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Abstract

The research area of algorithms with predictions has seen recent success showing
how to incorporate machine learning into algorithm design to improve performance
when the predictions are correct, while retaining worst-case guarantees when they
are not. Most previous work has assumed that the algorithm has access to a single
predictor. However, in practice, there are many machine learning methods available,
often with incomparable generalization guarantees, making it hard to pick the best
method a priori. In this work we consider scenarios where multiple predictors are
available to the algorithm and the question is how to best utilize them.
Ideally, we would like the algorithm’s performance to depend on the quality of the
best predictor. However, utilizing more predictions comes with a cost, since we now
have to identify which prediction is the best. We study the use of multiple predictors
for a number of fundamental problems, including matching, load balancing, and
non-clairvoyant scheduling, which have been well-studied in the single predictor
setting. For each of these problems we introduce new algorithms that take advantage
of multiple predictors, and prove bounds on the resulting performance.

1 Introduction

An exciting recent line of research attempts to go beyond traditional worst-case analysis of algorithms
by equipping algorithms with machine-learned predictions. The hope is that these predictions
allow the algorithm to circumvent worst case lower bounds when the predictions are good, and
approximately match them otherwise. The precise definitions and guarantees vary with different
settings, but there have been significant successes in applying this framework for many different
algorithmic problems, ranging from general online problems to classical graph algorithms (see
Section 1.2 for a more detailed discussion of related work, and [35] for a survey). In all of these
settings it turns out to be possible to define a “prediction” where the “quality” of the algorithm
(competitive ratio, running time, etc.) depends the “error” of the prediction. Moreover, in at least
some of these settings, it has been further shown that this prediction is actually learnable with a small
number of samples, usually via standard ERM methods [18].

Previous work has shown the power of accurate predictions, and there are numerous examples
showing improved performance in both theory and practice. However, developing accurate predictors
remains an art, and a single predictor may not capture all of the subtleties of the instance space.
Recently, researchers have turned to working with portfolios of predictors: instead of training a single
model, train multiple models, with the hope that one of them will give good guarantees.

∗Work was done while the author was at Carnegie Mellon University.
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It is easy to see why the best predictor in a portfolio may be significantly better than a one-size fits all
predictor. First, many of the modern machine learning methods come with a slew of hyperparameters
that require tuning. Learning rate, mini-batch size, optimizer choice, all of these have significant
impact on the quality of the final solution. Instead of commiting to a single setting, one can instead
try to cover the parameter space, with the hope that some of the predictors will generalize better than
others. Second, problem instances themselves may come from complex distributions, consisting of
many latent groups or clusters. A single predictor is forced to perform well on average, whereas
multiple predictors can be made to “specialize” to each cluster.

In order to take advantage of the increased accuracy provided by the portfolio approach, we must
adapt algorithms with predictions to take advantage of multiple predictions. To capture the gains in
performance, the algorithm must perform as if equipped with the best predictor, auto-tuning to use the
best one available in the portfolio. However, it is easy to see that there should be a cost as the size of
the portfolio grows. In the extreme, one can add every possible prediction to the portfolio, providing
no additional information, yet now requiring high performance from the algorithm. Therefore, we
must aim to minimize the dependence on the number of predictions in the portfolio.

We remark that the high level set up may be reminiscent of expert- or bandit-learning literature.
However, there is a critical distinction. In expert and bandit learning, we are given a sequence of
problem instances, and the goal is to compete (minimize regret) with respect to the best prediction
averaged over the whole sequence. On the other hand, in our setup, we aim to compete with the best
predictor on a per-instance basis.

Previous work on multiple predictions. Bhaskara et al. studied an online linear optimization
problem where the learner seeks to minimize the regret, provided access to multiple hints [15].
Inspired by the work, Anand et al. recently studied algorithms with multiple learned predictions
in [7], proving strong bounds for important online covering problems including online set cover,
weighted caching, and online facility location. It was a significant extension of the work [23] which
studied the rent-or-buy problem with access to two predictions. However, their techniques and results
are limited to online covering problems. Moreover, they do not discuss the learning aspects at all:
they simply assume that they are given k predictions, and their goal is to have competitive ratios
that are based on the minimum error of any of the k predictions. (They actually compete against a
stronger dynamic benchmark, but for our purposes this distinction is not important.)

On the other hand Balcan et al. [13] look at this problem through a data driven algorithm lens and
study the sample complexity and generalization error of working with k (as opposed to 1) parameter
settings. The main difference from our work is that they also aim learn a selector, which selects one
of the k parameters prior to beginning to solve the problem instance. In contrast, in this work we
make the selection during the course of the algorithm, and sometimes switch back and forth while
honing in on the best predictor.

1.1 Our Results and Contributions

In this paper we study three fundamental problems, min-cost perfect matching, online load balancing,
and non-clairvoyant scheduling for total completion time, in this new setting. Each of these has seen
significant success in the single-prediction model but is not covered by previous multiple-prediction
frameworks. Our results are primarily theoretical, however we have included a preliminary empirical
validation of our algorithm for min-cost perfect matching in Appendix A.

For each of these we develop algorithms whose performance depends on the error of the best
prediction, and explore the effect of the number of predictions, k. Surprisingly, in the case of
matching and scheduling we show that using a limited number of predictions is essentially free, and
has no asymptotic impact on the algorithm’s performance. For load balancing, on the other hand, we
show that the cost of multiple predictions grows logarithmically with k, again implying a tangible
benefit of using multiple predictions. We now describe these in more detail.

Min-Cost Perfect Matching. We begin by showcasing our approach with the classical min-cost
perfect matching problem in Section 3. This problem was recently studied by [17, 18] to show that it
is possible to use learned predictions to improve running times of classical optimization problems.
In particular, [18] showed it is possible to speed up the classical Hungarian algorithm by predicting
dual values, and moreover that it is possible to efficiently (PAC-)learn the best duals. We show that
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simple modifications of their ideas lead to similar results for multiple predictions. Interestingly, we
show that as long as k ≤ O(

√
n), the extra “cost” (running time) of using k predictions is negligible

compared to the cost of using a single prediction, so we can use up to
√
n predictions “for free” while

still getting running time depending on the best of these predictions. Moreover, since in this setting
running time is paramount, we go beyond sample complexity to show that it is also computationally
efficient to learn the best k predictions.

Online Load Balancing with Restricted Assignments. We continue in Section 4 with the funda-
mental load balancing problem. In this problem there are m machines, and n jobs which appear in
online fashion. Each job has a size, and a subset of machines that it can be assigned to. The goal is to
minimize the maximum machine load (i.e., the makespan). This problem has been studied extensively
in the traditional scheduling and online algorithms literature, and recently it has also been the subject
of significant study given a single prediction [27, 28, 30]. In particular, Lattanzi, Lavastida, Moseley,
and Vassilvitskii [27] showed that there exist per machine “weights” and an allocation function so
that the competitive ratio of the algorithm depends logarithmically on the maximum error of the
predictions. We show that one can use k predictions and incur an additional O(log k) factor in the
competitive ratio, while being competitive with the error of the best prediction. Additionally, we
show that learning the best k predicted weights (in a PAC sense) can be done efficiently.

Non Clairvoyant Scheduling Finally, in Section 5 we move to the most technically complex
part of this paper. We study the problem of scheduling n jobs on a single machine, where all jobs
are released at time 0, but where we do not learn the length of a job until it actually completes (the
non-clairvoyant model). Our objective is to minimize the sum of completion times. This problem
has been studied extensively, both with and without predictions [25, 32, 37, 39]. Most recently,
Lindermayr and Megow [32] suggested that we use an ordering as the prediction (as opposed to
the more obvious prediction of job sizes), and use the difference between the cost induced by the
predicted ordering and the cost induced by the instance-optimal ordering as the notion of “error”.
In this case, simply following the predicted ordering yields an algorithm with error equal to the
prediction error.

We extend this to the multiple prediction setting, which turns out to be surprisingly challenging. The
algorithm of [32] is quite simple: follow the ordering given by the prediction (and run a 2-competitive
algorithm in parallel to obtain a worst-case backstop). But we obviously cannot do this when we
are given multiple orderings! So we must design an algorithm which considers all k predictions to
build a schedule that has error comparable to the error of the best one. Slightly more formally, we
prove that we can bound the sum of completion times by (1 + ϵ)OPT plus poly(1/ϵ) times the error
of the best prediction, under the mild assumption that no set of at most log log n jobs has a large
contribution to OPT.

To do this, we first use sampling techniques similar to those of [25] to estimate the size of the
approximately ϵn’th smallest job without incurring much cost. We then use even more sampling and
partial processing to determine for each prediction whether its ϵn prefix has many jobs that should
appear later (a bad sequence) or has very few jobs that should not be in the prefix (a good sequence).
If all sequences are bad then every prediction has large error, so we can use a round robin schedule
and charge the cost to the prediction error. Otherwise, we choose one of the good orderings and
follow it for its ϵn prefix (being careful to handle outliers). We then recurse on the remaining jobs.

1.2 Related Work

As discussed, the most directly related papers are Anand et al. [7] and Balcan, Sandholm, and
Vitercik [13]; these give the two approaches (multiple predictions and portfolio-based algorithm
selection) that are most similar to our setting. The single prediction version of min-cost bipartite
matching was studied in [17, 18], the single prediction version of our load balancing problem was
considered by [27, 28, 30] (and a different though related load balancing problem was considered
by [4]), and the single prediction version of our scheduling problem was considered by [32] with
the same prediction that we use (an ordering) and earlier with different predictions by [25, 39, 41].
Online scheduling with estimates of the true processing times was considered in [11, 12].

More generally, there has been an enormous amount of recent progress on algorithms with predictions.
This is particularly true for online algorithms, where the basic setup was formalized by [33] in the
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context of caching. For example, the problems considered include caching [26, 33, 40], secretary
problems [9, 21], ski rental [5, 39, 41], and set cover [14]. There has also been recent work on going
beyond traditional online algorithms, including work on running times [17, 18], algorithmic game
theory [2, 22, 34], and streaming algorithms [1, 19, 24]. The learnability of predictions for online
algorithms with predictions was considered by [6]. They give a novel loss function tailored to their
specific online algorithm and prediction, and study the sample complexity of learning a mapping
from problem features to a prediction. While they are only concerned with the sample complexity
of the learning problem, we also consider the computational complexity, giving polynomial time
O(1)-approximate algorithms for the learning problems associated with min-cost matching and online
load balancing.

The above is only a small sample of the work on algorithms with predictions. We refer the interested
reader to a recent survey [35], as well as a recently set up website which maintains a list of papers in
the area [31].

2 Learnability of k Predictions and Clustering

In this section we discuss the learnability of k predictions and its connection to k-median clustering,
which we apply to specific problems in later sections.

Learnability and Pseudo-dimension: Consider a problem I and let D be an unknown distribution
over instances of I . We are interested in the learnability of predictions for such problems with respect
to an error function. Suppose that the predictions come from some space Θ and for a given instance
I ∈ I and prediction θ ∈ Θ the error is η(I, θ). Given S independent samples {Is}Ss=1 from D, we
would like to compute θ̂ ∈ Θ such that with probability at least 1− δ, we have that

EI∼D[η(I, θ̂)] ≤ min
θ∈Θ

EI∼D[η(I, θ)] + ϵ. (1)

We would like S (the sample complexity) to be polynomial in 1
ϵ ,

1
δ and other parameters of the

problem I (e.g. the number of vertices in matching, or the number of jobs and machines in scheduling
and load balancing).

The natural algorithm for solving this problem is empirical risk minimization (ERM): take θ̂ =

argminθ∈Θ
1
S

∑S
s=1 η(Is, θ). The sample complexity of ERM, i.e. how large S should be so that (1)

holds, can be understood in terms of the pseudo-dimension of the class of functions {η(·, θ) | θ ∈ Θ}.
More generally, the pseudo-dimension can be defined for any class of real valued function on some
space X .
Definition 2.1. [8, 36, 38] LetF be a class of functions f : X → R. Let C = {x1, x2, . . . , xS} ⊂ X .
We say that that C is shattered by F if there exist real numbers r1, . . . , rS so that for all C ′ ⊆ C,
there is a function f ∈ F such that f(xi) ≤ ri ⇐⇒ xi ∈ C ′ for all i ∈ [S]. The pseudo-dimension
of F is the largest S such that there exists an C ⊆ X with |C| = S that is shattered by F .

The pseudo-dimension allows us to give a bound on the number of samples required for uniform
convergence, which in turn can be used to show that ERM is sufficient for achieving (1).
Theorem 2.2. [8, 36, 38] Let D be a distribution over a domain X and F be a class of functions
f : X → [0, H] with pseudo-dimension dF . Consider S independent samples x1, x2, . . . , xS from D.
There is a universal constant c0, such that for any ϵ > 0 and δ ∈ (0, 1), if S ≥ c0

(
H
ϵ

)2
(dF+ln(1/δ))

then we have ∣∣∣∣∣1s
S∑

s=1

f(xi)− Ex∼D[f(x)]

∣∣∣∣∣ ≤ ϵ

for all f ∈ F with probability at least 1− δ.

We can extend this learning problem to the setting of multiple predictions. The setup is the same as
above, except that now we are interested in outputting k predictions θ̂1, θ̂2, . . . , θ̂k such that with
probability at least 1− δ:

EI∼D

[
min
ℓ∈[k]

η(I, θ̂ℓ)

]
≤ min

θ1,θ2,...,θk∈Θ
EI∼D

[
min
ℓ∈[k]

η(I, θℓ)

]
+ ϵ. (2)
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We can again consider ERM algorithms for this task, and we would like to bound the sample
complexity. We do this by showing that if the pseudo-dimension of the class of functions associated
with one prediction is bounded, then it is also bounded for k predictions. More formally, we want to
bound the pseudo-dimension of the class of functions {minℓ∈[k] η(·, θℓ) | θ1, θ2, . . . , θk ∈ Θ}. This
can be done via the following result combined with Theorem 2.2 (assuming that the pseudo-dimension
of {η(·, θ) | θ ∈ Θ} is bounded).

Theorem 2.3. Let F be a class of functions f : X → R with pseudo-dimension d and let Fk :=
{F (x) = minℓ∈[k] f

ℓ(x) | f1, f2, . . . , fk ∈ F}. Then the pseudo-dimension of Fk is at most
Õ(dk).

Proof. To show this we first relate things back to VC-dimension.

Proposition 2.4. Let F be a class of real valued functions on X . Define H as a class of binary
functions on X × R asH = {h(x, r) = sgn(f(x)− r) | f ∈ F}. Then the pseudo-dimension of F
equals the VC dimension ofH.

The above proposition follows directly from the definition of pseudo- and VC-dimensions. The next
lemma we need is well known.

Proposition 2.5 (Sauer-Shelah Lemma). IfH has VC-dimension d and x1, . . . , xm is a sample of
size m, then the number of sets shattered byH is at most O(md).

Let x1, . . . , xm ∈ X and r1, . . . , rm ∈ R be given. We upper bound the number of possible labelings
induced by Fk on this set. Note that on this sample the Sauer-Shelah Lemma implies that the number
of labelings induced by F on this sample is at most O(md). Fk allows us to choose k functions from
F so this increases the number of possible labelings to at most O(mdk). We shatter this set if this
bound is greater than 2m. Reorganizing these bounds implies that m = Õ(dk), which implies the
upper bound on the pseudo-dimension of Fk.

The associated ERM problem for computing k predictions becomes more interesting. Recall that
in this problem we are given a sample of S instances I1, I2, . . . , IS ∼ D and we want to compute
θ̂1, θ̂2, . . . , θ̂k ∈ Θ in order to minimize 1

S

∑S
s=1 minℓ∈[k] η(Is, θ̂

ℓ). This can be seen as an instance
of the k-median clustering problem where we want to cluster the “points” {Is}Ss=1 by opening k
“facilities” from the set Θ and the cost of assigning Is to θ is η(Is, θ). In general, this problem may
be hard to solve or even approximate. In the case that the costs have some metric structure, then it is
known how to compute O(1)-approximate solutions [29]. For minimum cost matching (Section 3 and
load balancing (Section 4), we will show that the ERM problem can be seen as a k-median problem
on an appropriate (pseudo-)metric space.

Metrics and Clustering: Recall that (X , d) is a metric space if the distance function d : X × X →
R+ satisfies the following properties:

1. For all x, y ∈ X , d(x, y) = 0 ⇐⇒ x = y

2. For all x, y ∈ X , d(x, y) = d(y, x)

3. For all x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z)

If we replace the first property with the weaker property that for all x ∈ X , d(x, x) = 0, then we call
(X , d) a pseudo-metric space.

Given a finite set of points X ⊆ X , the k-median clustering problem is to choose a subset C ⊆ X of
k centers to minimize the total distance of each point in X to its closest center in C. In notation, the
goal of k-median clustering is to solve

min
C⊆X ,|C|=k

∑
x∈X

min
c∈C

d(x, c) (3)

In our settings it will often be challenging to optimize C over all of X , so at an O(1)-factor loss to
the objective we can instead optimize C over X . Formally, we have the following standard lemma.
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Lemma 2.6. Let (X , d) be a pseudo-metric space and let X be a finite subset of X . Then for all
k > 0 we have

min
C⊆X,|C|=k

∑
x∈X

min
c∈C

d(x, c) ≤ 2 · min
C⊆X ,|C|=k

∑
x∈X

min
c∈C

d(x, c).

Proof. Let C∗ ⊆ X be an optimal solution to the problem on the right hand side of the inequality, and
let its cost be OPT. We consider a mapping ϕ : C∗ → X , which gives us a solution to the problem on
the left hand side by taking C = {ϕ(c) | c ∈ C∗}2. For c ∈ C∗, define ϕ(c) = argminx∈X d(x, c)
We will argue that the cost of C is at most 2OPT. Let x ∈ X and let c∗ = argminc∈C∗ d(x, c) be
its closest center in C∗, then we have

min
c∈C

d(x, c) ≤ d(x, ϕ(c∗)) ≤ d(x, c∗) + d(c∗, ϕ(c∗)) ≤ 2d(x, c∗) = 2 min
c∈C∗

d(x, c)

The second to last inequality follows from the triangle inequality and the last follows from the
definition of ϕ. Now summing over all x ∈ X yields that the cost of using C is at most 2OPT.

3 Minimum Cost Bipartite Matching with Predicted Duals

In this section we study the minimum cost bipartite matching problem with multiple predictions. The
case of a single prediction has been considered recently [17, 18], where they used dual values as a
prediction and showed that the classical Hungarian algorithm could be sped up by using appropriately
learned dual values. Our goal in this section is to extend these results to multiple predictions, i.e.,
multiple duals. In particular, in Section 3.2 we show that we can use k duals and get running time
comparable to the time we would have spent if we used the single best of them in the algorithm of [18],
with no asymptotic loss if k is at most O(

√
n). Then in Section 3.3 we show that k predictions can

be learned with not too many more samples (or running time) than learning a single prediction.

3.1 Problem Definition and Predicted Dual Variables

In the minimum cost bipartite matching problem we are given a bipartite graph G = (V,E) with
n = |V | vertices and m = |E| edges, with edge costs c ∈ ZE . The objective is to output a perfect
matching M ⊆ E which minimizes the cost c(M) :=

∑
e∈E ce. This problem is exactly captured by

the following primal and dual linear programming formulations.

min
∑
e∈E

cexe∑
e∈N(i)

xe = 1 ∀i ∈ V

xe ≥ 0 ∀e ∈ E

(MWPM-P)

max
∑
i∈V

yi

yi + yj ≤ ce ∀e = ij ∈ E
(MWPM-D)

Dinitz et al. [18] studied initializing the Hungarian algorithm with a prediction ŷ of the optimal
dual solution y∗. They propose an algorithm which operates in two steps (see Algorithm 1 for
pseudo-code). First, the predicted dual solution ŷ may not be feasible, so they give an O(n+m) time
algorithm which recovers feasibility (which we refer to as Make-Feasible). Second, the now-feasible
dual solution is used in a primal-dual algorithm such as the Hungarian algorithm (which we refer to
as Primal-Dual) and they show that the running time depends on the ℓ1 error in the predicted solution.
In addition to this they show that learning a good initial dual solution is computationally efficient
with low sample complexity. More formally, they proved the following theorems.
Theorem 3.1 (Dinitz et al. [18]). Let (G, c) be an instance of minimum cost bipartite matching and
ŷ be a prediction of an optimal dual solution y∗. Algorithm 1 returns an optimal solution and runs in
time O(m

√
n · ∥y∗ − ŷ∥1). Moreover, the Make-Feasible step of Algorithm 1 runs in O(n+m) time.

2In the case that |C| < k, adding arbitrary points from X to C so that |C| = k can only decrease the cost
from just using C.
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Theorem 3.2 (Dinitz et al. [18]). Let D be an unknown distribution over instances (G, c) on n
vertices and let y∗(G, c) be an optimal dual solution for the given instance. Given S independent
samples from D, there is a polynomial time algorithm that outputs a solution ŷ such that

E(G,c)∼D [∥y∗(G, c)− ŷ∥1] ≤ min
y

E(G,c)∼D [∥y∗(G, c)− y∥1] + ϵ

with probability 1− δ where S = poly(n, 1
ϵ ,

1
δ ).

Algorithm 1 Minimum cost matching with a predicted dual solution
1: procedure PREDICTEDPRIMAL-DUAL(G, c, ŷ)
2: y ←MakeFeasible(G, c, ŷ)
3: M ←Primal-Dual(G, c, y)
4: Return M
5: end procedure

3.2 Using k Predicted Dual Solutions Efficiently

Given k predicted dual solutions ŷ1, ŷ2, . . . , ŷk, we would like to efficiently determine which solution
has the minimum error for the given problem instance. Note that the predicted solutions may still be
infeasible and that we do not know the target optimal dual solution y∗. We propose the following
simple algorithm which takes as input k predicted solutions and whose running time depends only
on the ℓ1 error of the best predicted solution. First, we make each predicted solution feasible, just
as before. Next, we select the (now-feasible) dual solution with highest dual objective value and
proceed running the primal-dual algorithm with only that solution. See Algorithm 2 for pseudo-code.

Algorithm 2 Minimum cost matching with k predicted dual solutions
1: procedure k-PREDICTEDPRIMAL-DUAL(G, c, ŷ1, ŷ2, . . . , ŷk)
2: for ℓ ∈ [k] do
3: yℓ ←MakeFeasible(G, c, ŷℓ)
4: end for
5: ℓ′ ← argmaxℓ∈[k]

∑
i∈V yℓi

6: M ←Primal-Dual(G, c, yℓ
′
)

7: Return M
8: end procedure

We have the following result concerning Algorithm 2. To interpret this result, note that the cost for
increasing the number of predictions is O(k(n+m)), which will be dominated by the m

√
n term

we pay for running the Hungarian algorithm unless k is extremely large (certainly larger than
√
n) or

there is a prediction with 0 error (which is highly unlikely). Hence we can reap the benefit of a large
number of predictions “for free”.
Theorem 3.3. Let (G, c) be a minimum cost bipartite matching instance and let ŷ1, ŷ2, . . . , ŷk be
predicted dual solutions. Algorithm 2 returns an optimal solution and runs in time O(k(n+m) +
m
√
n ·minℓ∈[k] ∥y∗ − ŷℓ∥1).

Proof. The correctness of the algorithm (i.e., returning an optimal solution) follows from the cor-
rectness of Algorithm 1. For the running time, we clearly spend O(k(n +m)) time making each
predicted solution feasible, thus we just need to show the validity of latter term in the running
time. Let ℓ′ = argmaxℓ∈[k]

∑
i∈V yℓi be the solution chosen in line 5 of Algorithm 2 and let

ℓ∗ = argminℓ∈[k] ∥y∗ − ŷℓ∥1 be the solution with minimum error. Recall that for each ℓ ∈ [k], yℓ

is the resulting feasible dual solution from calling Make-Feasible on ŷℓ. By the analysis from [18],
we have that ∥y∗ − yℓ

∗∥1 ≤ 3∥y∗ − ŷℓ
∗∥1, so it suffices to show that the number of primal-dual

iterations will be bounded by ∥y∗ − yℓ
∗∥1. By our choice of ℓ′, we have

∑
i y

ℓ′

i ≥
∑

i y
ℓ∗

i , therefore
we have that

∑
i(y

∗
i − yℓ

′
) ≤

∑
i(y

∗
i − yℓ

∗

i ) ≤ ∥y∗− yℓ
∗∥1. From the analysis in [18], we have that

the number of primal-dual iterations will be at most
∑

i(y
∗
i − yℓ

′
), completing the proof.
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3.3 Learning k Predicted Dual Solutions

Next we extend Theorem 3.2 to the setting where we output k predictions. Let D be a distribution
over problem instances (G, c) on n vertices. We show that we can find the best set of k predictions.
More formally, we prove the following theorem.
Theorem 3.4. Let D be an unknown distribution over instances (G, c) on n vertices and let y∗(G, c)
be an optimal dual solution for the given instance. Given S independent samples from D, there is a
polynomial time algorithm that outputs k solutions ŷ1, ŷ2, . . . , ŷk such that

E(G,c)∼D

[
min
ℓ∈[k]
∥y∗(G, c)− ŷℓ∥1

]
≤ O(1) · min

y1,y2,...,yk
E(G,c)∼D

[
min
ℓ∈[k]
∥y∗(G, c)− yℓ∥1

]
+ ϵ

with probability 1− δ where S = poly(n, k, 1
ϵ ,

1
δ ).

Proof. By Theorem 7 in [18] and Theorems 2.2 and 2.3, we get the polynomial sample complexity.
Thus we just need to give a polynomial time ERM algorithm to complete the proof. Let {(Gs, cs}Ss=1
be the set of sampled instances. We start by computing zs = y∗(Gs, cs) ∈ ZV for each s ∈ [S].
Consider the ERM problem where we replace the expectation by a sample average:

min
y1,y2,...,yk

1

S

S∑
s=1

min
ℓ∈[k]
∥zs − yℓ∥1

This can be seen as a k-median clustering problem where each predicted solution yℓ is a cluster
center and distances are given by the ℓ1 norm. Thus we can find an O(1)-approximate solution
ŷ1, ŷ2, . . . , ŷk to this problem which is of polynomial size in polynomial time (for example by
applying the algorithm due to [29]).

4 Online Load Balancing with Predicted Machine Weights

We now apply our framework to online load balancing with restricted assignments. In particular, we
consider proportional weights, which have been considered in prior work [27, 28, 30]. Informally, we
show in Section 4.2 that if β is the cost of the best of the k predictions, then even without knowing a
priori which prediction is best, we get cost of O(β log k). Then in Section 4.3 we show that it does
not take many samples to actually learn the best k predictions.

4.1 Problem Definition and Proportional Weights

In online load balancing with restricted assignments there is a sequence of n jobs which must be
assigned to m machines in an online fashion. Upon seeing job j, the online algorithm observes
its size pj > 0 and a neighborhood N(j) ⊆ [m] of feasible machines. The algorithm must then
choose some feasible machine i ∈ N(j) to irrevocably assign the job to before seeing any more
jobs in the sequence. We also consider fractional assignments, i.e. vectors belonging to the set
X = {x ∈ Rm×n

+ | ∀j ∈ [n],
∑

i xij = 1, and xij = 0 ⇐⇒ i /∈ N(j)}.
Prior work studied the application of proportional weights[3, 27, 28, 30]. Intuitively, a prediction in
this setting is a weighting of machines, which then implies an online assignment, which is shown to
be near-optimal. Slightly more formally, suppose that we are given weights wi for each machine i.
Then each job j is fractionally assigned to machine i to a fractional amount of wi∑

i′∈N(j) wi′
. Notice

that given weights, this also gives an online assignment. It is known that there exist weights for any
instance where the fractional solution has a near optimal makespan, even though there are only m
“degree of freedom” in the weights compared to mn in an assignment. That is, for all machines i,∑

j∈[n] pj ·
wi∑

i′∈N(j) wi′
is at most a (1 + ϵ) factor larger than the optimal makespan for any constant

ϵ > 0 [3, 27].

Let w∗ be a set of near optimal weights for a given instance. Lattanzi et al. [27] showed the following
theorem:
Theorem 4.1. Given predicted weights ŵ, there is an online fractional algorithm which has makespan
O(log(η(ŵ, w∗)OPT), where η(ŵ, w∗) := maxi∈[m] max( ŵi

w∗
i
,
w∗

i

ŵi
) to be the error in the prediction.
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Moreover, this fractional assignment can be converted online to an integral assignment while losing
only an O(log logm) factor in the makespan [27, 30]. Thus, we focus on constructing fractional
assignments that are competitive with the best prediction in hindsight.

4.2 Combining Fractional Solutions Online

Given k different predicted weight vectors ŵ1, ŵ2, . . . , ŵk, we want to give an algorithm which is
competitive against the minimum error among the predicted weights, i.e. we want the competitiveness
to depend upon ηmin := minℓ∈[k] η(ŵ

ℓ, w∗).

The challenge is that we do not know up front which ℓ ∈ [k] will yield the smallest error, but instead
learn this in hindsight. For each ℓ ∈ [k], let xℓ, be the resulting fractional assignment from applying
the fractional online algorithm due to [27] with weights ŵℓ. This fractional assignment is revealed
one job at a time.

We give an algorithm which is O(log k)-competitive against any collection of k fractional assignments
which are revealed online. Moreover, our result applies to the unrelated machines setting, in which
each job has a collection of machine-dependent sizes {pij}i∈[m]. The algorithm is based on the
doubling trick and is similar to results in [10] which apply to metrical task systems. Let β :=
minℓ∈[k] maxi

∑
j pijx

ℓ
ij be the best fractional makespan in hindsight. As in previous work, our

algorithm is assumed to know β, an assumption that can be removed [27]. At a high level, our
algorithm maintains a set A ⊆ [k] of solutions which are good with respect to the current value of β,
averaging among these. See Algorithm 3 for a detailed description. We have the following theorem.

Theorem 4.2. Let x1, x2, . . . , xk be fractional assignments which are revealed online. If Algorithm 3
is run with β := minℓ∈[k] maxi

∑
j pijx

ℓ
ij , then it yields a solution of cost O(log k) · β and never

reaches the fail state (line 7 in Algorithm 3).

Let βℓ = maxi
∑

j pijx
ℓ
ij and OPT be the optimal makespan. Theorem 4.1 shows that βℓ ≤

O(log ηℓ)OPT. The following corollary is then immediate:

Corollary 4.3. Let w1, w2, . . . , wk be the predicted weights with errors η1, η2, . . . , ηk. Then Algo-
rithm 3 returns a fractional assignment with makespan at most OPT ·O(log k) ·minℓ∈[k] log(η

ℓ).

Algorithm 3 Algorithm for combining fractional solutions online for load balancing.
1: procedure COMBINE-LOADBALANCING(β)
2: A← [k] ▷ Initially all solutions are good
3: for each job j do
4: Receive the assignments x1, x2, . . . , xk

5: A(j, β)← {ℓ ∈ A | ∀i ∈ [m], xℓ
ij > 0 =⇒ pijx

ℓ
ij ≤ β}

6: if A = ∅ or A(j, β) = ∅ then
7: Return “Fail”
8: end if
9: ∀i ∈ [m], xij ← 1

|A(j,β)|
∑

ℓ∈A(j,β) x
ℓ
ij

10: B ← {ℓ ∈ A | maxi∈[m]

∑
j′≤j pij′x

ℓ
ij′ > β} ▷ Bad solutions w.r.t. β

11: A← A \B
12: end for
13: end procedure

The analysis relies on the following decomposition of machine i’s load. Note that in our algorithm
we assign a weight αℓ

j ∈ [0, 1] to solution ℓ when computing the fractional assignment for job j. That
is, we take xij =

∑
ℓ∈A αℓ

jx
ℓ
ij where αℓ

j = 1/|A(j, β)| if ℓ ∈ A(j, β) and 0 otherwise. Then the
decomposition of machine i’s load Li is

Li =
∑
j

pijxij =
∑
j

pij
∑
ℓ∈[k]

αℓ
jx

ℓ
ij =

∑
ℓ∈[k]

∑
j

αℓ
jpijx

ℓ
ij

 . (4)
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Now we define Cℓ
i :=

∑
j α

ℓ
jpijx

ℓ
ij to be the contribution of solution ℓ to machine i’s load. Without

loss of generality suppose that the order in which solutions are removed from S in Algorithm 3 is
1, 2, . . . , k.

Lemma 4.4. For all i ∈ [m] and each ℓ ∈ [k], we have that Cℓ
i ≤

2β
k−ℓ+1 .

Proof. Let j be the job in which ℓ is removed from A by our algorithm. Before this, for all j′ < j
we had that ℓ’s fractional makespan was at most β. Thus we can write Cℓ

i as:

Cℓ
i =

∑
j

αℓ
jpijx

ℓ
ij =

∑
j′<j

αℓ
j′pij′x

ℓ
ij′ + αℓ

jpijx
ℓ
ij +

∑
j′>j

αℓ
j′pij′x

ℓ
ij′

For the first set of terms, we have that αℓ
j′ ≤ 1

k−ℓ+1 since ℓ has not yet been removed from A. Thus
these terms can be bounded above by β

k−ℓ+1 , since ℓ’s fractional makespan was bounded above by β

before job j. For the middle term, we use a similar observation for αℓ
j but also apply the definition of

S(j, β) to conclude that αℓ
j > 0 =⇒ pijx

ℓ
ij ≤ β. Thus we get a bound of β

k−ℓ+1 for the middle
term. For the final set of terms, we have αℓ

j′ = 0 for all j′ > j since we have removed ℓ from A at
this point, and so these contribute nothing. Combining these bounds gives the lemma.

Proof of Theorem 4.2. By (4), we have that the load of machine i is at most
∑

ℓ∈[k] C
ℓ
i . Applying

Lemma 4.4 we have Cℓ
i ≤

2β
k−ℓ+1 . Thus machine i’s load is at most

∑
ℓ∈[k]

2β
k−ℓ+1 = 2Hkβ =

O(log k) · β, where Hk =
∑k

ℓ=1
1
k is the k’th harmonic number. Now if we run the algorithm with

β = minℓ∈[k] maxi
∑

j pijx
ℓ
ij , then there is some solution ℓ∗ ∈ [k] which has a fractional makespan

of β, so it never gets removed from A or A(j, β) in Algorithm 3. In this case Algorithm 3 never fails,
completing the proof of the theorem.

4.3 Learning k Predicted Weight Vectors

We now turn to the question of showing how to learn k different predicted weight vectors
ŵ1, ŵ2, . . . , ŵk. Recall that there is an unknown distribution D over sets of n jobs from which
we receive independent samples J1, J2, . . . , JS . Our goal is to show that we can efficiently learn (in
terms of sample complexity) k predicted weight vectors to minimize the expected minimum error.
Let w∗(J) be the correct weight vector for instance J and let η(w,w′) = maxi∈[m] max(wi

w′
i
,
w′

i

wi
) be

the error between a pair of weight vectors. We have the following result.

Theorem 4.5. Let D be an unknown distribution over restricted assignment instances on n jobs
and let w∗(J) be a set of good weights for instance J . Given S independent samples from D,
there is a polynomial time algorithm that outputs k weight vectors ŵ1, ŵ2, . . . , ŵk such that
EJ∼D

[
minℓ∈[k] log(η(ŵ

ℓ, w∗(J))
]
≤ O(1) · minw1,w2,...,wk E

[
minℓ∈[k] log(η(w

ℓ, w∗(J))
]
+ ϵ

with probability 1− δ, where S = poly(m, k, 1
ϵ ,

1
δ )

Prior work [28] has observed that we can take the weights to be from the setW(R) = {w ∈ Rm
+ |

∀i ∈ [m],∃α ∈ [R], s.t. wi = (1 + ϵ/m)α}. Moreover, it suffices to take R = Θ(m2 log(m))
in order to guarantee that for any instance there exists some set of weights in W(R) such that
the associated fractional assignment yields an O(1)-approximate solution. Since this set is finite,
with only mO(m2 logm) members, it follows that the pseudo-dimension of any class of functions
parameterized by the weights is bounded by log(|W(R)|) = O(m2 logm), and so we get polynomial
sample complexity. Thus in order to prove Theorem 4.5, it suffices to give a polynomial time ERM
algorithm for this problem. As hinted at in the statement of Theorem 4.5, we will be working with
the logarithms of the errors. Working in this space allows us to carry out a reduction to k-median
clustering.

For any pair of weight vectors w,w′ ∈ Rm
+ , recall that we define the error between them to be

η(w,w′) = maxi∈[m] max(wi

w′
i
,
w′

i

wi
). Note that η(w,w′) ≥ 1 with equality if and only if w = w′ and

that η(w,w′) = η(w′, w). The main lemma is that defining d(w,w′) := log(η(w,w′)) satisfies the
triangle inequality, and thus forms a metric on Rm

+ due to the aforementioned observations.
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Lemma 4.6. Let η : Rm
+ ×Rm

+ and d : Rm
+ ×Rm

+ be defined as above. Then (Rm
+ , d) forms a metric

space.

Proof. It is easy to see that d(w,w′) ≥ 0 with equality if and only if w = w′ and that d(w,w′) =
d(w′, w). Thus we just need to show that the triangle inequality holds, i.e. that for all w,w′, w′′ we
have d(w,w′′) ≤ d(w,w′) + d(w′, w′′). This will hold as a result of the following claim. For all
w,w′, w′′. we have:

η(w,w′′) ≤ η(w,w′) · η(w′, w′′). (5)

Now the triangle inequality follows since

d(w,w′) = log(η(w,w′′)) ≤ log(η(w,w′)) + log(η(w′, w′′)) = d(w,w′) + d(w′, w′′).

To prove the claim we have the following:

η(w,w′′) = max
i

{
max

(
wi

w′′
i

,
w′′

i

wi

)}
= max

i

{
max

(
wi

w′
i

w′
i

w′′
i

,
w′′

i

w′
i

w′
i

wi

)}
≤ max

i

{
max

(
wi

w′
i

,
w′

i

w′′
i

)
·max

(
w′′

i

w′
i

,
w′

i

wi

)}
≤ max

i

{
max

(
wi

w′
i

,
w′

i

w′′
i

)}
·max

i

{
max

(
w′′

i

w′
i

,
w′

i

wi

)}
= η(w,w′) · η(w′, w′′).

The two inequalities above follow from the next two claims below.

Claim 4.7. For all a, b, c > 0 we have max(ac ,
c
a ) ≤ max(ab ,

b
a ) ·max( bc ,

c
b )

Proof. Without loss of generality, we may assume that a ≥ c. Now we have several cases depending
on the value of b. For the first case, lets consider when a ≥ b ≥ c > 0. In this case, the left hand side
evaluates to a

c while the right hand side also evaluates to a
c , so the inequality is valid in this case.

For the next case, consider when b ≥ a ≥ c > 0. In this case, the left hand side is still a
c , while the

right hand side evaluates to b2

ac ≥
ab
ac ≥

a
c . Thus the inequality is valid.

In the final case, we have a ≥ c ≥ b > 0. The left hand side is a
c , while the right hand side evaluates

to ac
b2 ≥

ac
c2 = a

c , completing the proof.

Claim 4.8. Let u, v ∈ Rm
+ , then we have maxi(uivi) ≤ (maxi ui)(maxi vi)

Proof. Suppose for contradiction that this isn’t the case, i.e. maxi(uivi) > (maxi ui)(maxi vi).
Now let i∗ = argmaxi(uivi). Then we have

ui∗vi∗ > (max
i

ui)(max
i

vi) ≥ ui∗vi∗

which is the desired contradiction.

Proof of Theorem 4.5. The sample complexity follows from the discussion above and Theorem 2.3
which shows that the pseudo-dimension of the error function is at most O(m2 log(m)). Given S
samples J1, J2, . . . , JS from D, we want to solve the corresponding ERM instance. To do this we
set up the following k-median instance to compute the predicted weights ŵ1, ŵ2, . . . , ŵk. First we
compute ws = w∗(Js) for each s ∈ [S], then we set the distance between ws and ws′ to be the
distance function d(ws, ws′) defined above. At a loss of a factor of 2, we can take each ŵℓ to be in
{ws}Ss=1 by Lemma 2.6. Thus we can apply an O(1)-approximate k-median algorithm (e.g. the one
due to [29]) to get the predicted weight vectors ŵ1, ŵ2, . . . , ŵk in polynomial time.
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5 Scheduling with Predicted Permutations

In this problem there are n jobs, indexed by 1, 2, . . . , n, to be scheduled on a single machine. We
assume that they are all available at time 0. Job j has size pj and needs to get processed for pj time
units to complete. If all job sizes are known a priori, Shortest Job First (or equivalently Shortest
Remaining Time First), which processes jobs in non-decreasing order of their size, is known to be
optimal for minimizing total completion time. We assume that the true value of pj is unknown and is
revealed only when the job completes, i.e. the non-clairvoyant setting. In the non-clairvoyant setting,
it is known that Round-Robin (which processes all alive jobs equally) is 2-competitive and that this is
the best competitive ratio one can hope for [37].

We study this basic scheduling problem assuming certain predictions are available for use. Fol-
lowing the recent work by Lindermayr and Megow [32], we will assume that we are given k
orderings/sequences as prediction, {σℓ}ℓ∈[k]. Each σℓ is a permutation of J := [n]. Intuitively, it
suggests an ordering in which jobs should be processed. This prediction is inspired by the afore-
mentioned Shortest Job First (SJF) as an optimal schedule can be described as an ordering of jobs,
specifically increasing order of job sizes.

For each σℓ, its error is measured as η(J, σℓ) := COST(J, σℓ)−OPT(J), where COST(J, σℓ) denotes
the objective of the schedule where jobs are processed in the order of σℓ and OPT(J) denotes the
optimal objective value. We may drop J from notation when it is clear from the context.

As observed in [32], the error can be expressed as η(J, σℓ) =
∑

i<j∈J Iℓi,j · |pi − pj |, where Iℓi,j is
an indicator variable for ‘inversion’ that has value 1 if and only if σℓ predicts the pairwise ordering
of i and j incorrectly. That is, if pi < pj , then the optimal schedule would process i before j; here
Iℓi,j = 1 iff i ≻σℓ

j.

As discussed in [32], this error measure satisfies two desired properties, monotonicity and Lipschitz-
ness, which were formalized in [25].

Our main result is the following.

Theorem 5.1. Consider a constant ϵ > 0. Suppose that for any S ⊆ J with |S| = Θ( 1
ϵ4 (log log n+

log k + log(1/ϵ))), we have OPT(S) ≤ cϵ · OPT(J) for some small absolute constant c. Then,
there exists a randomized algorithm that yields a schedule whose expected total completion time is at
most (1 + ϵ)OPT + (1 + ϵ) 1

ϵ5 η(J, σℓ) for all ℓ ∈ [k].

As a corollary, by running our algorithm with 1− ϵ processing speed and simultaneously running
Round-Robin with the remaining ϵ of the speed, the cost increases by a factor of at most 1

1−ϵ while
the resulting hybrid algorithm is 2/ϵ-competitive.3

5.1 Algorithm

To make our presentation more transparent we will first round job sizes. Formally, we choose ρ
uniformly at random from [0, 1). Then, round up each job j’s size to the closest number of the form
(1 + ϵ)ρ+t for some integer t. Then, we scale down all job sizes by (1 + ϵ)ρ factor. We will present
our algorithm and analysis assuming that every job has a size equal to a power of (1 + ϵ). Later we
will show how to remove this assumption without increasing our algorithm’s objective by more than
1 + ϵ factor in expectation (Section 5.4).

We first present the following algorithm that achieves Theorem 5.1 with |S| = Θ( 1
ϵ4 (log n+ log k)).

The improved bound claimed in the theorem needs minor tweaks of the algorithm and analysis and
they are deferred to the supplementary material.

Our algorithm runs in rounds. Let Jr be the jobs that complete in round r ≥ 1. For any subset S of
rounds, JS := ∪r∈SJr. For example, J≤r := J1 ∪ . . . ∪ Jr. Let nr := |J≥r| = n− |J<r| denote
the number of alive jobs at the beginning of round r.

3This hybrid algorithm is essentially the preferential time sharing [25, 32, 39]. Formally, we run our algorithm
ignoring RR’s processing and also run RR ignoring our algorithm; this can be done by a simple simulation. Thus,
we construct two schedules concurrently and each job completes at the time when it does in either schedule.
This type of algorithms was first used in [39].
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Fix the beginning of round r. The algorithm processes the job in the following way for this round. If
nr ≤ 1

ϵ4 (log n+ log k), we run Round-Robin to complete all the remaining jobs, J≥r. This is the
last round and it is denoted as round L+ 1. Otherwise, we do the following Steps 1-4:

Step 1. Estimating ϵ-percentile. Roughly speaking, the goal is to estimate the ϵ-percentile of job
sizes among the remaining jobs. For a job j ∈ J≥r, define its rank among J≥r as the number of jobs
no smaller than j in J≥r breaking ties in an arbitrary yet fixed way. Ideally, we would like to estimate
the size of job of rank ϵnr, but do so only approximately.

The algorithm will find q̃r that is the size of a job whose rank lies in [ϵ(1 − ϵ)nr, ϵ(1 + ϵ)nr]. To
handle the case that there are many jobs of the same size q̃r, we estimate yr the number of jobs no
bigger than q̃r; let ỹr denote our estimate of yr. We will show how we can do these estimations
without spending much time by sampling some jobs and partially processing them in Round-Robin
manner (the proof of the following lemma can be found in Section 5.1.1.)

Lemma 5.2. W.h.p. the algorithm can construct estimates q̃r and ỹr in time at most O(q̃r
1
ϵ2 log n)

such that there is a job of size q̃r whose rank lies in [ϵ(1− ϵ)nr, ϵ(1 + ϵ)nr] and |ỹr − yr| ≤ ϵ2nr.

Step 2. Determining Good and Bad Sequences. Let σr
ℓ denote σℓ with all jobs completed in the

previous rounds removed and with the relative ordering of the remaining jobs fixed. Let σr
ℓ,ϵ denote

the first ỹr jobs in the ordering. We say a job j is big if pj > q̃r; middle if pj = q̃r; small otherwise.
Using sampling and partial processing we will approximately distinguish good and bad sequences.
Informally σr

ℓ is good if σr
ℓ,ϵ has few big jobs and bad if it does many big jobs. The proof of the

following lemma can be found in Section 5.1.2.

Lemma 5.3. For all ℓ ∈ [k], we can label sequence σr
ℓ either good or bad in time at most

O(q̃r
1
ϵ2 (log n + log k)) that satisfies the following with high probability: If it is good, σr

ℓ,ϵ has
at most 3ϵ2nr big jobs; otherwise σr

ℓ,ϵ has at least ϵ2nr big jobs.

Step 3. Job Processing. If all sequences are bad, then we process all jobs, each up to q̃r units in an
arbitrary order. Otherwise, we process the first ỹr jobs in an arbitrary good sequence, in an arbitrary
order, each up to q̃r units.

Step 4. Updating Sequences. The jobs completed in this round drop from the sequences but the
remaining jobs’ relative ordering remains fixed in each (sub-)sequence. For simplicity, we assume that
partially processed jobs were never processed—this is without loss of generality as this assumption
only increases our schedule’s objective.

5.1.1 Subprocedure: Step 1

We detail the first step of the algorithm. Our goal is to prove Lemma 5.2. To obtain the desired
estimates, we take a sample Sr of size 1

ϵ2 log n from J≥r with replacement. The algorithm processes
the sampled jobs using Round-Robin until we complete ϵ|Sr| jobs.4 Note that there could be multiple
jobs that complete at the same time. This is particularly possible because we assumed that jobs have
sizes equal to a power of 1+ ϵ. In this case, we break ties in an arbitrary but fixed order. Let q̃r be the
size of the job that completes ϵ|Sr|th. If mr is the number of jobs in Sr we completed, we estimate
ỹr = mr

|Sr|nr.

Let B1 is the bad event that q̃r has a rank that doesn’t belong to [a1 := ϵ(1− ϵ)nr, a2 := ϵ(1+ ϵ)nr].
Let X1 be the number of jobs sampled that have rank at most a1. Similarly let X2 be the number of
jobs sampled that have rank at most a2. Note that ¬B1 occurs if X1 ≤ ϵ|Sr| ≤ X2. Thus, we have
Pr[B1] ≤ Pr[X1 > ϵ|Sr|] + Pr[X2 < ϵ|Sr|]. Note that X1 = Binomial(a1/nr, |Sr|).
We use the following well-known Hoeffding’s Inequality.

Theorem 5.4. Let Z1, · · · , ZT be independent random variables such that Zi ∈ [0, 1] for all i ∈ [T ].
Let Z̄ = 1

T (Z1 + · · ·+ ZT ). We have P (|Z̄ − E[Z̄]| ≥ δ) ≤ 2e−2Tδ2 where δ ≥ 0.

4If a job is sampled more than once, we can pretend that multiples copies of the same job are distinct and
simulate round robin [25].
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By Theorem 5.4 we have,

Pr[X1 < ϵ|Sr|] = Pr[X1/|Sr| − a1/nr < ϵ− a1/nr = ϵ2] ≤ 2 exp(−2|Sr|ϵ2) = 2/n2.

Similarly, we can show that

Pr[X2 > ϵ|Sr|] = 2/n2

Thus, we conclude that Pr[B1] ≤ 4/n2.

We consider the second bad event |ỹr − yr| > ϵ2nr, which we call B2. Assume that q̃r is the
size of a fixed job of rank in [a1, a2]. If m′ is the actual number of jobs of size q̃r in J≥r, mℓ =
Binomial(m′/nr, |Sr|). As before, using Theorem 5.4 we can show that Pr[B2] ≤ 4/n2. Thus, we
can avoid both bad events simultaneously with probability 1− 8/n2.

Since we process each job in Sr up to at most q̃r units, the total time we spend for estimation in Step
1 is at most q̃r 1

ϵ2 log n. This completes the proof.

5.1.2 Subprocedure: Step 2

We now elaborate on the second step. Our goal is to prove Lemma 5.3. To decide whether each
sequence is good or not, as before we take a uniform sample from S′

r of size 1
ϵ2 (log n+ log k) with

replacement. By processing the jobs each up to q̃r units, we can decide the number of jobs in S′
r of

size no bigger than q̃r. If the number is c, we estimate ỹr = c
|S′

r|
nr. The proof follows the same

lines as Lemma 5.2 and is omitted. The only minor difference is that we need to test if each of the k
sequences is good or not, and to avoid the bad events for all k sequences simultaneously, we ensure
the probability that the bad events occur for a sequence is at most O( 1

kn2 ). This is why we use a
bigger sample size than in Step 1.

5.2 Analysis of the Algorithm’s Performance

Let σ∗ be an arbitrary sequence against which we want to be competitive. The analysis proceeds
in rounds. Let br be the start time of round r; by definition b1 = 0. For the sake of analysis we
decompose our algorithm’s cost as follows:

∑
r∈[L]

∑
j∈Jr

(Cj − br) + Tr · |J>r|

+ 2OPT(JL+1),

where Tr is the total time spent in round r. To see this, observe that
∑

j∈Jr
(Cj − br) is the total

completion time of jobs that complete in round r, ignoring their waiting time before br. Each job
j ∈ Jr’s waiting time in the previous rounds is exactly

∑
r′∈[L−1] Tr′ . The total waiting time over

all of the jobs during rounds where they are not completed is
∑

r′∈[L−1] Tr′ · |J>r′ |. The last term
2OPT(JL+1) follows from the fact that we use Round-Robin to finish the last few jobs in the final
round L+ 1.

To upper bound Ar :=
(∑

j∈Jr
(Cj − br) + Tr · |J>r|

)
by COST(σ∗) we also decompose COST(σ∗)

as ∑
r∈[L]

(
COST(σ∗r+1)− COST(σ∗r)

)
+ COST(σ∗L+1)

Recall that we complete jobs Jr in round r and σ evolves from σr to σr+1 by dropping Jr from the
sequence σr. Thus, it decreases the cost of following σ.

Since we use round-robin to finish the remaining jobs JL+1 in the final round and round-robin is
2-competitive, our algorithm incurs cost at most 2OPT(JL+1). If the assumption in Theorem 5.1
holds, this is at most 2ϵOPT.

Let’s take a close look at
(

COST(σ∗r+1)− COST(σ∗r)
)
. This is equivalent to the following: For

each pair i ∈ Jr and j ∈ J>r, σ∗ has an error |pi − pj | if and only if it creates an inversion.
This quantity can be charged generously. Let’s call this aggregate error ηr. But OPT(Jr) +∑

i∈Jr,j∈J>r
min{pi, pj} should be charged sparingly. Let’s call this part of optimum quantity

OPTr. Note that we are using the following:
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Lemma 5.5. OPT =
∑

r∈[L]

(
OPT(Jr) +

∑
i∈Jr,j∈J>r

min{pi, pj}
)
+OPT(JL+1)

Proof. We know that the optimal schedule is Shortest-Job-First. Thus we have the following. Here
we assume jobs are indexed in an arbitrary but fixed manner.

OPT =
∑
j∈J

pj +
∑

i∈J,pi<pj

pi

=
∑

i∈J,j∈J,i≥j

min{pi, pj}

=
∑

r∈[L+1]

 ∑
i∈Jr,j∈Jr i≥j

min{pi, pj}+
∑

i∈Jr,j∈J>r

min{pi, pj}


=

∑
r∈[L+1]

OPT(Jr) +
∑

i∈Jr,j∈J>r

min{pi, pj}


=

∑
r∈[L]

OPT(Jr) +
∑

i∈Jr,j∈J>r

min{pi, pj}

+OPT(JL+1)

Using the previous lemma, if we bound Ar by (1+O(ϵ))OPTr+O( 1
ϵ5 )ηr we will have Theorem 5.1

by scaling ϵ appropriately. Proving this for all r ∈ [L] is the remaining goal.

We consider two cases.

All Sequences Are Bad. In this case we complete all jobs of size at most q̃r. Further σ∗
r,ϵ has at

least ϵ2nr big jobs. This implies that there are at least ϵ2nr big jobs that do not appear in σ∗
r,ϵ. So,

for each pair of such a big job and a non-big job, σ∗
r creates an inversion and has an error of at least

ϵq̃r, which contributes to ηr. Thus, ηr ≥ ϵq̃rϵ
4n2

r .

Now we want to upper bound Ar. Since the delay due to estimation is at most q̃r 2
ϵ2 (log n+ log k)

and all jobs are processed up to q̃r units, we have Ar ≤ (q̃r
2
ϵ2 (log n + log k)) ∗ nr + q̃r(nr)

2 ≤
(2ϵ+ 1)q̃r(nr)

2. Thus, Ar ≤ O(1) 1
ϵ5 ηr.

Some Sequences Are Good. We will bound the expected cost of the algorithm for round r when
there is a good sequence. The bad event B1 occurs with very small probability as shown in the
analysis of Step 1. The contribution to the expected cost is negligible if the bad event occurs. Due to
this, we may assume that the event ¬B1 occurs.

Say the algorithm processes the first ỹr jobs in a good sequence σr. By Lemmas 5.2 and 5.3, Jr
processes all small and middle jobs in σr

ϵ . Additionally, the algorithm may process up to 3ϵ2nr big
jobs without completing them.

The total time it takes to process the big jobs is 4ϵ2nr · q̃r and up to nr jobs wait on them. The
contribution to the objective of all jobs waiting while these are processed is at most 4ϵ2n2

r · q̃r. We
call this the wasteful delay due to processing big jobs. We show that this delay is only O(ϵ) fraction
of Ar +Ar+1.

Consider Ar + Ar+1. By definition of the algorithm, at least 1
2ϵnr jobs of size at least q̃r are

completed during rounds r and r + 1. If less than 1
2ϵnr middle or big jobs complete in round r, we

can show that nr+1 ≥ (1− 2ϵ)nr. Then, we observe that J≥r+1 must have at most 4ϵ2nr small jobs.
This is because σr

ϵ includes at most 3ϵ2nr big jobs and it includes ỹr jobs. Since yr is the number of
small and middle jobs and |yr − ỹr| ≤ ϵ2nr, σr

ϵ must include all non-big jobs, except up to 4ϵ2nr.
Thus, most jobs completing in round r + 1 are middle or big and we can show that the number of
such jobs completing in round r + 1 is at least 1

2ϵnr. Therefore, at least 1
2nr jobs will wait on the

first 1
2ϵnr jobs of size at least q̃r completed. This implies, Ar +Ar+1 ≥ 1

4 q̃rϵn
2
r . This is at least a

Θ( 1ϵ ) factor larger than the wasteful delay.
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Note that the delay due to processing big jobs and as well as the time spent computing the estimates
(used in Lemma 5.2 and 5.3) is at most nr · 6ϵ2nr q̃r ≤ O(ϵ) · (Ar + Ar+1). In the following, we
will bound the cost without incorporating these costs. Factoring in these two costs will increase the
bound by at most 1/(1−O(ϵ)) factor.

Thus, we only need to consider small and middle jobs that complete. For the sake of analysis, we
can consider the worst case scenario where we first process middle jobs and then small jobs. We
will bound Ar by OPT(Jr) (i.e. without charging to ηr). In this case, Ar/OPTr is maximized
when when all small jobs have size 0. We will assume this in the following. Let m be the number
of mid sized jobs we complete. For brevity, assume that the number of small jobs is at most ϵnr

although the actual bound is ϵ(1 + ϵ)nr. Further, we assume that m(m + 1) ≈ m2 as we are
willing to lose (1 + ϵ) factor in our bound. Let n = nr for notational convenience. Then, we
have Ar = m2q̃r/2 + mq̃rϵn + (n(1 − ϵ) − m)mq̃r = m2q̃r/2 + (n − m)mq̃r. In contrast,
OPTr = m2q̃r/2 + ((1 − ϵ)n − m)mq̃r. The ratio of the two quantities is n−m/2

(1−ϵ)n−m/2 where

m ≤ n. Therefore, in the worst case 1/2
1/2−ϵ ≤ (1 + 3ϵ). Thus, Ar can be bounded by (1 + 3ϵ)OPTr.

5.3 Improved Guarantees

One can show that at least (ϵ− 4ϵ2) fraction of jobs complete in every round assuming no bad events
occur: if all sequences are bad then all non-big jobs complete, which means at least (ϵ− ϵ2)nr jobs
complete due to Lemma 5.2. Otherwise, any good sequence σℓ

r has at least (ϵ− ϵ2 − 3ϵ2)nr non-big
jobs in σℓ

r,ϵ due to Lemmas 5.2 and 5.3 and they all complete if σℓ
r is chosen. Thus there are at most

O( 1ϵ log n) rounds and there are at most O(kϵ log n) bad events, as described in Lemmas 5.2 and 5.3,
to be avoided.

Suppose we run round robin all the time using ϵ of the speed, so even in the worst case we have a
schedule that is 2/ϵ-competitive against the optimum and therefore against the best prediction as well.
This will only increase our upper bound by 1/(1− ϵ) factor. Then, we can afford to have bad events
with higher probabilities.

Specifically, we can reduce the sample size in Steps 1 and 2 to s := Θ( 1
ϵ2 log(k(1/ϵ

3) log n)) to
avoid all bad events with probability at least 1 − ϵ2; so if any bad events occur, at most an extra
(2/ϵ) · ϵ2OPT cost occurs in expectation. Then, we can show that we can do steps 1-4 as long as
nr = Ω( 1

ϵ4 (log k + log log n+ log 1
ϵ )).

Then the delay due to estimation is at most 2sq̃rnr in Steps 1 and 2. We want to ensure that this is at
most O(ϵ) fraction of Ar +Ar+1. Recall that we showed Ar +Ar+1 ≥ 1

4 q̃rϵn
2
r . Thus, if we have

1
4ϵ

2q̃rn
2
r ≥ 2sq̃rnr, we will have the desired goal. This implies that all the delay due to estimation

can be charged to O(ϵ) of the algorithm’s objective as long as nr ≥ 8 1
ϵ2 s. This is why we switch to

round-robin if nr ≤ 8 1
ϵ2 s.

5.4 Removing the Simplifying Assumption on Job Sizes

Recall that we chose ρ uniformly at random from [0, 1) and rounded up each j’s size to the closest
number of the form (1 + ϵ)ρ+t for some integer t. Although we then scaled down all job sizes by
(1 + ϵ)ρ, we assume that we didn’t do it. This assumption is wlog as all the bounds remain the same
regardless of uniform scaling of job sizes.

Let ηℓ be the prediction error of σℓ. Let η̄ℓ be the error after rounding up job sizes. Let p̄j be j’s size
after rounding. Note that i) pj ≤ p̄j ≤ (1 + ϵ)pj ; ii) if pi ≤ pj , then p̄i ≤ p̄j . The second property
implies jobs relative ordering is preserved.

In the following we drop k for notational convenience. We have

η :=
∑

i̸=j∈J

1(pi < pj) · 1(i ≻σ∗ j) · |pi − pj |

η̄ :=
∑

i̸=j∈J

1(pi < pj) · 1(i ≻σ∗ j) · |p̄i − p̄j |

Lemma 5.6. Eη̄ = Θ(1) · η.
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Proof. Thanks to linearity of expectation it suffices to show that E|p̄i − p̄j | = Θ(1) · |pi − pj | for
every pair of jobs i and j.

Assume pi > pj wlog. Scale both job sizes for convenience, so pj = 1. Let pi/pj = (1 + ϵ)δ .

Case 1. δ ≥ 1. In this case we have p̄i > p̄j almost surely. Using the fact that rounding up increases
job sizes by at most 1 + ϵ factor, we can show that (1/3)|pi − pj | ≤ |p̄i − p̄j | ≤ (1 + ϵ)2|pi − pj |.
Case 2. δ ∈ (1/2, 1]. In this case we can show that |pi − pj | = Θ(ϵ) and E|p̄i − p̄j | = Θ(ϵ).

Case 3. δ ∈ (0, 1/2). We have |pi − pj | = (1 + ϵ)δ − 1 and E|p̄i − p̄j | =
∫ δ

ρ=0
ϵ(1 + ϵ)ρdρ =

ϵ
ln(1+ϵ) ((1 + ϵ)δ − 1). Thus, the ratio of the two is ϵ

ln(1+ϵ) = Θ(1) for small ϵ > 0.

What we showed was the following. For any η̄ℓ, EA ≤ (1 + ϵ)(OPT + O(1) 1
ϵ5 η̄

ℓ) + 2(1 +

ϵ)OPT(JK+1). By taking expectation over randomized rounding, we have EA ≤ (1 + ϵ)2(OPT +
O(1) 1

ϵ5 η
ℓ) + 2(1 + ϵ)2OPT(JK+1). By scaling ϵ appropriately, we obtain the same bound claimed

in Theorem 5.1.

5.5 Learning k Predicted Permutations

Now we show that learning the best k permutations has polynomial sample complexity.

Theorem 5.7. Let D be an unknown distribution of instances on n jobs. Given S indepen-
dent samples from D, there is an algorithm that outputs k permutations σ̂1, σ̂2, . . . , σ̂k such that
EJ∼D

[
minℓ∈[k] η(J, σ̂ℓ)

]
≤ minσ1,σ2,...,σk

EJ∼D
[
minℓ∈[k] η(J, σℓ)

]
+ ϵ with probability 1 − δ,

where S = poly(n, k, 1
ϵ ,

1
δ ).

Proof. The algorithm is basic ERM, and the polynomial sample complexity follows from Theo-
rem 2.3 and Theorem 20 in Lindermayr and Megow [32].

6 Conclusion

Despite the explosive recent work in algorithms with predictions, almost all of this work has assumed
only a single prediction. In this paper we study algorithms with multiple machine-learned predictions,
rather than just one. We study three different problems that have been well-studied in the single
prediction setting but not with multiple predictions: faster algorithms for min-cost bipartite matching
using learned duals, online load balancing with learned machine weights, and non-clairvoyant
scheduling with order predictions. For all of the problems we design algorithms that can utilize
multiple predictions, and show sample complexity bounds for learning the best set of k predictions.
Demonstrating the effectiveness of our algorithms (and the broader use of multiple predictions)
empirically is an interesting direction for further work.

Surprisingly, we have shown that in some cases, using multiple predictions is essentially “free.” For
instance, in the case of min-cost perfect matching examining k = O(

√
n) predictions takes the same

amount of time as one round of the Hungarian algorithm, but the number of rounds is determined by
the quality of the best prediction. In contrast, for load balancing, using k predictions always incurs
an O(log k) cost, so using a constant number of predictions may be best. More generally, studying
this trade-off between the cost and the benefit of multiple predictions for other problems remains an
interesting and challenging open problem.
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A Experiments

We now consider a preliminary empirical investigation of the algorithm proposed in Section 3 for
min-cost perfect matching with a portfolio of predicted dual solutions. For this, we modify the
experimental setup utilized by Dinitz et al. [18] to evaluate the case of single prediction for this
problem. We use a training set which is a mixture between three distinct types of instances, and show
that by using more than one prediction we see an overall improvement.

Dataset Shuttle KDD Skin [16]
# of Points (n) 43500 98,942 100,000

# of Features (d) 10 38 4
Table 1: Datasets used in preliminary experiments.

Experiment Setup and Datasets: These experiments were performed on a machine with a 6 core,
3.7 GHz AMD Ryzen 5 5600x CPU and 16 GB of RAM. The algorithms were implemented in Python
and the code is available at https://github.com/tlavastida/PredictionPortfolios.

To construct bipartite matching instances we adopt the same technique as Dinitz et al. [18] for
Euclidean data sets. At a high level, their technique takes in a dataset X of points in Rd and a
parameter n ∈ N, and outputs a distribution D(X,n) over dense instances of min-cost perfect
matching with n nodes on each side. Sampling from the distribution D(X,n) can be done efficiently.
We consider three datasets (Shuttle, KDD, and Skin) from the UCI Machine Learning Repository [20]
that were also considered in [18], see Table 1 for details.

Instead of considering each dataset (and its corresponding distribution) separately, we consider them
together as a mixture model. For each dataset, we consider a sub-sample X of 20,000 points and
we set n = 150 (so 2n = 300 nodes per instance) in order to construct each distribution D(X,n).
We then sample 20 instances from each distribution and consider these 60 instances together as our
training set (i.e. our learning algorithm doesn’t know which dataset each instance was derived from).
For testing, we sample an additional 10 instances from each dataset.

Results: To evaluate our approach, we vary the number of predicted dual solutions (k) learned
from one (baseline) to five and also compare to the standard Hungarian method (referred to as “No
Learning”). Following [18] our evaluation metrics are running time and the number of iterations of
the Hungarian algorithm.

Given that the dataset has three distinct clusters by construction, we expect the average number of
iterations of the Hungarian algorithm to decrease as k grows from 1 to 3 and then stay stable. We
also expect the running time to decrease as k grows from 1 to 3, and then increase as k grows from 3
to 5, as the cost of the projection step grows linearly with k.

In Table2 we have divided our results on the test instances by dataset, so that different scales don’t
obscure the results.

Dataset Shuttle KDD Skin [16]
k # Iterations Time (s) # Iterations Time (s) # Iterations Time (s)

No Learning 149.0 0.929 304.4 1.97 63.1 0.396
1 77.9 0.601 149.4 1.09 68.7 0.472
2 59.0 0.433 144.0 1.08 306.7 2.690
3 42.4 0.350 144.0 1.09 38.9 0.318
4 42.4 0.373 130.3 1.05 38.9 0.342
5 42.4 0.394 136.1 1.15 38.9 0.357

Table 2: Average iteration count and average running time across each data set and value of k.

Observe that for the Shuffle dataset the process proceeds exactly as we had predicted – the number of
iterations drops as k grows from 0 to 3 and then stays constant, the wall clock time drops as well and
then starts increasing.

For KDD and Shuffle the situation is more interesting. For KDD we don’t see the nice inflection
point at k = 3. We conjecture that the KDD dataset itself is diverse and induces many subclusters
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for its family of matching instances, thus increasing the number of clusters keeps on improving the
performance.

For the Skin dataset, we observe an anomaly at k = 2. We conjecture that this is due to the clustering
in the learning stage allocating both predictions to the KDD and Shuffle datasets, essentially ignoring
the Skin dataset and thus giving extremely poor performance. In other words, the gain from allocating
the “extra” prediction to the other datasets was enough to outweigh the cost to the Skin data. This
aligns well with our conjecture that the KDD data itself has many subclusters.

Overall, however, we see that the empirical evaluation supports our conclusion that there are perfor-
mance gains to be had when judiciously using multiple advice models.
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