
A Convergence of smooth best-response dynamics in identical-interest and
zero-sum stochastic games

In this appendix, we provide detailed proofs of results of Section 4. Since solutions of differential
inclusion SBRD are special solutions of differential inclusion MBRD, it is sufficient to study MBRD.
In what follows, unless otherwise specified, t 7→ (xs, u

i
s, P̂s, r̂

i
s)s,i is a solution of MBRD.

We start with general properties of the smooth best response, convergence of estimates and regularity
of solutions and then proceed with the study of two special cases: identical-interest stochastic games
(subsection A.4) and zero-sum stochastic games (subsection A.5).

A.1 Properties of the smooth best-response

Lemma A.1. Function (u, xs) 7→ sbris,u (xs) is continuous in u and xs.

Proof. It follows from a simple application of the maximum theorem that the smooth best-response
is upper hemicontinuous as a set-valued map. The strict concavity of hi implies that there is a single
profile that maximizes the smooth auxiliary payoff. Therefore hi is continuous as a single-valued
application.

Lemma A.2. For B > 0, there exists η > 0 such that for all x ∈ Πj∈I∆
(
Aj

)
, u ∈ RS such that

∥u∥∞ ≤ B and ais ∈ Ai:
sbris,u (xs) (a

i
s) ≥ η

Proof. This is a classical property of the smooth best-response under assumptions (H1). Point
sbris,u (xs) is a maximum of the function yis 7→ f i

s,u

(
yis, x

−i
s

)
+ ϵhi

(
yis, x

−i
s

)
. However, let xs be an

interior point of the simplex and (yis, x
−i
s ) be on the boundary for player i. Then, the composition of

the linear interpolation between (yis, x
−i
s ) and xs and xs 7→ f i

s,u (xs) + ϵhi (xs) is concave because
both functions are. However, the slope of this composed function is infinite (because the norm of
the gradient goes to∞ and xs is interior), therefore it goes to −∞ (otherwise it cannot be concave),
which implies that (yis, x

−i
s ) cannot be a maximum. Then, by compacity, smooth best-response are

away from the boundary of the simplex.

A.2 Convergence of estimates P̂ and r̂

Lemma A.3. There exists C > 0 such that for all states s action profiles bs ∈ A and t ≥ 0,

|r̂is (bs) (t)− ris (bs) | ≤ C exp(−ηα−t)

|P̂ss′ (bs) (t)− Pss′(bs)| ≤ C exp(−ηα−t)

Proof. Let s ∈ S and bs ∈ A.
We write r (t) =

∣∣r̂is (bs) (t)− ris (bs)
∣∣, so as ṙ = −αs(t)a (t) (bs)r (t).

Then we can deduce from Lemma A.2 and the fact that αs(t) ≥ α− that ṙ ≤ −ηα−r (t).

Therefore, Grönwall Lemma implies that r (t) ≤ r (0) exp(−ηα−t). The same proof is valid
for P̂s (t).

A.3 Regularity of solutions

Lemma A.4. Functions ui
s, xs, f̂ i

s,ui are bounded.

Proof. Because of the definition of the derivative of xs, it stays in the simplex and as such it is
bounded.

It is clear that f̂ i
s,ui(t) (xs(t)) ≤ (1 − δ)∥ris∥∞ + δ∥ui(t)∥∞. Therefore, as long as ∥ui(t)∥∞ is

lower than ∥ris∥∞, then f̂ i
s,ui(t) (xs(t)) ≤ ∥ris∥∞. By definition of the derivative of ui

s, this implies
that ui

s is always smaller than ∥ris∥∞ assuming it is true for the initial value.
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Lemma A.5. Functions ui
s, xs, f̂ i

s,ui are Lipsichitz.

Proof. All functions are differentiable almost everywhere. The derivatives are bounded by composi-
tion since β(t) and αs(t) are bounded and because of Lemma A.4.

A.4 Convergence in identical-interest games

In identical-interest games, all payoff functions are equal. Therefore, assuming the same initial
conditions for all players i for ui

s, we have ui
s(t) = uj

s(t) for all players i and j. So, we can omit the
superscript, and the same is true for the payoff functions and the auxiliary payoff functions.

The proof proceeds as follows: we show that the differential of ui
s becomes a good approximation of

the target auxiliary payoff Γs, and furthermore that their difference is lower bounded by something
integrable. Then we can deduce that there is a limit, for this difference and that it is necessarily 0 and
the convergence of actions follows.

A.4.1 Convergence of payoffs

We define Γs (t) := f̂s,u(t) (xs(t))+ ϵh (xs(t)) and s− (t) ∈ argmins∈S Γs (t)−us(t). For a given
solution of MBRD, there may be several possible choices of s− (t), results below are valid for any
such choice.
Lemma A.6. The differential of Γs− − us− is lower bounded for almost every t:

dΓs− − us−

dt
≥ −2C exp(−ηα−t) + β(t)(δ − 1)(Γs−(t) (t)− us−(t)(t))

where C is defined in Lemma A.3 and η in Lemma A.2.

Proof. First, notice that since Γs− − us− is a minimum of continuous, differentiable almost every-
where functions, it is continuous and differentiable almost everywhere. Let t ∈ R+, τ > 0.

Γs−(t+τ) (t+ τ)− us−(t+τ)(t+ τ)− Γs−(t) (t) + us−(t)(t)

= Γs−(t+τ) (t) + τ
dΓs−(t+τ)

dt
(t)− us−(t+τ)(t)

−τ
dus−(t+τ)

dt
(t) + o(τ)− Γs−(t) (t) + us−(t)(t)

(5)

Then, for any τ :
dus−(t+τ)

dt
(t) = β(t)

(
Γs−(t+τ) (t)− us−(t+τ)(t)

)
= β(t)

(
Γs−(t) (t)− us−(t)(t)

)
+ o(1)

(6)

Moreover, for any τ :

Γs−(t+τ) (t)− us−(t+τ)(t) ≥ Γs−(t) (t)− us−(t)(t) (7)

Now, we need to lower bound
dΓs−(t+τ)

dt (t). We use the chain rule and Lemma A.3 to get (with
s = s− (t+ τ) to ease reading–since this differentation does not depend on the state):

dΓs

dt
(t) ≥ −2C exp(−ηα−t)︸ ︷︷ ︸

changes in r̂ and P̂

+
∑
j∈I

αs(t)⟨sbrjs,us(t)
(xs(j))− xj

s(t),∇j f̂s,u(t) (xs(t)) + ϵh (xs(t))⟩︸ ︷︷ ︸
changes in xs, ∇j is the gradient with respect to xj

s

+ δ
∑
s′∈S

P̂ss′ (xs(t)) u̇s′ (t)︸ ︷︷ ︸
changes in us

(8)
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The second term is positive because f̂s,u + ϵh (xs(t)) is concave: sbrjs,us(t)
(xs(j)) is the maximum

of the fonction, therefore its gradient is null and the opposite of the gradient of a concave function is
monotone.
The last one is greater than δβ(t)

(
Γs−(t) (t)− us−(t)(t)

)
, leading to:

dΓs−(t+τ)

dt
(t) ≥ −2C exp(−ηα−t) + δβ(t)

(
Γs−(t) (t)− us−(t)(t)

)
(9)

Using (6), (7) and (9) in (5) leads to:

Γs−(t+τ) (t+ τ)− us−(t+τ)(t+ τ)− Γs−(t) (t) + us−(t)(t)

≥ τ
(
−2C exp(−ηα−t) + β(t)(δ − 1)

(
Γs−(t) (t)− us−(t)(t)

))
+ o(τ)

And the result follows.

Lemma A.7. There exists u∞,s ∈ RS such that for all s ∈ S, us(t)→ u∞,s and Γs (t)→ u∞,s.

Proof. We consider the following differential equation:

y′ = −2C exp(−ηα−t) + β(t)(δ − 1)y (10)

Lemma A.6 implies that solutions of (10) with initial condition y(0) = Γs−(0) (0)− us−(0)(0) lower
bound Γs− − us− .

Moreover, solutions of (10) are of the form:(
y(0)−

∫ t

0

2C exp(−ηα−v) exp

(∫ v

0

β(u)(1− δ)du

)
dv

)
exp

(
−
∫ t

0

β(u)(1− δ)du

)
which is equal to:

y(0) exp

(
−
∫ t

0

β(u)(1− δ)du

)
−

∫ t

0

2C exp(−ηα−v) exp

(
−
∫ t

v

β(u)(1− δ)du

)
dv

Which is greater than:

−|y(0)| exp
(
−
∫ t

0

β(u)(1− δ)du

)
−

∫ t

0

2C exp(−ηα−v) exp

(
−
∫ t

v

β(u)(1− δ)du

)
dv

(11)

So for every s, Γs (t) − us(t) is greater than (11). We study the differential of us(t), that is
β(t)(Γs (t)− us(t)) and show that it is lower bounded by an integrable quantity:

u̇s ≥ −β(t)|y(0)| exp
(
−
∫ t

0

β(u)(1− δ)du

)
− β(t)

∫ t

0

2C exp(−ηα−v) exp

(
−
∫ t

v

β(u)(1− δ)du

)
dv (12)

The integral of the first term is:∫ t

0

−β(v)|y(0)| exp
(
−
∫ v

0

β(u)(1− δ)du

)
= −|y(0)| 1

1− δ

(
1− exp

(
−
∫ t

0

β(u)(1− δ)du

))
> −∞
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And the integral of the second term is:∫ t

0

−β(v)
∫ v

0

2C exp(−ηα−w) exp

(
−
∫ v

w

β(u)(1− δ)du

)
dwdv

=

∫ t

0

∫ t

0

−1w≤vβ(v)2C exp(−ηα−w) exp

(
−
∫ v

w

β(u)(1− δ)du

)
dwdv

=

∫ t

0

∫ t

w

−β(v)2C exp(−ηα−w) exp

(
−
∫ v

w

β(u)(1− δ)du

)
dvdw

=

∫ t

0

2C exp(−ηα−w)

∫ t

w

−β(v) exp
(
−
∫ v

w

β(u)(1− δ)du

)
dvdw

=

∫ t

0

2C exp(−ηα−w)

[
1

1− δ
exp

(
−
∫ v

w

β(u)(1− δ)du

)]t
w

dw

=

∫ t

0

2C exp(−ηα−w)
1

1− δ

(
exp

(
−
∫ t

w

β(u)(1− δ)du

)
− 1

)
dw

≥− 1

1− δ

2C

ηα−
(1− exp(−ηα−t)) > −∞

Therefore, both term of the integral of (12) are greater than−∞. Since us(t) is bounded (Lemma A.4)
and its derivative is β(t)(Γs (t)− us(t)), then us(t) converges to its lim sup. Moreover, the same
reasoning can be made with Γs (see its differentiation in (8)), so it has a limit which is necessarily the
same as us: otherwise, the derivative of us(t) would converge towards β(t) times the difference of
the limits and us(t) would be unbounded because of hypothesis H2.

A.4.2 Convergence of actions

Lemma A.8. Action profile xs(t) converges to a fixpoint of sbrs,u∞,s
. Therefore, x(t) converges to

a regularized Nash equilibria of the stochastic game.

Proof. We use equation (8) to bound above the scalar product:

⟨sbrjs,us(t)
(xs(j))− xj

s(t),∇j f̂s,u(t) (xs(t)) + ϵh (xs(t))⟩ (13)

Since Γs and us have limits and are Lipsichitz (Lemma A.5), then their derivative goes to 0, and the
first term of (8) also goes to 0. As a consequence, the limsup of (13) is bounded above by 0, and this
is positive, so it goes to 0. Therefore, the action profile converges to a fixpoint of sbrs,u∞,s

.

A.5 Convergence in zero-sum games

In this subsection we suppose that the game is zero-sum, that is there are only two players and for all
states, r1s (as) = −r2s (as) for all action profiles as. Therefore, we can omit the superscript with the
convention that rs = r1s .

The proof is inspired from Leslie et al. [2020], later extended in Baudin and Laraki [2022].

Moreover, we suppose that both players use the same regularizer:
h
(
x1
s, x

2
s

)
= h1

(
x1
s, x

2
s

)
= −h2

(
x1
s, x

2
s

)
(14)

where both h1 and h2 are concave in respectively x1
s and x2

s.

Therefore, with the same initial conditions, continuation payoffs us are opposite for both players, and
we also omit the superscript.

A.5.1 Convergence of payoffs

We define the energy of the system, also known as the duality gap (Benaïm et al. [2005]):

ws(t) = max
y1
s∈∆(A1)

f̂s,u(t)
(
y1s , x

2
s(t)

)
+ ϵh

(
y1s , x

2
s(t)

)
− min

y2
s∈∆(A2)

f̂s,u(t)
(
x1
s(t), y

2
s

)
+ ϵh

(
x1
s(t), y

2
s

) (15)
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This is a positive quantity because the first (second) term is greater (lower) than f̂s,u(t) (xs(t)) +
ϵh (xs(t)). We are going to show that it is mostly decreasing.

In the rest of the section, we use a β⋆ such that:

β⋆ ≥ lim supβ(t) (H3)

A special case is when β(t) goes to 0, in this case β⋆ can be taken arbitrarily small.
Lemma A.9. The differential of ws is bounded:

dws

dt
≤ −α−ws(t) +Dβ⋆ +D exp (−ηα−t)

Proof. We write yi⋆s (t) = sbris,us(t) (xs(t)) and:

g(y1⋆s (t)) := f̂s,u(t)
(
y1⋆s (t), x2

s(t)
)
+ ϵh

(
y1⋆s (t), x2

s(t)
)

where the dependency on us, P̂s, r̂s, xs is left implicit. This implies:

g(y1⋆s (t)) = max
y1
s∈∆(A1)

f̂s,u(t)
(
y1s , x

2
s(t)

)
+ ϵh

(
y1s , x

2
s(t)

)
Therefore, using the envelope theorem, the derivative of g is written using only derivatives on all
variables but y1⋆s (t):

dg ◦ y1⋆s
dt

= Dug · u̇+Dx2
s
g · ẋ2

s +Dr̂sg · ˙̂rs +DP̂s
g · ˙̂Ps

With Lemma A.3, Lemma A.4 and Hypothesis H3,

dg ◦ y1⋆s
dt

≤ β⋆∥Dug∥∥rs∥+Dx2
s
g · ẋ2

s + (∥Dr̂sg∥+ ∥DP̂s
g∥)αs(t)ηC exp(−ηα−t) (16)

f̂s,u(t) is linear, so:

Dx2
s
g · ẋ2

s = f̂s,u(t)
(
y1⋆s (t), ẋ2

s

)
+ ϵ∇x2

s
h
(
y1⋆s (t), x2

s(t)
)
· ẋ2

s (17)

And since h = h1 = −h2 (with (14)),∇x2
s
h = −∇x2

s
h2 by definition, and h2 is concave in x2

s, so:

∇x2
s
h2

(
y1⋆s (t), x2

s(t)
)
· (y2⋆s (t)− x2

s(t)) ≥ h2
(
y1⋆s (t), y2⋆s (t)

)
− h2

(
y1⋆s (t), x2

s(t)
)

(18)

It follows from (17), (18), (14) and ẋ2
s = αs(t)(y

2⋆
s (t)− x2

s(t)) that

Dx2
s
g · ẋ2

s ≤ αs(t)f̂s,u(t)
(
y1⋆s (t), y2⋆s (t)− x2

s(t)
)
+ ϵαs(t)h

(
y1⋆s (t), y2⋆s (t)

)
− αs(t)ϵh

(
y1⋆s (t), x2

s(t)
)

≤ −αs(t)g(y
1⋆
s (t)) + αs(t)f̂s,u(t)

(
y1⋆s (t), y2⋆s (t)

)
+ ϵαs(t)h

(
y1⋆s (t), y2⋆s (t)

)
(19)

Since g as a function of us, P̂s, r̂s, xs is Lipschitz, and using (16) and (19), there exists D such that:

dg ◦ y1⋆s
dt

≤ D

2
β⋆ +

D

2
αs(t) exp(−ηα−t)− αs(t)g(y

1⋆
s (t))

+ αs(t)f̂s,u(t)
(
y1⋆s (t), y2⋆s (t)

)
+ ϵαs(t)h

(
y1⋆s (t), y2⋆s (t)

)
(20)

The same reasoning apply for the second term of ws with the opposite payoff function (notice that
in this case, the second line of (20) is exactly the opposite, therefore when summed it cancels out),
leading to, when summed:

dws

dt
≤ Dβ⋆ +Dαs(t) exp(−ηα−t)− αs(t)ws(t)

≤ Dβ⋆ +D exp(−ηα−t)− α−ws(t)

because α− ≤ αs(t) ≤ 1 and ws ≥ 0 (its first term is greater than f̂s,u(t) (xs(t)) + ϵh (xs(t)) and
its second one is lower).
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The following lemma implies that the auxiliary payoff is close to the value of the auxiliary game
because the duality gap of the auxiliary game is small enough.

Lemma A.10. For all states s ∈ S,

lim supws(t) ≤ 2Dβ⋆α−1
−

Furthermore, max{ws − 2D, 0} is a Lyapunov function of SBRD (i.e., when payoff and transitions
estimate are exact) in the autonomous case.

Proof. Since ws is positive (the first term is greater than f̂s,u(t) (xs(t)) + ϵh (xs(t)) and the second
one is lower), Lemma A.9 makes it possible to use Grönwall’s Lemma on ws − 2Dβ⋆α−1

− . as soon
as exp(−ηα−t) ≤ β⋆.

Define ξ such as (1−δ)ξ
16 = 4Dβ⋆α−1

− .

Estimates of transitions and payoffs are close to real values for t large enough, so Lemma A.10
implies that there exists t1(ξ) such that for t ≥ t1(ξ):

|f̂s,u − fs,u | ≤ 4Dβ⋆α−1
− =

(1− δ)ξ

16

|f̂s,u + ϵh − vs,u(t)| ≤ 2Dβ⋆α−1
− =

(1− δ)ξ

32

|fs,u + ϵh − vs,u(t)| ≤ 2Dβ⋆α−1
− =

(1− δ)ξ

32

(A1)

where vs,u(t) is the value of the auxiliary game parameterized by u(t) (and functions h, fs,u (xs) are
f̂s,u (xs) are valued at xs(t), omitted for readability).

We define two distinguished states (notice that we use fs,u and not f̂s,u ):

• sf (t) ∈ argmaxs∈S |fs,u(t) (xs(t)) + ϵh (xs(t))− us(t)|

• sv(t) ∈ argmaxs∈S |vs,u(t) − us(t)|
Lemma A.11. If (A1) is satisfied (for instance if t ≥ t1(ξ)) and

|usf (t)− fsf (t),u(t)

(
xsf (t)

(t)
)
− ϵh

(
xsf (t)

(t)
)
| ≥ ξ

and for an s ∈ S, ∣∣|usf (t)− vsf ,u(t)| − |us(s)− vs,u(t)|
∣∣ ≤ (1− δ)ξ

8

then:
d|us(s)− vs,u(t)|

dt
≤ − (1− δ)β(t)ξ

2

Proof. First, using Lemma A.2 of Leslie et al. [2020] on the regularity of the value of a zero-sum
(static) game, it follows:∣∣∣∣dvs,u(t)dt

∣∣∣∣ ≤ δmax
s∈S
|u̇s|

= δβ(t)|fsf (t),u(t)
(
xsf (t)

(t)
)
+ ϵh

(
xsf (t)

(t)
)
− usf (t)|+ δβ(t)

(1− δ)ξ

16

≤ δβ(t)ξ(1 +
1− δ

16
)

(21)

We now prove that us(t) moves towards vs,u(t) at a constant speed relatively to β(t):
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• If us(t) ≥ vs,u(t), then |usf (t)− vsf ,u(t)| − us(t) + vs,u(t) ≤ (1−δ)ξ
8 .

u̇s = β(t)
(
f̂s,u(t) (xs(t)) + ϵh (xs(t))− us(t)

)
≤ β(t)

(
fs,u(t) (xs(t)) + ϵh (xs(t))− us(t)

)
+ β(t)

(1− δ)ξ

16

≤ β(t)

(
fs,u(t) (xs(t)) + ϵh (xs(t)) +

(1− δ)ξ

8
− vs,u(t) − |usf (t)− vsf ,u(t)|

)
+ β(t)

(1− δ)ξ

16

≤ β(t)

(
4(1− δ)ξ

16
− |usf (t)− vsf ,u(t)|

)
≤ β(t)

(
(1− δ)ξ

4
− |usf (t)− fsf (t),u(t)

(
xsf (t)

(t)
)
− ϵh

(
xsf (t)

(t)
)
|
)

≤ β(t)

(
(1− δ)ξ

4
− ξ

)
Summing with vs,u(t) and using (21):

dus(t)− vs,u(t)

dt
≤ β(t)

(
(1− δ)ξ

4
− ξ + δξ + δξ

1− δ

16

)
≤ β(t)ξ

(
1− δ

2
− 1 + δ

)
≤ −β(t)

(
2(1− δ)ξ

4

)
• If us(t) ≤ vs,u(t), similar calculations yield the same result.

Lemma A.12. For all s ∈ S, lim supt→∞ |us(t)− fs,u(t) (xs(t))− ϵh (xs(t)) | ≤ 4ξ.

Proof. We define g(t) = max{|usf (t)− vsf ,u(t)|, 3ξ}.

Now, if |usf (t) − vsf ,u(t)| ≤ 2ξ, then dg
dt = 0. If |usf (t) − vsf ,u(t)| ≥ 2ξ and if t is greater than

t1(ξ), then |usf (t)−fsf (t),u(t)
(
xsf (t)

(t)
)
−ϵh

(
xsf (t)

(t)
)
| ≥ ξ: indeed, |fsf (t),u(t)

(
xsf (t)

(t)
)
+

ϵh
(
xsf (t)

(t)
)
− vsf ,u(t)| ≤ ξ because of Lemma A.10 and its corollary A1. Similarly, on a

neighbourhood of t, every s that maximizes |fs,u(t) (xs(t)) + ϵh (xs(t)) − us(t)| satisfies the
condition of Lemma A.11, because |fs,u(t) (xs(t))+ ϵh (xs(t))− vs,u(t)| ≤ ξ according to the same
Lemma A.10. Therefore, Lemma A.11 can be used and:

dg

dt
≤ −3(1− δ)β(t)ξ

4

This holds as soon as g(t) > 2ξ and t > t1(ξ). The integral of β is infinite (hypothesis H2), so there
is a t2(ξ) such that for t ≥ t2(ξ), g(t) = 2ξ.

Then, using A1, we have |usf (t)− fsf (t),u(t)

(
xsf (t)

(t)
)
− ϵh

(
xsf (t)

(t)
)
| ≤ 3ξ and by definition

of sf , the inequality of the lemma.
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A.5.2 Convergence of actions

Lemma A.13. For all s ∈ S, xs(t) converge to the set of 3ξ-Regularized Nash equilibria of the
auxiliary game.

Proof. The previous proof gives that fs,u(t) (xs(t)) is 3ξ close to vs,u(t), hence the result.

B Convergence of smooth fictitious-play in identical-interest and zero-sum
stochastic games

In order to prove the convergence of the discrete-time procedures described in this paper, we use
the theory of stochastic approximations to relate continuous-time and discrete-time systems. The
proof is in two steps: first we characterize the internally chain transitive sets of the continuous-time
systems (definition below), then we show with stochastic approximations theorem that limit sets of
the discrete time systems are included in internally chain transitive sets.
Definition B.1 (Internally chain transitive). A set A is internally chain transitive for a differential
inclusion dy

dt ∈ F (y) if it is compact and if for all x, x′ ∈ A, ϵ > 0 and T > 0 there exists an integer
n ∈ N, solutions y1, . . . yn to the differential inclusion and real numbers t1, t2, . . . , tn greater than T
such that:

• yi(s) ∈ A for 0 ≤ s ≤ ti

• ∥yi(ti)− yi+1(0)∥ ≤ ϵ

• ∥y1(0)− x| ≤ ϵ and ∥yn(tn)− x′∥ ≤ ϵ

The previous definition means that if a set A is internally chain transitive, two points can be linked
with solutions of at least length T in at most n steps, where n depends on T . These sets contain the
limit sets of the discrete-time counterparts of the differential inclusions (see (Benaïm et al. [2005])
for an introduction to the theory of stochastic approximations and formal statements), that is systems
of the form:

yn+1 − yn ∈ βn(F (yn) + Un)

where Un is typically a zero-mean noise with bounded variance.

In the following, we characterize internally chain transitive sets and use an asynchronous extension
of the theory of stochastic approximations initially presented in Perkins [2013] and later extended in
Baudin and Laraki [2022].

B.1 Payoff perturbation

In MBRD, we supposed that players did not observe the actual stage reward risn(an) but a perturbation
of this value. Formally, the expectancy of Ri

n must be risn(an) conditionally on the history:

E
[
Ri

n|Fn−1

]
= risn(an) (22)

where Fn−1 is the σ-algebra that contains all information up to step n− 1. Furthermore, we require
the variance to be bounded, i.e. var(Ri

n|Fn−1) is bounded.

B.2 Convergence of estimates

Lemma B.2. If L is an internally chain transitive set of MBRD, then it is included in A, where:

A :=
{
(xi

s, u
i
s, r̂

i
s, P̂s)s,i

∣∣∣ ∀s, r̂is = ris ∧ P̂s = Ps

}
Proof. We notice that functions r̂is 7→ ∥r̂is (t) − ris∥∞ and P̂s 7→ ∥P̂s (t) − Ps∥∞ are Lyapunov
functions with calculations similar to Lemma A.3: their derivative is smaller than −α− multiplied by
their value. This implies that L is contained in the inverse of zero of such functions, that is A.
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B.3 Convergence in identical-interest stochastic games

Lemma B.3. Suppose that the system is autonomous, that is β(t) is constant and we suppose β(t) = 1
(it can be generalized to any constant). Let L be an internally chain transitive set of MBRD, then:

L ⊆
{
(xs, us, r̂s, P̂s)s

∣∣∣ ∀s, fs,u (xs) + ϵh (xs) = us ∧ xs = sbris,us
(xs) ∧ r̂s = rs ∧ P̂s = Ps

}
(23)

which means that L contains only regularized equilibria.

Proof. The proof proceeds with a sequence of inclusion. We show that any internally chain transitive
set is contained in:

A :=
{
(xs, us, r̂s, P̂s)s

∣∣∣ ∀s, r̂s = rs ∧ P̂s = Ps

}
B :=

{
(xs, us, r̂s, P̂s)s | ∀s, fs,u (xs) + ϵh (xs) ≥ us

}
and then in the set of Eq. (23).

Regarding L ⊆ A, this is exactly Lemma B.2 when payoffs functions are equal.

In (9), the term −2C exp(−ηα−t) comes from the fact that r̂s (t) and P̂s (t) have not converged yet.
Therefore, if we are in A, these terms disappears and the new differential inequality resulting from
computations of Lemma A.6 is:

dΓs− − us−

dt
≥ β(t)(δ − 1)(Γs−(t) (t)− us−(t)(t))

which, using Grönwall lemma and β(t) = 1, implies that:

Γs−(t) (t)− us−(t)(t) ≥
(
Γs−(0) (0)− us−(0)(0)

)
exp (−(1− δ)t)

Therefore, for all states s:

Γs (t)− us(t) ≥
(
Γs−(0) (0)− us−(0)(0)

)
exp (−(1− δ)t) (24)

Then, let a be a point of L with for all s, Γs − us ≥ −ϵ with equality for a state (and ϵ > 0). We
suppose that the lipschitz constant of Γs is 1, other cases are analoguous. By definition, it is linked to
itself by solutions of MBRD which are collated with an arbitrary gap, we can take ϵ/2 and of length at
least an arbitrary T , take log(4)/(1− δ). Now, after the first solution, by (24), the difference between
the auxiliary payoff Γs and the auxiliary value us is greater than −3ϵ/2 exp(− log(4)) (because the
initial value of Γs − us is greater than −ϵ− ϵ/2 and then using (24)). This implies, by recurrence,
that the difference between Γs − us is strictly greater than −ϵ, which is absurd since the end of the
chain is a.

Therefore, L ⊆ B.

Then, relatively to A ∩B, Γs is a Lyapunov function because dΓs

dt is greater than 0 based on (8), and
strictly greater than 0 for points outside of the set of (23), which concludes the lemma.

Proof of Theorem 3.1. With Lemma B.3, we known that ICT sets of MBRD are contained in the set
of regularized equilibria. The rest of the proof uses stochastic approximations results to show that
ICT sets contains the limit sets of MFP and SFP.

In order to do this, we use Theorem D.5 of Baudin and Laraki [2022], an extension of Theorems of
Perkins and Leslie [2012] and Benaïm et al. [2005].

Let us recall the two systems that we want to relate:
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

ui
s,n+1 − ui

s,t =
β

t+ 1

(
f̂ i
s,ui

n

(
xs,n

)
+ ϵhi

(
xs,n

)
− ui

s,t

)
xs,n+1 − xs,t =

1s=st

s♯t

(
an − xs,n

)
P̂ss′,n+1 (a)− P̂ss′,n (a) =

1sn=s∧a(n)=a∑n
k=0 1sk=s∧a(k)=a

(
1sn+1=s′ − P̂ss′,n (a)

)
r̂s,n+1 (a)− r̂s,n (a) =

1sn=s∧a(n)=a∑n
k=0 1sk=s∧a(k)=a

(
Rn

i − r̂s,n (a)
)

ain ∼ sbris,un

(
xs,n

)

(MFP)

which is MFP rewritten with incremental updates for estimators, and

u̇s = β
(
f̂s,u(t) (xs(t)) + ϵh (xs(t))− us(t)

)
ẋs = αs(t) (a (t)− xs(t))

˙̂
Pss′ (b) = αs(t)a (t) (b)

(
Pss′(b)− P̂ss′ (b) (t)

)
˙̂ris (b) = αs(t)a (t) (b) (rs (b)− r̂s (b) (t))

ai (t) = sbris,u(t) (xs(t))

αs(t) ∈ [α−, 1]

(MBRD)

The first system is of the form:

yn+1 − yn ∈ Sn · (F (yn) + Un) (25)

where · is the pairwise multiplication of two vectors, and the second one is:

dy

dt
∈ St · F (y) (26)

Note that this is the same F between two systems and that the expectancy of Un is zero. Vectors Sn

and St are the update rates of every variable. For every discrete variable that are updated with an
indicator function, the steps are decreasing in 1

n in the number of times that the indicator was equal
to 1. For ui

s,t, it is also updated in 1
n . Therefore, our update step sequence is γn = 1

n . Furthermore,
update steps Sn and St are correlated vectors, meaning that the update rate of every variable is not
independent (for instance, for a fixed state and a fixed action, r̂s,t (a) and P̂ss′,t (a) are updated at
the same rate. So this is a correlated asynchronous system, as described in Baudin and Laraki [2022].

Now, we must verify every hypothesis of the theorem:

(i) All values of MFP are bounded, so they belong to a compact.

(ii) The right hand side F of MBRD is a Marchaud map because it has bounded, closed and
convex images, and its graph is itself closed.

(iii) We use steps γn = 1
n which satisfy the usual properties: it is decreasing, it goes to 0 and the

sum is equal to∞.

(iv) The game is ergodic, and the next states are randomly chosen based uniquely on the current
state and history, so properties on the transitions are verified.

(v) There is a correlation between Un and Sn, therefore it is necessary to prove the Kushner-
Clark noise condition separately (see Perkins and Leslie [2012]), one variable at a time.
Regarding P̂s,n and r̂is,n, this is true because the noise is uniformly bounded in L2 (bounded
variance) and the update step is 1/t, as noted in Proposition 1.4 and Remark 1.5 of Benaïm
et al. [2005]. Regarding variables xs,n and ui

s,t there is no correlation between the update
steps and the noise, so standard theorems apply (for instance Lemma 3.3 of Perkins and
Leslie [2012]).
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(vi) The squared sum of γn converges and the noise is bounded.

(vii) There is no additional drift, so dn = 0 in our case.

Therefore, we can use the theorem, which implies that the limit set of MFP is an internally chain
transitive set of MBRD. Combined with Lemma B.3, this gives the desired result.

B.4 Convergence in zero-sum stochastic games

The scheme of the proof is similar to that of identical-interest stochastic games: first, we characterize
internally chain transitive sets of MBRD, then we show that systems MBRD and MFP can be related
using stochastic approximations theory, thus the characterization of limit sets of MFP. Throughout
this part, we use notations and hypothesis from subsection A.5.
Lemma B.4 (Internally chain transitive sets in ZS case). Let L be an internally chain transitive sets
of system MBRD in the ZS case with the same initial values for all players. Then there exists E such
that L is contained in the following set:

BEβ⋆

:=
{
(xs, u

i
s, r̂s, P̂s)s

∣∣∣ ∀s, |f i
s,ui (xs) + ϵhi (xs)− ui

s| ≤ Eβ⋆
}

Proof. With notations of subsection A.5, we use the same function g(ui
s) = max{|usf

(t) −
vsf ,u(t)|, 2ϵ} as in Lemma A.12. Furthermore, assumption (A1) is satisfied for points of L because L
is contained in A (Lemma B.2) and the duality gap ws(t) is guaranteed to be small enough. Indeed,
ws(t) defined in subsection A.5 is almost a Lyapunov function: relatively to set A, ws − 2Dβ⋆η−1

is a Lyapunov function (Lemma A.10). Therefore, Lemma A.11 implies that g is Lyapunov as well
(Lemma A.12) and this implies that L ⊆ BEβ⋆

.

Proof of Theorem 3.2. Theorem of stochastic approximations apply identically to the identical-
interest stochastic games case in the previous subsection. Therefore, with the characterization
of internally chain transitive sets (Lemma B.4), we have an inclusion for the limit sets of MFP in the
zero-sum case as well.

C Examples and Simulations

See the notebook in the supplementary material for an example of stochastic game with an implemen-
tation of the proposed algorithm and simulations.
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