “Randomize-Then-
Interleave”, constructs a feasible planning schedule without requiring knowledge of the time horizon.
We remark that for the planning setting of the problem, we treat the payoff of any arm under any
possible delay as deterministic.

The algorithm starts from computing an optimal extreme point solution x⇤ to (LPk), and then uses
this solution to determine a critical delay ⌧

⇤
i for each supported arm i 2 A(x⇤

). By Lemma 3.5, we
know that x⇤ is almost-delay-feasible, which means that – possibly with the exception of a single
irregular arm ◆ – for every arm i 2 A(x⇤

) \ {◆}, there exists a unique ⌧i, such that x⇤
i,⌧i =

1/⌧i > 0.
Thus, Algorithm 1 sets this unique ⌧i to be the critical delay of each arm i 2 A(x⇤

) \ {◆}. In the
case where an irregular arm ◆ 2 A(x⇤

) exists, then, by Definition 3.4, there exist at most two distinct
⌧◆,a, ⌧◆,b with x

⇤
◆,⌧◆,a > 0 and x

⇤
◆,⌧◆,b � 0, in which case the critical delay ⌧

⇤
◆ of ◆ is set to ⌧◆,a or ⌧◆,b,

with marginal probability ⌧◆,ax
⇤
◆,⌧◆,a and ⌧◆,bx

⇤
◆,⌧◆,b , respectively. Notice that by constraints (C.2) of

(LPk), the above sampling process is well-defined, since ⌧◆,ax
⇤
◆,⌧◆,a + ⌧◆,bx

⇤
◆,⌧◆,b  1. In the case

where no ⌧
⇤
◆ is sampled, the irregular arm is removed from A(x⇤

). After computing the critical
delays, for each arm i 2 A(x⇤

) the algorithm draws a random offset ri independently and uniformly
from {0, 1, . . . , ⌧

⇤
i � 1}.

Algorithm 1: Randomize-Then-Interleave
/* Initialization phase */

Compute an optimal extreme point solution x⇤ to (LPk).
Let ◆ 2 A be the irregular arm (if such an arm exists).
for each arm i 2 A(x⇤

) \ {◆} do
Let ⌧⇤i be the unique ⌧ 2 N which satisfies x⇤

i,⌧ = 1/⌧ .
if an irregular arm ◆ 2 A(x⇤

) exists then
Let ⌧◆,a, ⌧◆,b 2 N be such that x⇤

◆,⌧◆,a > 0, x⇤
◆,⌧◆,b � 0, and ⌧◆,a 6= ⌧◆,b.

Set pa  ⌧◆,ax
⇤
◆,⌧◆,a and pb  ⌧◆,bx

⇤
◆,⌧◆,b .

Sample ⌧
⇤
◆ from {⌧◆,a, ⌧◆,b,1} with marginals pa, pb, and 1� pa � pb, respectively.

if ⌧⇤◆ =1 then
Remove ◆ from A(x⇤

).
for each arm i 2 A(x⇤

) do
Sample an offset ri uniformly at random from {0, 1, . . . , ⌧

⇤
i � 1}.

/* Online phase */

for t = 1, 2, . . . do
Let Ct ✓ A be the subset of candidate arms, defined as Ct = {i 2 A(x⇤

) | t mod ⌧
⇤
i ⌘ ri}.

Play the maximum-payoff subset of k arms in Ct, namely, At = argmax
S✓Ct,|S|k

P
i2S pi(�i,t),

where �i,t (actual delay) is the time passed since arm i was last played before t.

After initialization, Algorithm 1 proceeds to its online phase where, at each round t, it first computes
a subset of candidate arms Ct, namely, all arms i 2 A(x⇤

) which satisfy t mod ⌧
⇤
i ⌘ ri. Then, the

algorithm computes the maximum-payoff subset At of at most k candidate arms, computed using
their actual delays (the number of rounds passed since last play), and plays these arms.

4.1 Approximation Analysis: Assuming Delay-Feasible LP Solutions

We now present an analysis of the approximation guarantee of Algorithm 1 for general k. In order to
facilitate the presentation, we first focus on a special class of “easy” instances, where the optimal
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extreme point solution x⇤ of (LPk) is delay-feasible (i.e., there is no irregular arm). Consequently,
we show how this assumption can be relaxed at the expense of additional technical effort.

Recall that we denote by A(x⇤
) the set of arms that are supported in the solution x⇤. Notice that,

since x⇤ is delay-feasible by assumption, the only source of randomness in Algorithm 1 is due to the
random offsets. Since each offset ri is sampled independently and uniformly from {0, 1, . . . , ⌧

⇤
i � 1}

and i 2 Ct if and only if t mod ⌧
⇤
i ⌘ ri, the following fact is immediate:

Fact 4.1. Let {⌧⇤i }i2A(x⇤) be the critical delays of the supported arms. At any round t, each arm
i 2 A(x⇤

) belongs to Ct independently with probability 1/⌧⇤
i .

Let us focus on the expected payoff collected by Algorithm 1 at any round t � ⌧
max. By our

simplifying assumption that x⇤ is delay-feasible, for each supported arm i 2 A(x⇤
), there is a unique

critical delay ⌧
⇤
i , such that x⇤

i,⌧⇤
i
= 1/⌧⇤

i is the only non-zero variable of x⇤ corresponding to i.

We construct a vector y = [0, 1]
n, such that yi = 1/⌧⇤

i for each i 2 A(x⇤
), and yi = 0, otherwise.

Further, let us define a vector w 2 [0,1)
n such that wi = pi(⌧

⇤
i ) for each i 2 A(x⇤

), and wi = 0,
otherwise. Recall that for any fixed round t � ⌧

max, by definition of Ct and the construction of the
offsets, the events {i 2 Ct}i2A are independent. Hence, we can think of Ct as a random set, where
each arm i 2 A belongs to Ct independently with probability yi, namely, Ct ⇠ I(y).

Let At = argmax
S✓Ct,|S|k

P
i2S pi(⌧

⇤
i ) be a set of at most k arms in Ct which maximizes the total payoff

measured with respect to the critical delays. By construction of Ct, the actual delay �i,t of each
i 2 A(x⇤

) is (deterministically) lower bounded by ⌧
⇤
i , since any arm must be a candidate in order to

be played (which happens exactly every ⌧
⇤
i rounds). Thus, for the expected collected payoff of any

round t � ⌧
max we have

E
Ct⇠I(y)

"
max

S✓Ct,|S|k

X

i2S

pi(�i,t)

#
� E

Ct⇠I(y)

"
max

S✓Ct,|S|k

X

i2S

pi(⌧
⇤
i )

#
= E

Ct⇠I(y)
[w(At)] . (2)

Using Equation (1) in combination with Definitions 2.1 and 2.2, we get

E
Ct⇠I(y)

[w(At)] = E
Ct⇠I(y)

[fw,k(Ct)] = Fw,k(y) �

✓
1�

k
k

ekk!

◆
· f

+

w,k(y), (3)

where the last inequality follows by Lemma 2.3.

The following technical lemma relates f+

w,k(y) with optimal value of (LPk):

Lemma 4.2. For any vectors w 2 [0,1)
n and y 2 [0, 1]

n, let f+

w,k(y) be the concave closure of
the weighted rank function of the rank-k uniform matroid with weights w, evaluated at y. Then, if y
satisfies ky k1  k, it is the case that f+

w,k(y) �
P

i2[n] wiyi.

Let V ⇤ be the optimal value of (LPk). Since ky k1  k, then by applying Lemma 4.2 with vectors
w and y as constructed above, we have that

f
+

w,k(y) �
X

i2[n]

wi · yi =

X

i2A(x⇤)

pi(⌧
⇤
i ) · x

⇤
i,⌧⇤

i
= V

⇤
. (4)

By combining Equations (2) to (4) with Lemma 3.1, it follows that, for any round t � ⌧
max, the

expected payoff collected by Algorithm 1 is at least
�
1� kk

/ekk!
�
-times the average optimal payoff.

By using linearity of expectations together with the fact that all payoffs are bounded in [0, 1], we can
prove a long-run

�
1� kk

/ekk!
�
-approximation guarantee (in expectation) for instances where x⇤ is

delay-feasible.

In the rest of this section, we show how the above analysis can be extended for the general case where
x⇤ is almost-delay-feasible (i.e., an irregular arm exists).

4.2 Approximation Analysis: Handling the Irregular Arm

We now extend the analysis of Section 4.1 and relax the assumption that the optimal extreme point
solution of (LPk) is delay-feasible.
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Let x⇤ be an optimal solution to (LPk) and let ◆ 2 A(x⇤
) be the irregular arm with ⌧

⇤
◆,a and ⌧

⇤
◆,b

being the two potential critical delays such that x⇤
◆,⌧◆,a , x

⇤
◆,⌧◆,b � 0 (with at least one of x⇤

◆,⌧◆,a and
x
⇤
◆,⌧◆,b being strictly positive, by Definition 3.4). Instead of conditioning on the sampled critical

delay of the irregular arm ◆, we construct two (fictitious) parallel copies ◆a and ◆b – one for each
possible realization (and associated payoff). Let us define A

0
= A(x⇤

) \ {◆} [ {◆a, ◆b} to be the set
of supported arms of x⇤, where we replace the irregular arm ◆ with the two parallel copies ◆a and ◆b.

In the next lemma, we characterize the marginal probability that any arm in A
0 is added to the set of

candidate arms at any round. Notice that, as opposed to Fact 4.1, the randomness in this case is taken
over both the sampling of a critical delay for the irregular arm as well as the random offsets.

Lemma 4.3. For any arm i 2 A
0 and at any round t, we have that P [i 2 Ct and ⌧

⇤
i = ⌧ ] = x

⇤
i,⌧ .

Notice that, for the parallel copies of the irregular arm, the events {◆a 2 Ct} and {◆b 2 Ct} are now
dependent and, in particular, mutually exclusive (since, eventually, at most one of them is realized).
However, we are able to show that the expected payoff collected at any round t � ⌧

max can only
decrease if the two events were instead independent with the same marginal probabilities.

For convenience, we relabel the arms in A
0 in non-increasing order of pi(⌧⇤i ) (breaking ties arbitrarily).

Note that by exchanging ◆ with the two copies ◆a and ◆b the cardinality of A0 can be at most n+ 1.

Let us construct a (n+1)-dimensional vector y 2 [0, 1]
n+1, such that yi = x

⇤
i,⌧⇤

i
for any i 2 A

0, and
yi = 0, otherwise. Further, we construct a weight vector w 2 [0,1)

n+1, such that wi = pi(⌧
⇤
i ) for

any i 2 A
0, and wi = 0, otherwise. Let D(y) be a distribution over subsets of A0, where every arm

i 2 A
0
\{◆a, ◆b} (except for ◆a and ◆b) is added to a set S ⇠ D(y), independently, with probability

x
⇤
i,⌧⇤

i
. The arms ◆a and ◆b are also added to S ⇠ D(y) with marginal probabilities x⇤

◆a,⌧⇤
◆a

and x
⇤
◆b,⌧⇤

◆b
,

respectively, yet not independently (since they are mutually exclusive). Therefore, by the above
definitions and Lemma 4.3, the set of candidate arms at any fixed round t � ⌧

max is distributed as
Ct ⇠ D(y).

Let us fix any round t � ⌧
max. Similarly to Section 4.1, by using the fact that the actual delay �i,⌧ of

each arm i 2 A
0 is deterministically lower bounded by its critical delay ⌧

⇤
i , we can lower bound the

expected payoff collected by our algorithm at time t as

E
Ct⇠D(y)

"
max

S✓Ct,|S|k

X

i2S

pi(�i,t)

#
� E

Ct⇠D(y)

"
max

S✓Ct,|S|k

X

i2S

pi(⌧
⇤
i )

#
= E

Ct⇠D(y)
[fw,k(Ct)],

(5)

where D(y) is defined as described above.

As we show in the following lemma, the RHS of the above inequality can only decrease, if we replace
Ct ⇠ D(y) with Ct ⇠ I(y), namely, if we assume that the two copies ◆a and ◆b are added to Ct

independently, but with the same marginals (y◆a and y◆b , respectively). As we show in the following
lemma, the above property in fact holds for any submodular function (including fw,k):

Lemma 4.4. Let f : 2
[n]
! R be a submodular function over a ground set of n elements, where

n � 2. Let I(y) be a distribution over 2
[n], where each element i is added in set S ⇠ I(y),

independently, with probability yi. Further, let D(y) be a distribution over 2[n], where each element
i 2 [n] \ {◆a, ◆b} is added to a set S ⇠ D(y), independently, with probability yi, except for two
distinct elements ◆a, ◆b, whose addition to S is mutually exclusive but with the same marginals y◆a
and y◆b , respectively. In this case, we have

E
S⇠D(y)

[f(S)] � E
S⇠I(y)

[f(S)] .

By combining inequality (5) with Lemma 4.4 for n + 1 elements (recall, the function fw,k is
submodular), the expected reward collected at any round t � ⌧

max can be lower bounded as

E
Ct⇠D(y)

"
max

S✓Ct,|S|k

X

i2S

pi(�i,t)

#
� E

Ct⇠D(y)
[fw,k(Ct)] � E

Ct⇠I(y)
[fw,k(Ct)] = Fw,k(y).
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In addition, by combining Lemma 2.3 with Lemma 4.2 for the above choice of vectors w and y
(again, it holds ky k1  k), for any t � ⌧

max, it follows that

E
Ct⇠D(y)

"
max

S✓Ct,|S|k

X

i2S

pi(�i,t)

#
� Fw,k(y) �

✓
1�

k
k

ekk!

◆
· f

+

w,k(y) �

✓
1�

k
k

ekk!

◆
V

⇤
,

where V
⇤ is the optimal value of (LPk).

Finally, using the fact that V ⇤
� OPT(T )/T by Lemma 3.1 and applying linearity of expectations over

all rounds t, the following result follows directly:
Theorem 4.5. For any instance of k-RB, where OPT(T ) is the optimal expected payoff that can be
collected in T rounds, the total expected payoff collected by Algorithm 1 is at least

✓
1�

k
k

ekk!

◆
OPT(T )�O(k · ⌧

max
) ⇡

✓
1�

1
p
2⇡k

◆
OPT(T )�O(k · ⌧

max
).

We remark that, although the asymptotic approximation guarantee of Algorithm 1 is the
same as the one in [SLZZ21], the constants of our algorithm are significantly better. In
particular, for k 2 {1, 2, 3, 4, 5, 10}, the guarantees of [SLZZ21] and Algorithm 1 are
{0.25, 0.33, 0.40, 0.44, 0.46, 0.57} and {0.63, 0.72, 0.77, 0.80, 0.82, 0.87}, respectively.

5 Online Learning with Sublinear Regret

In this section, we consider the learning setting of k-RB where the payoff functions are initially
unknown. At each round, the player plays a subset of at most k arms and observes the realized payoff
of each individual arm played (semi-bandit feedback). Every time an arm i 2 A is played under delay
⌧ , the realized payoff is drawn independently from a distribution of mean pi(⌧), bounded in [0, 1].
For this setting, our goal is to show that there exists a bandit variant of Algorithm 1 with sublinear
�k-approximate regret guarantee for k-RB, defined as

Reg�k
(T ) = �k OPT(T )� R(T ),

where �k = 1� kk
/ekk! is the (multiplicative) approximation guarantee of Algorithm 1 and R(T ) is

the total expected payoff collected by the bandit algorithm in T rounds.

Robustness of Algorithm 1. As a first step, we study the robustness of Algorithm 1 under small
perturbations of the payoff functions; in particular, we analyze its approximation guarantee when it
runs using estimates {bpi}i2A instead of the actual payoffs {pi}i2A. We remark that the monotonicity
of the (estimated) payoff functions is not required for the correctness of Algorithm 1, but only for
proving its approximation guarantee.
Lemma 5.1. Let bpi be an estimate of the payoff function pi for each i 2 A, such that |bpi(⌧)�pi(⌧)| 
✏, 8⌧ 2 N for some ✏ 2 (0, 1). The expected payoff collected in T rounds by Algorithm 1, when it
uses the estimates instead of the actual payoff functions, is lower bounded by

�k OPT(T )�O(k · ✏ · T + k · ⌧
max

).

Estimation of the payoff functions. By using standard concentration results [Hoe63], we bound
the number of samples required for each arm-delay pair in order to get an ✏-estimate bpi for the mean
payoff function pi of every arm i 2 A.
Lemma 5.2. For any ✏, � 2 (0, 1), let bpi(⌧) be the empirical average of samples drawn from pi(⌧)

for every arm i 2 A and delay ⌧ , using m =
1

2✏2 ln
�
2⌧maxn

�

�
samples, where n is the number of

arms. Then, with probability 1� �, it holds |bpi(⌧)� pi(⌧)|  ✏ for every i 2 A and ⌧ 2 [⌧
max

].

The following observation provides an upper bound on the number of rounds required in order to get
m samples for each arm-delay pair in any k-RB instance:
Fact 5.3. In any k-RB instance, the number of rounds required to collect m independent samples
from pi(⌧), for each arm i 2 A and delay ⌧ 2 [⌧

max
], is upper-bounded by O(nm(⌧max

)
2
/k).
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Bandit algorithm with sublinear regret. By combining the above elements, it is easy to design an
Explore-then-Commit (ETC) variant of Algorithm 1, achieving sublinear regret in the bandit setting.
For simplicity, we assume here that the time horizon T is known to the player – an assumption that
can be relaxed using the doubling trick method [LS20].

Let m = 1/2✏2 ln (2⌧
maxn/�) for some ✏, � 2 (0, 1). In the first O(nm(⌧max

)
2
/k) rounds, the bandit

algorithm collects m independent samples from pi(⌧), for each i 2 A and ⌧ 2 [⌧
max

]. Then, by
taking the empirical average of these samples, it constructs estimates bpi(⌧) for each i and ⌧ . For the
rest of the time horizon, the algorithm simulates Algorithm 1, using the empirical estimates bpi(⌧) in
place of the (initially unknown) payoff functions.

By setting the parameters ✏, � accordingly and combining Lemmas 5.1 and 5.2 with Fact 5.3, we
prove the following result:
Theorem 5.4. There exists a learning adaptation of Algorithm 1 in the semi-bandit setting, for which
the �k-approximate regret for T rounds can be upper-bounded as

O

⇣
n
1/3

· (k · ⌧
max

)
2/3

ln
1/3

(⌧
max

nT ) · T
2/3

+ k · ⌧
max

⌘
.

Conclusion and Further Directions

Following the recent line of work on non-stationary bandits with recharging payoffs, we revisited one
of the most general formulations studied in the area and significantly improved the state-of-the-art
for the planning setting. In particular, when at most one arm is played per round, we designed
an algorithm that collects at least 63% (asymptotically and in expectation) of the optimal payoff,
improving the best-known 25%, due to prior work. By providing results on the robustness and
sample complexity of our algorithm, we transformed the latter into a bandit algorithm with sublinear
regret. Our work leaves a number of interesting open questions. An approximation guarantee of
(1� 1/e) has been proved to be the best achievable – under standard complexity assumptions – for
a number combinatorial problems. Therefore, an immediate future direction would be to either
provide a matching hardness result for the planning setting of the problem, or to further improve on
the best-known approximation. Another interesting question would be to explore whether one can
design a bandit adaptation of our algorithm with improved regret guarantees. Finally, the empirical
evaluation of our algorithm on real (or artificial) data is another interesting direction.
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