
Supplementary Material:
Experimental Design for Linear Functionals in Reproducing

Kernel Hilbert Spaces
A Estimability results
In the following section, we either describe proof of for implication or equivalences of certain
conditions studied in this work. In A.1, we show consequence of Def. 1 which is used in the proofs
of confidence sets. In the subsection following it, we establish relationship to classical ODE as in
(Pukelsheim, 2006) showing that our bias condition generalizes notion stemming from there.

A.1 Equivalence of bias conditions
Proposition 5. Let L† be the interpolation estimator and W† it associated information matrix then,
then ∥∥∥(C− L†X)V−1/2

0

∥∥∥2
F
≤ ν2 ∥L†∥2F =⇒

∥∥∥W1/2
† (C− L†X)V−1/2

0

∥∥∥2
2
≤ ν2 (12)

Proof. Note that V† = V−1/2
0 X⊤K−2XV−1/2

0 , where K = XV−1
0 X⊤.

(LHS)

= V−1/2
0 (C− L†X)⊤W†(C− L†X)V−1/2

0

= V−1/2
0 (I − V−1

0 X⊤K−1X)⊤C⊤(CV−1/2
0 V†V−1/2

0 C⊤)−1C(I − V−1
0 X⊤K−1X)V−1/2

0

= V−1/2
0 (I −XK−1X⊤V−1

0 )C⊤(CV−1/2
0 V†C⊤)−1V−1/2

0 C(I − V−1
0 X⊤K−1X)V−1/2

0

= (I − V−1/2
0 XK−1X⊤V−1/2

0 )V−1/2
0 C⊤(CV−1/2

0 V†V−1/2
0 C⊤)−1CV−1/2

0 (I − V−1/2
0 X⊤K−1XV−1/2

0 )

= (I − P)V−1/2
0 C⊤(CV−1/2

0 V†V−1/2
0 C⊤)−1CV−1/2

0 (I − P)

Now let X̃ = XV−1/2
0 and C̃ = CV−1/2

0 . Also notice that, (X̃⊤X̃)† = V−1/2
0 X⊤K−2XV−1/2

0 =
V†

We can apply Theorem ??, to get

C̃⊤(C̃(X̃⊤X̃)†C̃⊤)−1C̃ = V−1/2
0 C⊤(CV−1/2

0 (X̃⊤X̃)†V−1/2
0 C⊤)−1CV−1/2

0 ⪯ cX̃⊤X̃+ Iν2

Using the above result, we show that

(LHS) ⪯ (I − P)(V−1/2
0 X⊤XV−1/2

0 + Iν2)(I − P)

= ν2(I − P)2 ⪯ Iν2

where we have used the fact that I − P is projection matrix with orthogonal span to
V−1/2
0 X⊤XV−1/2

0 .

Proposition 6. Bias
∥∥∥(C− L†X)V−1/2

0

∥∥∥ depends only on its support not the allocations.

Proof.

Let Lη be the estimator with design η, where

Lη = CV−1
0 X⊤D(η)1/2(D(η)1/2XV−1

0 X⊤D(η)1/2)−1 (13)

= CV−1
0 X(XV−1

0 X⊤)−1D(η)−1/2 = L†D(η)−1/2 (14)

But at the same time D(η)1/2X, hence these two cancel each other.
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A.2 Basic equivalences and relations
To relate the estimability to terms used in the ED literature, we state the definition of the feasibility
cone as in Pukelsheim (2006). We show that our condition in Def. 1 and Pukelsheims and estimability
are equivalent under classical assumptions. We use a different formulation of the relative-bias
condition due to Proposition 5.

Definition 3 ((Pukelsheim, 2006)). Let C : Hκ → Rk, denote A(C) = {A ∈ P(Hκ) :
range(C⊤) ⊆ range(A)}, where P(Hκ) is the space of positive-definite operators on Hκ. We
call A(C) the feasiblity cone of K.

This definition is sometimes used as restatement of the estimability property.

Lemma 1 (Equivalence in ν = 0). Let C ∈ Rk×d full rank k. Let X ∈ Rn×d, then if M = X⊤X,
the following are equivalent,

1. Estimability: There exists L ∈ Rk×n s.t. C = LX.

2. Feasibility cone: M ∈ A(C)

Proof.

• (2) =⇒ (1): There exists B s.t. C = BM, and C = BX⊤X, hence we can define
L = BX.

• (1) =⇒ (2): As such C = LX implies that range(C) ⊆ range(X⊤) = range(X⊤X).

Definition 4 (Projected data). Let z(x) ∈ Rp be a vector field s.t. Φ(x)V−1/2
0 = z(x)CV−1/2

0 +j(x),
where x ∈ S ⊆ X and j(x) ∈ Hκ, |S| = n, such that CV−1/2

0 j(x) = 0. We call this vector field
projected data. If in addition if {z(x) : x ∈ S} spans Rp it is said to be approximately low-rank.

Lemma 2. The assumption in Definition 4 implies the assumption in Definition 1 with ν =

∥J∥k
∥Z†∥

F

∥L†∥F
.

Proof. Since Z spans whole Rk, there exists a unique left pseudo-inverse. Z†XV−1/2
0 = CV−1/2

0 +
Z†J.

(C− Z†X)V−1/2
0 = Z†J

Now taking the Frobenius norm,∥∥∥(C− Z†X)V−1/2
0

∥∥∥
F
≤
∥∥Z†J

∥∥
F
= ∥J∥F

∥∥Z†∥∥
F

So, ∥∥∥(C− Z†X)V−1/2
0

∥∥∥
F

∥Z†∥F
≤ ∥J∥F

Now, since pseudo-inverse minimizes the LHS, we know that,∥∥∥(C− L†X)V−1/2
0

∥∥∥
F
≤
∥∥∥(C− Z†X)V−1/2

0

∥∥∥
F
≤ ∥J∥k

∥∥Z†
∥∥
F

∥L†∥F
∥L†∥F

B Confidence Sets: Proofs
This section includes proofs for the concentration results presented in the main text. In Section, B.4
we restate and prove results from Mutný et al. (2020) in the current notation for easier comparison.
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B.1 Fixed Design with Interpolator
The following Theorem tries to qualify whether a design contains sufficient information to reduce
confidence on a specific subspace C to the desired error.

Theorem 7 (Interpolation (Fixed Design)). Under regression model in Eq. (1) with T data point
evaluations, let θ̂ be the estimate as in (3). Further let X be s.t. satisfy the approximate estimability
condition of Def. 1 with T ≥ k. Then,

P

(∥∥∥C(θ̂ − θ)
∥∥∥
W

≥ σ
√
ξ(δ) +

ν√
λ

)
≤ δ, (15)

where W = (CV−1/2
0 V†V−1/2

0 C⊤)−1, V† = V−1/2
0 X⊤K−2XV−1/2

0 , and ξ(δ) = p +

2
(√

p log( 1δ ) + log
(
1
δ

))
.

Proof. The pseudo inverse estimate of Cθ is Cθ̂ = CV−1
0 X⊤(XV−1

0 X⊤)−1y, where X ∈ RT×m.∥∥∥C(θ̂ − θ)
∥∥∥2
W

=
∥∥C(V−1

0 X⊤(XV−1
0 X⊤)−1(Xθ + ϵ)− θ)

∥∥2
W

=
∥∥C(V−1

0 X⊤(XV−1
0 X⊤)−1X− I)θ +CV−1

0 (X⊤(XV−1
0 X⊤)−1ϵ)

∥∥2
W

≤
∥∥∥C(V−1

0 X⊤(XV−1
0 X⊤)−1X− I)V−1/2

0 V1/2
0 θ

∥∥∥2
W

+
∥∥CV−1

0 X⊤(XV−1
0 X⊤)−1ϵ

∥∥2
W

≤
∥∥∥W1/2C(V−1

0 X⊤(XV−1
0 X⊤)−1X− I)V−1/2

0

∥∥∥2
2
∥θ∥V0

+
∥∥CV−1

0 X⊤(XV−1
0 X⊤)−1ϵ

∥∥2
W

= λ−1ν2 +
∥∥CV−1

0 X⊤(XV−1
0 X⊤)−1ϵ

∥∥2
W

where the second to last line we used the relative-bias assumption, according to the Proposition 5,
where we use the Def. 1 and T ≥ k. The operator I is identify operator on Hk.

If ϵG were Gaussially distributed then, CV−1
0 X⊤(XV−1

0 X⊤)−1ϵG is distributed as N (0,CV†C⊤).
Likewise, qG = W1/2CV−1/2

0 X⊤(XV−1
0 X⊤)−1ϵG is distributed as N (0, Ik). Since ϵ is sub-

Gaussian q needs to have tails of distribution which are below the tails of k-dimensional gaussian.
In other words P (|qi| ≤ t) ≤ P (|qGi

| ≤ t). As such, P (q2i ≤ t2) ≤ P (|qGi
|2 ≤ t), where q2Gi

is
chi-squared distributed. Using concentration for chi-squared random variables, P

(
∥z∥22 − σ2p ≥

σ2(2px+ 2
√
px)
)
≤ exp(−x) as in Laurent and Massart (2000). Rearranging the expression leads

to the result with ξ(δ) = (p+ 2 log( 1δ ) + 2
√
p log( 1δ )), multiplied by σ2.

The last final inequality in the statement of the probability follows from taking a square root and
triangle inequality, which finishes the proof.

B.2 Fixed Design with Regularized Estimator

Proposition 8 (Fixed Design Ridge Regression). Under regression model in Eq. (1) with T data
point evaluations, let θ̂λ be the regularized estimate as in (5). Then,

P

(∥∥∥C(θ̂λ − θ)
∥∥∥
Wλ

≥
√
β(δ) =

√
ξ(δ) + 1

)
≤ δ,

where Wλ = σ−2(CV−1
λ C⊤)−1, V−1

λ = (X⊤X + λσ2V0)
−1. In addition, ξ(δ) = p +

2
(√

p log( 1δ ) + log
(
1
δ

))
.
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Proof. Notice that invertibility of W is guaranteed by full rank C and invertibility of Vλ. Using
shorthand V = X⊤X,∥∥∥C(θ̂λ − θ)

∥∥∥2
Wλ

=
∥∥CV−1

0 X⊤(XV−1
0 X⊤ + σ2λI)−1(Xθ + ϵ)− θ)

∥∥2
Wλ

=
∥∥∥CV−1/2

0 (V−1/2
0 X⊤XV−1/2

0 + σ2λI)−1V−1/2
0 X⊤(Xθ + ϵ)− θ)

∥∥∥2
Wλ

=
∥∥CV−1

λ X⊤(Xθ + ϵ)− θ)
∥∥2
Wλ

=
∥∥C(V−1

λ X⊤ϵ+ V−1
λ Vθ − θ)

∥∥2
Wλ

≤
∥∥CV−1

λ X⊤ϵ
∥∥2
Wλ

+
∥∥C(V−1

λ X⊤X− I)θ
∥∥2
Wλ

The second term,∥∥CV−1
λ (V0λσ

2)θ)
∥∥2
Wλ

(64)
≤ σ2

∥∥V−1
λ (V0λ)θ)

∥∥2
Vλ

(16)

= λσ2θ⊤V0V−1
λ (V0λ)θ) ≤ λθ⊤V0θ ≤ 1. (17)

Let us analyze the first term,∥∥CV−1
λ X⊤ϵ

∥∥2
Wλ

= ϵ⊤XV−1
λ C⊤WλCV−1

λ X⊤ϵ (18)

The distribution of CV−1
λ X⊤ϵ is N (0, σ2CV−1

λ VV−1
λ C⊤). Further, (σCV−1

λ C⊤)−1/2CV−1
λ X⊤ϵ

is distributed as z ∼ N (0, (CV−1
λ C⊤)−1/2CV−1

λ VV−1
λ C⊤(CV−1

λ C⊤)−1/2). Let us call the covari-
ance matrix Σ. It is easy to see that Σ ⪯ P, an projection matrix with k unit eigenvalues.The random
variable z can be generated as z = q⊤Σq, where q ∼ N (0, In). Our goal is to bound,P (∥z∥22 ≥ t).
Using eigenvalue decomposition of Σ = QΛQ⊤, we can show

P(∥z∥22 ≥ t) = P(q⊤QΛQ⊤q⊤ ≥ t) = P(q⊤Λq⊤ ≥ t) ≤ P(q⊤Pq⊤ ≥ t) = P(∥q̃∥22 ≥ t)

where q̃ is p-dimensional standard normal. Using concentration for chi-squared random variables,
P
(
∥z∥22 − σ2p ≥ σ2(2px+2

√
px)
)
≤ exp(−x) as in Laurent and Massart (2000). Rearranging the

expression leads to the result with ξ(δ) = (p+ 2 log( 1δ ) + 2
√
p log( 1δ )), multiplied by σ2. To deal

with sub-Gaussianity we apply the same trick as in the previous Theorem.

B.3 Adaptive design and Regularized Estimator

Theorem 9 (Adaptive Design Regularized Regression). Under the regression model in Eq. (1) with t
adaptively collected data points, let θ̂λ,t be the regularized estimate as in (5). Further, assume that Z
is as in Def. 2 where Xt = ZtC+ JtV1/2

0 . Then for all t ≥ 0,

∥∥∥C(θ̂t − θ)
∥∥∥
Ωλ,t

≤

√
2 log

(
1

δ

det(Ωλ,t)1/2

det(λS)1/2

)
+ 1 (19)

with probability 1− δ, where Ωλ,t =
1
σ2Z

⊤
t Zt + λS and S = (CV−1

0 C⊤)−1.

Proof. Notice that the theorem is stated with S and S−1 having inverted roles in the proof, however
the result above follows by swapping the two.

Note that JV−1/2
0 C⊤ = 0 as well as CV−1/2

0 J⊤ = 0 due to the assumption. Also, notice that
X = ZC+ JV1/2

0 . We drop the t subscript for brevity.
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∥∥∥Cθ̂ −Cθ
∥∥∥2
Ωλ

=
∥∥C(V−1

λ X⊤(Xθ + ϵ)− θ)
∥∥2
Ωλ

=
∥∥C(V−1

λ X⊤ϵ+ V−1
λ (V − Vλ)θ)

∥∥2
Ωλ

≤
∥∥CV−1

λ X⊤ϵ
∥∥2
Ωλ

+
∥∥CV−1

λ (V − Vλ)θ)
∥∥2
Ωλ

Now we analyze the two terms separately, The first term,

∥∥CV−1
λ X⊤ϵ

∥∥2
Ωλ

=
∥∥CV−1

0 X⊤(XV−1
0 X⊤ + σ2λI)−1ϵ

∥∥2
Ωλ

=
∥∥∥CV−1

0 (ZC+ JV1/2
0 )⊤(XV−1

0 X⊤ + σ2λI)−1ϵ
∥∥∥2
Ωλ

≤
∥∥CV−1

0 (ZC)⊤(XV−1
0 X⊤ + σ2λI)−1ϵ

∥∥2
Ωλ

+

∥∥∥∥∥∥CV−1/2
0 J⊤︸ ︷︷ ︸
=0

(XV−1
0 X⊤ + σ2λI)−1ϵ

∥∥∥∥∥∥
2

Ωλ

=
∥∥∥CV−1

0 C⊤Z⊤((ZC+ JV1/2
0 )V−1

0 (ZC+ JV1/2
0 )⊤ + σ2λI)−1ϵ

∥∥∥2
Ωλ

=

∥∥∥∥∥∥CV−1
0 C⊤Z⊤(ZCV−1

0 C⊤Z+ JV−1/2
0 C︸ ︷︷ ︸
=0

Z⊤ + ZCV−1/2
0 J⊤︸ ︷︷ ︸
=0

+JJ⊤σ2λI)−1ϵ

∥∥∥∥∥∥
2

Ωλ

=
∥∥CV−1

0 C⊤Z⊤(ZCV−1
0 C⊤Z+ JJ⊤σ2λI)−1ϵ

∥∥2
Ωλ

≤
∥∥CV−1

0 C⊤Z⊤(ZCV−1
0 C⊤Z+ σ2λI)−1ϵ

∥∥2
Ωλ

Let us define shorthand S−1 = CV−1
0 C⊤ which is Rk×k p.s.d. matrix.∥∥CV−1

λ Z⊤ϵ
∥∥2
Ωλ

≤
∥∥∥S−1/2S−1/2Z⊤(ZS−1/2S−1/2Z+ σ2λI)−1ϵ

∥∥∥2
Ωλ

(20)

=
∥∥∥S−1/2(S−1/2Z⊤ZS−1/2 + σ2λI)−1S−1/2Z⊤ϵ

∥∥∥2
Ωλ

(21)

=
∥∥(Z⊤Z+ σ2λS)−1Z⊤ϵ

∥∥2
Ωλ

(22)

=
∥∥Z⊤ϵ

∥∥2
Ω−1

λ

(23)

The term above is so called self-normalized noise, which can be handled by techniques of de
la Peña et al. (2009) popularized by Abbasi-Yadkori et al. (2011). From now on the proof is
generic. Let us define, the noise process St =

∑t
i=1 zi

ϵi
σ2 and variance Vt =

ziz
⊤
i

σ2 . Also, let
Mt(x) = exp(S⊤

t x− 1
2x

⊤Vtx) be a process with index t.

Due to sub-gaussianity of ϵi, Mt(x) is a super-martingale under filtration that includes
all xt−1, ϵt−1, . . . x1, ϵ1. Now it is worth noting that this all has been introduces since
exp(

∥∥Z⊤ϵ
∥∥2
Ω−1

λ

) = supxMt(x). This relation allow us to see that if we can upper bound supxMt(x)

we get what we want. We proceed by pseudo-maximization. We pick a fixed probability distribution
h(x) and define a process M̄t =

∫
Mt(x)h(x)dx. Since, h(x) is fixed and normalized M̄t is also a

super-martingale. It turn out that h(x) ∼ N (0, λ−1S−1) will achieve the desired result.

M̄t =

∫
Mt(x)h(x)dx =

1√
(2π)k det((λ)−1S−1)

∫
Rk

exp(x⊤St −
1

2
∥x∥Vt

− λ

2
∥x∥S)dx

=

(
det(Ωλ,t)

det(S)

)1/2

exp(
1

2
∥St∥2Ωλ,t

)
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where we have applied standard rules for Gaussian integrals. Now, we use Ville’s martingale
inequality to bound,

P

(
sup M̄t ≥

1

α

)
≤ E[M̄t]α = α (24)

P

(
log(sup M̄t) ≥ log

(
1

α

))
≤ α (25)

P

(
∥St∥2Ω−1

λ,t
≥ 2 log

(
1

α

)
+ 2 log

((
det(S)

det(Ωλ,t)

)−1/2
))

≤ α (26)

P (∥St∥2Ω−1
λ,t

≥ 2 log

(
1

α
det

(
det(S)

det(Ωλ,t)

)−1/2
)

≤ α (27)

(28)

which finishes bounding the first term by 2 log

(
1
α

(
det(Ωλ,t)
det(S)

)1/2)
Now we turn to the second term,

∥∥CV−1
λ (V − Vλ)θ)

∥∥2
Ωλ

=
∥∥CV−1

λ (V0λσ
2)θ)

∥∥2
Ωλ

(29)
(34)
≤

∥∥CV−1
λ (V0λσ

2)θ)
∥∥2
Wλ

(30)
(64)
≤

∥∥V−1
λ (V0λ)θ)

∥∥2
Vλ

(31)

= λθ⊤V0V−1
λ (V0λ)θ) ≤ λ2θ⊤V0θ ≤ 1 (32)

(33)

This proves the result.

Lemma 3 (Ordering).
Wλ ⪯ Ωλ (34)

Proof. Consider series of psd. manipulations,

C⊤WλC = σ−2C⊤(C(X⊤X+ σ2λV0)
−1C⊤)−1C

(64)
⪯ σ−2X⊤X+ λV0

= σ−2(C⊤Z⊤ZC+C⊤Z⊤JV1/2
0 + V1/2

0 J⊤ZC+ V1/2
0 J⊤JV1/2

0 )

+λV0

CV−1
0 C⊤WλCV−1

0 C⊤ ⪯ CV−1
0 (σ−2C⊤Z⊤ZC+ σ−2C⊤Z⊤JV1/2

0

+σ−2V1/2
0 J⊤ZC+ σ−2V1/2

0 J⊤JV1/2
0 + λV0)V−1

0 C⊤

= σ−2S−1Z⊤ZS−1 + λCV−1
0 C⊤

= σ−2S−1Z⊤ZS−1 + λS−1

Wλ ⪯ Z⊤Z

σ2
+ λS = Ωλ

where we use the fact that CV−1/2
0 J⊤ = 0.

Lemma 4 (confidence parameter size). Under assumptions of Thm. 3, where ∥Φ(x)∥2k ≤ L2, V0 = I ,√
2 log

(
1

δ

det(Ωλ,t)1/2

det(λS)1/2

)
≤

√
p log

(
tL2

pλ
+ 1

)
+ 2 log(1/δ) = O(

√
p log(t/p))
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Further, if ∥Φ(x)∥k ≈ (
√
m) grows with m, e.g. Φ(x) = 1m (vector of ones) then√

2 log

(
1

δ

det(Ωλ,t)1/2

det(λS)1/2

)
= O(

√
p log(tm/pλ+ 1))

Proof. First let us determine the absolute bound on all ∥zi∥22. Due to projected data,

S−1/2zi = (CC⊤)1/2(CC⊤)−1CΦ(xi) =⇒∥∥∥S−1/2zi

∥∥∥2
2
≤
∥∥∥(CC⊤)1/2(CC⊤)−1CΦ(xi)

∥∥∥2
2
≤
∥∥C⊤(CC⊤)−1C

∥∥2
2
L2 = L2.

where the last step follows from properties of projection. Notice also that 1
σ2 Tr(S

−1/2Z⊤ZS−1/2) =
1
σ2

∑t
i=1 Tr(S

−1/2ziz
⊤
i S−1/2) ≤ tL

2

σ2 .

Using arithmetic-geometric mean inequality as in (Szepesvari and Lattimore, 2020) Lemma 19.4, we
can show that

det(Ωλ,t)

det(λS)
=

det(S−1/2Ωλ,tS
−1/2)

det(λI)

≤
( 1p Tr(det(S

−1/2Ωλ,t det(S
−1/2))p

λp
=

( 1p Tr(S
−1/2ZZ⊤S−1/2 + λI))p

λp

≤
( 1p (tL

2 + λp))p

λp

log

(
det(Ωλ,t)

det(λS)

)
≤ p log

(
tL2

pλ
+ 1

)
The last line of the Lemma follows from noting that L2 = O(m).

B.4 Adaptive design and Modified Regularized Estimator: Relation to prior work

With the adaptive estimator, we could alternatively directly define an estimator for Cθ as Cϑ̂ using
only the projected values Z as done by Mutný et al. (2020). In this case, however, additional bias
growing in time t enters into the confidence parameter as (9) as 1

λ

∑t
i=1 ∥ji∥V−1

0
, as we show in

Theorem 10 below.

Theorem 10 (Adaptive Design Regularized Regression - biased). Let Zt be s.t. Xi = ZiC + Ji,
where Ji is minimal as measured by squared norm, then the estimator

Cϑ̂t = arg min
ϑ∈Rk

n∑
i=1

1

σ2
(yi − ϑ⊤zi)

2 + λ ∥ϑ∥2S (35)

has anytime confidence sets for all t ≥ 0

P

(∥∥∥Cθ −Cϑ̂t

∥∥∥
Ωλ

≥ 1 + 2 log

(
1

δ

det(Ωt,λ)

det(Ṽ0)

)
+

t∑
i=1

∥Ji∥V−1
0

)
≤ δ (36)

where δ ∈ (0, 1), and Ωt,λ =
Z⊤

t Zt

σ2 + λS, where S = (CV0C
⊤)−1

Notice that if J is small in the Frobenius norm, the confidence sets improve. In fact, they depend
only on the norm.

Proof.∥∥∥Cθ −Cϑ̂
∥∥∥2
Ωλ

=

∥∥∥∥Cθ − (
1

σ2
Z⊤Z+ λS)−1Z⊤(Xθ + ϵ)

∥∥∥∥2
Ωλ
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=
∥∥Cθ −Ω−1

λ Z⊤((ZC+ J)θ + ϵ)
∥∥2
Ωλ

=

∥∥∥∥Cθ −Ω−1
λ

1

σ2
Z⊤ZCθ +

1

σ2
Ω−1

λ Z⊤Jθ +
1

σ2
Ω−1

λ Z⊤ϵ

∥∥∥∥2
Ωλ

=

∥∥∥∥Ω−1
λ (Ωλ − 1

σ2
Z⊤Z)Cθ +

1

σ2
Ω−1

λ Z⊤Jθ +
1

σ2
Ω−1

λ Z⊤ϵ

∥∥∥∥2
Ωλ

=

∥∥∥∥Ω−1
λ λSCθ +

1

σ2
Ω−1

λ Z⊤Jθ +
1

σ2
Ω−1

λ Z⊤ϵ

∥∥∥∥2
Ωλ

≤
∥∥Ω−1

λ λSCθ
∥∥2
Ωλ︸ ︷︷ ︸

bias

+

∥∥∥∥ 1

σ2
Ω−1

λ Z⊤Jθ

∥∥∥∥2
Ωλ︸ ︷︷ ︸

self-normalized bias

+

∥∥∥∥ 1

σ2
Ω−1

λ Z⊤ϵ

∥∥∥∥2
Ωλ︸ ︷︷ ︸

self-normalized noise

Let us now analyze each term separately. The self-normalized terms can be analyzed using a classical
technique with a proper choice of mixture distribution as we show in the proof of the Theorem 3. In
this case it is a normal distribution N (0, (λS)−1).

The first term can be shown to be bounded by,∥∥λΩ−1
λ SCθ

∥∥2
Ωλ

=
∥∥λΩ−1

λ (S(CV0C
⊤)S)Cθ

∥∥2
Ωλ

(37)

= λ2θ⊤C⊤SΩ−1
λ SCθ (38)

≤ λ2θ⊤C⊤S(λS)−1SCθ (39)

≤ λθ⊤C⊤(CV0C
⊤)−1Cθ (40)

≤ λθ⊤V0θ ≤ 1 (41)

They can be analyzed in the same spirit as in Mutný et al. (2020) novel term∥∥∥∥ 1

σ2
Ω−1

λ Z⊤Jθ

∥∥∥∥2
Ωλ

=
1

σ2
θJ⊤ZΩ−1

λ Z⊤Jθ (42)

= θJ⊤Z

σ
(
Z⊤Z

σ2
+ Ṽ0)

−1Z
⊤

σ
Jθ (43)

≤ θJ⊤Z(Z⊤Z)†Z⊤Jθ (44)

≤ θJ⊤Jθ =

t∑
i=1

(j⊤i θ)
2 ≤

t∑
i=1

∥ji∥2V−1
0

1

λ
(45)

C Algorithms
Now we will briefly discuss algorithms that construct designs X, and allocations over them η, which
lead to low error either in expectation or with high probability - using A or E design, respectively.
Depending on the aim and estimator, different algorithms might be preferable. For comprehensive
reviews please refer to Todd (2016), Pukelsheim (2006),(Fedorov and Hackl, 1997) for optimization
algorithms, and (Allen-Zhu et al., 2017), (Camilleri et al., 2021) for rounding techniques.

C.1 Greedy selection
A first idea is to greedily maximize the scalarized information matrix with the update rule ηt+1 =
t

t+1ηt +
1

1+tδt,

δt = argmax
x∈X

f

(
Wλ

(
t

t+ 1
ηt +

1

t+ 1
δx

))
where f refers to the scalarization and δx to the indicator of the discrete measure corresponding to
the feature Φ(x). Notice that while stated in form of allocations, due to the form of the update rule
tηt is always an integer.
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Surprisingly, this algorithm can fail with the interpolation estimator, where adding a new row to X,
which does not lie in the kernel of C increases the variance. This is an artifact of the pseudo-inverse,
but it demonstrates that the algorithm is not universal – hence we suggest using it with the regularized
estimator only.

C.2 Convex optimization
Alternatively, one can first select a design space X supported on finitely many queries such that if the
optimal design is supported on it, it leads to a desired low bias. After that, we optimize the allocation
η ∈ ∆n over it. This has the advantage that a) we can bound the query complexity to reach ϵ of
learning as in Proposition 14, and b) we can provably achieve optimality with convex optimization,
in contrast to the greedy heuristic.

We look for an allocation using convex optimization methods as in (10) or more generally,
maxη∈∆n f(W◦(D(η)1/2X)) where ◦ ∈ {†, λ}. There are three possible ways to initialize the
algorithm with X: make an ansatz, greedily reduce bias first, or use a modification of the random
projection initialization of Betke and Henk (1992) described below.

Mirror-descent and Regularity The objective above (or (10)) would be classically solved via
Frank-Wolf algorithm (Todd, 2016), or a mirror descent algorithm (Beck and Teboulle, 2003) 2,
which starts with the whole support, and reduces the weight of some of the queries ηi, as

ηt+1 = ηt
exp(−st∇f(W(ηt)))∑
i exp(−st∇if(W(ηt)))

where st is the stepsize; if st ∝
√
t
−1

, the convergence is guaranteed. Both E and A-design
objectives are concave as they are related by linear transform C from the classical objectives, which
are known to be concave (Pukelsheim, 2006).

paragraphInitialization via random projections This algorithm is inspired by volume algorithm of
Betke and Henk (1992). The algorithm proceeds by picking a random vector c0 in the span of C⊤ and
picking two points z̄, z = argmaxx c

⊤x, argminx c
⊤x. Subsequently, we pick another c1 which

is orthogonal to z − z̄ and still in span of C⊤. We repeat this procedure k times. Should this not
generate a sufficiently accurate starting point with desired bias (as measured by Def. 1), we repeat
this procedure until such design is obtained.

C.3 SDP reformulations of the objectives
We will now show that both A and E designs have an associated semi-definite reformulations which
are possible if dim(Hκ) = m 3. One should bear in mind that these are possible only if the Cθ is
estimable in the sense of Def. 3, Hence their might not be utilizable in many instances that this paper
studies, and rather apply in cases classical experiment design. Nevertheless they do not appear in
literature to the best of our knowledge.

On top of that these problems are more difficult to solve that lets say the alternative algorithm with
mirror descent, however with the use of off-the shelf solvers for SDP problems such as cvxpy, they
can be conveniently implemented. These refomrmulations are inspired by classical reformulations
due to Boyd and Vandenberghe (2004), which show these for estimating θ directly. The key ingredient
is to make use of generalized Shur-complement theorem of Zhang (2011).

A-design objective is maxη∈∆n
1/Tr(W(η)−1) can be represented as semi-definite program:

minu≥0,η∈∆n
u1 + u2 + · · ·+ uk

subject to
(
V(η) C⊤ei
e⊤i C ui

)
⪰ 0 for all i ∈ [k]

E-design objective is maxη∈∆n
λmin(W(η)), can be again solved using semi-definite program-

ming as:

mint∈R,η∈∆n t

2Mirror descent is known as multiplicative algorithm in the experimental design literature (Silvey et al.,
1978).

3We would like to thank Stephen Wright of University of Wisconsin for suggesting to revisit this idea.
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subject to
(
V(η) C⊤

C tIk×k

)
⪰ 0

We will show how to apply the generalized for the first objective (A-design) only. The second
reformulation follows analogously. Notice that the objective maxη 1/Tr(W

−1) is equivalent to
minη Tr(W

−1), and W−1 = CV(η)†C⊤. Generalized Shur-complement lemma of Zhang (2011)
states that CV(η)†C⊤ ⪯ Λ with the projection operator lying in the null space of C, i.e. (I −
V(η)†V(η))C⊤ = 0, is equivalent to (

V(η) C⊤

C Λ

)
⪰ 0.

The second condition is satisfied as long as the problem is estimable, in other words, there exists
L s.t. C = LX. Hence minimizing the trace of Λ, we can minimize the trace of the information
matrix. As the trace depends only on the diagonal elements of Λ, we can choose it to be diagonal,
i.e., Λ = Diag(u).

C.4 Query complexity and Optimization
The objective in (10) was stated in the kernelized form which is only valid if the RKHS is finite-
dimensional. We state here for completeness the version which operates in the kernelized setting
where all the operators can be inverted (and calculated explicitly using only the kernel κ evaluation).

η∗ = argmax
η∈∆n

λmin

(
CV−1

0 X⊤(D(η)XV−1
0 X⊤D(η))−2†XV−1

0 C⊤)−1
. (46)

D Geometry
We saw in Section 6 that properties of {Φ(x) : x ∈ S} enter into consideration when we want to
bound the total number of queries required to reach ϵ accuracy with high probability such that we
can learn Cθ. The dependence enters as the smallest eigenvalue λmin of the information matrix W.
In this section, we relate the eigenvalue λmin(W) directly to the geometry of the above set using
seminal results about E-experimental design from Pukelsheim and Studden (1993).

D.1 Set Width
The geometrical property we are interested in width of a set that we define below. However, first,
we want to make a general note that the formal results of our theorems hold for symmetrized sets
{Φ(x)|x ∈ S}. This is without the loss of generality, since, an optimal design on symmetrized
set and a non-symmetrized set is equivalent. This can be seen by considering W1(η) defined on
symmetrized set equates the one of non-symmetrized set W2(η) due to the fact evaluations Φ(x)
enter only as outer products W1(η) = r(

∑n
i=1 ηi(Φ(xi)Φ(xi)

⊤)), where the sign clearly does not
change anything in terms of the information matrix, and r correspond to further operations to define
W properly (i.e. projection and inverse).

Definition 5 (Width). Let D be a convex set in H, then the width of it is defined as,

width(D) = min
θ∈H

max
x,y∈D

θ⊤(x− y) (47)

where θ is the unit norm.

Width in the span of C is defined to be,

width(D,C) = min
θ=C⊤α s.t. α∈Rk

max
x,y∈D

θ⊤(x− y) (48)

where α is the unit norm.

Definition 6 (Gauge norm). Let D be a set of points in H, then the gauge norm of D is,

ρS(x) = inf
r≥0

{r : x ∈ r conv(D)} (49)

Theorem 11 (Thm. 2.2 in (Pukelsheim and Studden, 1993)). Let W be any the information matrix
for Cθ, and z ∈ Rk non-zero then

λmin(W) ≤
∥z∥22

ρ(C⊤z)2
.
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It holds with equality if W has smallest eigenvalue of multiplicity one and z is the associated
eigenvector.

The treatment without multiplicity is somewhat more complicated and can be found in.

Proposition 12. Under assumption of Thm. 11, no multiplicty, z being eigenvector of W, let
C : Rm → Rp, D be a symmetric convex set in H, then

λmin(W) =
∥z∥22

ρ(C⊤z)2
≥ 1

width(S,C)2

Proof. Due to homogenity of the gauge norm, ρ(C⊤z
∥z∥2

∥z∥2
) = ∥z∥2 (ρC⊤ẑ), where ẑ is a unit vector.

Thus, the optimization can be restated as,

∥z∥22
ρ(C⊤z)2

=
1.

ρ(C⊤ẑ)2
=

1

width(D̃)2
≥ 1

width(D,C⊤ẑ)2

where in the second to last step we use the fact that the set is symmetric and ẑ is unit eigenvector. The
last inequality follows by minimizing over all possible unit direction as int the definition of width.
The set D̃ ⊂ H s.t. D = {f ∈ Hk|f = C⊤ẑ}. Notice that this set lies in 1-dimension subspace, and
is directly proportional to the gauge-norm.

Given the above theorem, we can calculate the worst-case value of parameter 1
λmin(W) that bounds

the complexity if the geometry of the set can be understood easily. Alternatively, we can resort to
direct calculation. For example consider the gradient design problem, in which we know that for
finite difference problem can be bounded by dh+O(h), where h is the stepsize.

Proposition 13. Under the assumption of the model (1), if C = ∇xΦ(x) at x ∈ Rd, Φ(x) is the
evaluation functional, and the design space X contains rows {Φ(x± hei}di=1 where ei corresponds
to the unit vectors in Rd and h is the step-size, then

1

λmin(W(η)
≤ dh+O(h2), (50)

where η corresponds to the design supported on all points with equal weight.

Proof. The inverse of the information matrix is,

W−1
† = ∇xΦ(x)

(
d∑

i=1

ηi(Φ(x+ hei)Φ(x+ hei)
⊤ +Φ(x− hei)Φ(x− hei)

⊤)

)−1

∇xΦ(x)
⊤

= ∇xΦ(x)

(
d∑

i=1

ηi(2Φ(x)Φ(x)
⊤ + h∇xΦ(x)

⊤eie
⊤
i ∇xΦ(x) +O(h2)

)−1

∇xΦ(x)
⊤

⪯ ∇xΦ(x)
(
h∇xΦ(x)

⊤D(η)∇xΦ(x) +O(h2)
)−1 ∇xΦ(x)

⊤

= h∇xΦ(x)
(
∇xΦ(x)

⊤D(η)∇xΦ(x) +O(h2)
)−1 ∇xΦ(x)

⊤

= dh∇xΦ(x)
(
∇xΦ(x)

⊤∇xΦ(x) +O(h2)
)−1 ∇xΦ(x)

⊤

⪯ dhI+O(h2)

In the first step we used Taylor’s theorem and keep track of the order components. In the second
we used that Φ(x)Φ(x)⊤ is psd, later we used the definition of the design and the properties of the
projection matrix. Lastly,

1

λmin(W†)
= λmax(W

−1
† ) ≤ dh+O(h2),

which finishes the proof.
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Figure 3: An example of confidence ellipsoids and intervals in two dimensions. You can see that in
both regimes: fixed and adaptive. Our confidence sets (Ours) are the tightest for the estimation of the
linear projection of Cθ value of the parameter θ = (1, 1), in this case C = (1, 0). On the left, we see
fixed confidence sets while on the right are adaptive both with T = 50. We compare with (Mutný
et al., 2020) and associated confidence sets, they are larger for this example (and grow with T ); also
the estimator is different as we delineate in Sec. B.4.

Corollary 14 (Query complexity). Under assumption of Prop. 1 where η∗ is the optimum to Eq. 10,
it holds that ∥∥∥C(θ̂† − θ)

∥∥∥
2
≤
√
λmin(W†(η∗))−1

T

(
σ
√
ξ(δ) +

ν√
λ

)
.

with probability 1− δ.

Proof. ∥∥∥C(θ̂† − θ)
∥∥∥2
2

≤ 1

λmin(W†(η∗)

∥∥∥C(θ̂† − θ)
∥∥∥
W†(η∗)

(51)

=
1

λmin(W†(η∗)
(σ2ξ(δ) +

ν2√
λ
) (52)

Now the W† nor ν2 do not depend on σ2, however evaluating multiple times the same measurements
Namely T times, reduces the variance σ2 by 1/T . After taking this into consideration and the square
root it finishes the proof.

E Extra Examples
In this section, we provide additional applications of our framework that deserve a mention, but
before we do, we want to bring attention to Figure 3, where we show a comparison of our confidence
sets with prior work and projected ones, similar to Figure 1. As a refresher, recall that

L : Rn → Rp

X : Hk → Rn

C : Hk → Rp.

E.1 Integral maps
Quadrature An integral is a special linear operator on the function space,

C =

∫
q(x)Φ(x)⊤ · dx =

∫
q(x)Φ(x)dx⊤·,
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where p = 1. The approximate estimability condition can be written in a concise form

∥C− LX∥k =

∥∥∥∥∥∥
∫

(q(x)−
∑
y∈S

l(y)δ(x− y))Φ(x)dx

∥∥∥∥∥∥
k

,

where l(y) = Ly, and y ∈ S which itself is equal to well-known integral distance
MMDHκ(q,

∑
y∈D l(y)δ(· − y)) referred to as Maximum Mean Discrepancy (MMD) multiplied by

B. It measures the worst case integration error on the class of functions θ ∈ Hκ s.t. ∥θ∥k ≤ 1 with
nodes x ∈ S and weights l(x). The method which minimizes this quantity is sometimes referred to
as Bayesian Quadrature (Huszár and Duvenaud, 2012). Note that minimization of this quantity would
correspond to the interpolation estimator.

Fourier Spectra: Low-pass Filters Suppose we are interested in approximately learning the
Fourier spectrum of θ. This might be especially interesting if θ is composed of two signals one with
specific low-frequency bands and the rest occurs only elsewhere and is of no interest. Let {ωi}pi=1 be
the frequencies of interest, then the rows of C are Cj =

∫∞
∞ exp(iωjx)Φ(x)

⊤ · dx, which can be
discretized or evaluated in closed form depending on the kernelized space.

Transductive Risk If the dimension of the response vector is very large much larger than the
number of elements in the unlabeled set, which is a common appearance in deep learning or high
dimensional statistics; there is still hope to have provable bounded error on selected important
candidates. As opossed to study the full risk Eϵ[Ex∼ρ[(x

⊤(θ− θ̂))2]] with data distribution ρ, we can
optimize the risk on a set of candidates Eϵ[

∑p
i [(q

⊤
i (θ − θ̂))2]], which becomes Tr(QV†Q), where

Q contains the rows of k are the candidates.

E.2 Solution to Contamination (Low pass filter)
Often in estimation, the signal of interested is corrupted by another signal that we are not interested
in. This is sometimes referred to as contamination (Fedorov and Hackl, 1997). In particular, consider
the following model E[y] = (α β)

⊤
(ϕ(x) ψ(x)), where we want to infer α only. Note that this

is a special case of our framework, where the linear functional C = IS zeros out the variables β
in θ = (α, β). This problem is well-defined only if the spans of {ϕ(x)}x∈S and {ψ(x)}x∈S are not
contained in each other, which we neglect for our purposes here.

For illustration, consider a linear trend contaminated with function f , which has major frequency
components that are known, i.e., y = α⊤x+f(x)+ϵ. We can stack these frequencies in an evaluation
functional ψ(x, {ω}mi=1), and express the problem in the form above. In Fig. 5, we report the MSE
for estimation of α with f which has frequency components {πl, πel|l ∈ [16]} weighted with 1/l2.
The contamination-aware design tries to query points that eliminate the effect of f and leads to
lower MSE for the same number of observations and performs much better in expectation than either
random or full designs – an optimal design that learns both α and β. For this design, we chose to
sample greedily first to reduce bias and then optimized the weights of each data point to achieve
optimality.

E.3 Learning ODE solutions
Consider an example of damped harmonic oscillator, u(t)′′ + κu(t)′ + u(t) = 0 for t ∈ [t0, t1].
Adopting the above procedure and using the squared exponential kernel to embed trajectories 4 , we
show in Figure 4a inference with the shape constraint using A-optimal design as well as equally
space design, we see the resultant confidence bands and fit are much better for optimized design.
We assume that κ ∈ (κ−, κ+) and give a union of confidence sets as in the robust design case. The
optimal design then corresponds to the unknown null subspace C and its variance part is equal to
supκ∈[κ−,κ+] Tr(CκV

†C⊤
κ ).

E.4 Learning PDE solutions
In a similar fashion as the linear ODE feature, a linear constraint so do linear PDEs. We demonstrate
this on a sensor placement problem, where consider heat equation in two dimensions with u(t, x)
with varying diffusion coefficient c(x).

∂tu− c(x)∂xxu = 0 in (0, T )× Ω

4The nullspace of Z forms its own Hilbert space that spans the space of trajectories, however for estimation
convenience it is sometimes easier to work with a larger space and then project.
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(a) An estimate of the trajectory of a damped har-
monic oscillator. The source of unknown here
is due to the unknown initial conditions. Notice
that with the optimized design we can achieve a
much better fit. Also, the unconstrained fit with
the squared exponential kernel is shown in blue.
Below we also see the reduction in MSE for esti-
mating this trajectory with the two designs.

(b) MLE error of estimating γ in the pharmacoki-
netic study. We see that with the optimized design
we are consistently better in terms of MSE than
equally spaced design. Error bars with 20 repeti-
tions included. The y-axis denotes the number of
data samples (draws of blood) required. Notice the
logarithmic scale.

Figure 4: Further experiments showing application in ODE trajectory and parameter estimation.

u(0, x) = ⟨θ,Φ(x)⟩ for x ∈ Ω, z ∈ ∂Ω.

We assume that the point value of initial conditions u(0, x) can be measured by placing sensors along
x. The goal is to place these sensors such that after elapsed time T , u(T ) can be inferred with the
lowest error. This is the forward formulation of the inverse problem in Leykekhman et al. (2020). We
assume that θ is a bounded member of RKHS due to the squared exponential kernel. In this case we
are not interested in the full nullspace of N as in the previous example, instead we focus on the range
space of C = Φ(x, T )(N⊤N) corresponding to information at Φ(x, T ).

E.5 Sequential Design: Estimating CVar
Often the objective we are trying to estimate is inherently stochastic such as the following model:

Ez∼W (x)[ρ(Φ(x, z)
⊤θ)]. (53)

In particular one can be interested in x s.t. arg supx Ez∼W [Φ(x, z)⊤θ]. This is analyzed in sequential
experiment design optimization with risk measures, where ρ is the risk measure (see (Cakmak et al.,
2020) and (Agrell and Dahl, 2020)). It is often assumed that W cannot be evaluated explicitly, only
sampled from with the evaluation oracle yi = Φ(xi, zi)

⊤ + ϵi. We focus on a problem where we
want to learn the risk of the actions q ∈ Q, |Q| = k, Ez∼W [ρ(Φ(q, z)⊤θ)] instead of minimization
and ρ is CVar risk measure. With a fixed value θ, this is a linear operator Cθ. Since θ is unknown,
we adopt a sequential procedure, where we solve for the risk Cθ̂, where θ̂ is sampled uniformly from
its confidence set.

F Experiments: Details
F.1 Gradient Estimation: Details
With gradient estimation we are interested in ∇xΦ(x) of an element θ ∈ Hκ. The example generated
in Fig. 2b is in 2 dimensions, where we approximate Φ(x) of squared exponential kernel with
lengthscale l = 0.1 with Quadrature Fourier Features of Mutný and Krause (2018) for the convenience
of optimization. We consider a slightly off-set finite difference design, with the following elements,

{Φ(x),Φ(x+ he1),Φ(x+ 2he1),Φ(x− he1),Φ(x− he2)}.
We calculate the relative-bias ν due to the Def. 1 and balance it with the budget (as in the Figure).
This way we can identify the optimal h∗ before even solving for the optimal design. Given the
identified h∗, we calculate the optimal design with mirror descent solving the objective (10), to get

η∗ = (0.37, 0.09, 0.08, 0.09, 0.38),

which is not obvious without understanding the geometry of the problem. The value of σ was set to
be 0.01. The total error in Fig. 2b is the combination of bias and variance which was calculated using
the largest eigenvalue of E(L†) as in (2). This is the error we can guarantee with high probability
(not the actual error) which is somewhat lower.
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(a) Mean squared error of the estimated linear trend.
We see that contamination-aware design improves
over full design as well as randomly selected de-
sign.

(b) Example of the signal in brown with design
points as well as linear trend estimates in color-
coding. Full denotes joint estimation of brown and
blue signal. Random designates a random design.

Figure 5: Statistical contamination: a numerical experiment

F.2 The solution to Contamination (Statistics): Details
For this example, consider a linear trend contaminated with f(x) which has known major frequency
components, i.e., y = α⊤x + f(x) + ϵ. We can concatenate these frequencies, and construct an
evaluation operator where Ψ(x)i = cos(ωix), and Ψ(x)i+1 = sin(ωix) where ωi is one of these
frequencies. Then, we express the problem as y = θ⊤Φ(x) = (α, β)⊤(x,Ψ(x, {ωi}mi=1) + ϵ. Since
we are interested only in α, the operator C = (1,0) selects it. Hence we look for a design (subset
of points) which only minimizes the residuals due to estimation of α. In fact, such design might
indirectly minimize the other residuals as well, but only if this is necessary to reduce the residuals
due to α.

The example depicted in Fig. 5 is created using the frequencies {πl|l ∈ [16]} ∪ {πel|l ∈ [16]
weighted with 1/l2. Such weighting of high frequencies creates contaminating signals that are similar
to functions from Matérn kernel spaces (Rasmussen and Williams, 2006). The contamination-aware
design performs much better.

The values of σ = 0.5 (relatively high). We compare with full design – one that minimizes the overall
estimation error or in other words, where C is the identity. We first use the greedy algorithm to
minimize the regularized estimator to obtain initial design space. Then we use convex optimization to
find a proper allocation of a fixed budget (varying in the x-axis) to these queries. We again optimize
with mirror descent.

F.3 Pharmacokinetics: Details
The pharmacokinetic two-compartment model models two organs. In this case the stomach and blood
and the transfer of the medication between them. The model can be mathematically described as

d

dt
cs(t) = −acs(t)

d

dt
cb(t) = bcs(t)− dcb(t)

where cs(t) represent concentration of the medication in the stomach, and cb(t) represents the
concentration in the blood. The goal of pharmacokinetic studies is to identify (a, b, c) from draws of
the blood of subjects to e.g. properly assign dosage.

In comparison to the example of the damped harmonic oscillator, the initial conditions are known –
albeit imprecisely – what is the true unknown is γ = (a, b, c). We make the following consideration,
in order to infer γ precisely we need to have a precise estimation of the trajectory, hence we inject a
slight perturbation to the initial condition and then search for the optimal design that is good for any
of the models γ: robust design. This way with any of the models from γ ∈ Γ we will have a good
estimation of trajectories and hence a good estimation of γ using MLE as we report in Fig. 4b.

The specific parameter used was σ = 0.01 which corrupted the observations of cb(t) at chosen
times and the space which Embeds the trajectories was chosen to be that of the squared exponential
kernel with lengthscale l = 0.05. The true parameters were set to be (5, 10, 10) and the robust set
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of Γ = ((4, 6), (9, 11), (9, 11)) for each parameter. We use the greedy algorithm with regularized
estimator and λ = 1/2 to optimize the robust A-optimal metric. The resultant set is visualized in
Fig. 2a.

F.4 Control: Details
In the last experiment, we essentially model the same problem as in Lederer et al. (2021) as we
explain. The only difference in our setup is the use of a gain K = 200 instead of K = 15. With a low
gain of K = 15 one cannot provably stabilize with the given Lyapunov function. With K = 200 we
were able to quickly stabilize the system once enough data points were obtained. Notice the reference
trajectory and trajectory with "bad" and "good" controllers in Fig. 6. The driving non-linear dynamics
are visualized likewise.

The experiment is designed to showcase the merit of the newly designed adaptive confidence sets
with the stopping rule that stops once the controller has been verified to be stable. We repeated
each experiment 10 times and reported the standard quantiles of the total derivative of the Lyapunov
function in Fig. 2c. We always started with the initial set of 10 data points and then proceeded with
exploration (adding specific data points) if the supermum of the total derivative was not negative.
When it was we stopped. The stopping corresponds to the line going into negative values in the log
plot in Fig. 2c. We considered these four strategies:

• random - randomly sampling data point from the whole domain [-1.5,1.5].

• random-ref - randomly sampling data point around the operating region.

• unc - sampling (greedily) the most uncertain query from the whole domain [-1.5,1.5].

• unc-ref - sampling (greedily) the most uncertain query from the operating region.

Berkenkamp et al. (2016) provides a better solution than uncertainty sampling, which is a special case
of the linear functional studies in this work. In this example, this closely follows the unc-ref baseline
and would create additional clutter. The inclusion of this algorithm would not further validate the
benefit of the tighter confidence sets. The operating region is chosen to be a tube around the reference
trajectory of width h = 0.01.

The dynamics is modeled using Nystöm features (m = 400) of the squared exponential kernel with
lengthscale 0.25 and regularized estimator with λ estimated experimentally. We selected this with
visual inspection since the example is known, but one can adopt the procedure in Umlauft et al.
(2018). The noise std. σ = 0.05 and number of queries is T = 500.

G Improved regret of linear bandits: Proofs
To prove the following theorem we require the famed potential lemma which we state for complete-
ness,

T∑
t=1

∥xt∥V−1
t

≤ O(
√
dT log(T/d)).

A reference for this result can be found in (Szepesvari and Lattimore, 2020). Note that a bounded
pay-off vector assumption has been used in the derivation. In general this result can be extended to
kernelized bandits by noting that

T∑
t=1

∥xt∥V−1
t

= O(
√
γTT ),

where γT = log
(

det(Vt)
det(I)

)
, due to matrix inversion lemma, this can be also expressed in kernelized

form, as is usually referred to as information gain (Srinivas et al., 2010).

Theorem 15. Let θ ∈ Rd be an unknown pay-off vector, and a set of actions x ∈ X such that |X |∞,
then the regret of UCB algorithm is no more than

RT ≤ O(
√
dT log(T (|X |+ 1)/δ)) (54)

with probability 1− δ.
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(a) An example of an unstable trajectory around
the reference trajectory, started from (1,1) point

(b) An example of a stable trajectory around the
reference trajectory, started from (1,1) point

(c) Non-linear dynamics function f1(x) which gov-
erns the first component x.

(d) Non-linear dynamics function f2(x) which gov-
erns the second component of x.

Figure 6: Control Experiment: Additional details.

Proof of Theorem 15. We drop Φ and use x instead only. Note that due to Lemma 3, we have that∥∥∥x⊤k (θ̂ − θ)
∥∥∥2
Wt,k

≤
∥∥∥x⊤k (θ̂ − θ)

∥∥∥2
Ωt,k

≤ βt,

where βt is defined for the information matrix Ωt,k in Theorem 3. The subscript k designates the
dependence on xk as we will need to consider all xk ∈ X , where we index X using k ∈ N . Using
this and δk,t indicator which is zero or one depending on whether action k was played at time t. Note
that,

RT ≤
T∑

t=1

(x)⊤θ − x⊤θ =

T∑
t=1

(x)⊤θ − x⊤t θ̃t + x⊤t θ̃t − x⊤t θ

def. UCB
≤

T∑
t=1

x⊤t (θ̃t − θ) =
T∑

t=1

K∑
k=1

δk,tx
⊤
t (θ̃t − θ) ≤

T∑
t=1

K∑
k=1

δk,t|x⊤t (θ̃t − θ)|

=

T∑
t=1

K∑
k=1

δk,t|x⊤t (θ̃t − θ)W
1/2
t,k W

−1/2
t,k | =

T∑
t=1

K∑
k=1

δk,t|x⊤t (θ̃t − θ)W
1/2
t,k ||W−1/2

t,k |

=

T∑
t=1

K∑
k=1

δk,t

√
x⊤k V

−1
t xk︸ ︷︷ ︸

W
−1/2
t,k

∥∥∥x⊤k (θ̃t − θ)
∥∥∥
Wt,k

≤
T∑

t=1

K∑
k=1

δk,t

√
x⊤k V

−1
t xk

∥∥∥x⊤k (θ̃t − θ)
∥∥∥
Ωt,k

Thm. 3
≤

T∑
t=1

K∑
k=1

δk,t

√
x⊤k V

−1
t xkβt,k

Lemma 4
≤

T∑
t=1

K∑
k=1

δk,t ∥xk∥V−1
t

√
log(|X |T/δ)

Potential Lemma
≤

√
log(|X |T/δ)

T∑
t=1

∥xt∥V−1
t

≤ O(
√
dT log((|X |+ 1)T/δ))
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which finishes the proof. The θ̃t is the vector that corresponds to the UCB action played by the
algorithm. We took the union bound for the adaptive confidence bounds for each x ∈ X , and hence
the logarithmic dependence on |X |.

H Matrix Algebra Results
Definition 7 (Matrix slices and weighted slices).

MSS
def
= I⊤:SMI:S and MSη>0 = D(η > 0)MD(η > 0) (55)

MS
def
= I:SMSSI

⊤
:S and MSη = D(η)MD(η) (56)

Lemma 5 (Zhang (2011)). Let M be a positive definite matrix, and S be a subset of [n], then

(MS)
† ⪯ (M−1)S (57)

Lemma 6 (Zhang (2011)). If A ⪰ B where A,B ∈ Rl×l then for any X ∈ Rd×l, XAX⊤ ⪰
XBX⊤.

Lemma 7. Let A ∈ Rk×m, then the matrix P = A⊤(AA⊤)−1A is projection matrix.

Proof. Its easy to check P⊤ = P and P2 = P.

Lemma 8. Let A ∈ Rd×d full rank, and C ∈ Rk×d with rank k. Then CAC⊤ has rank k.

Proposition 16. Let X ∈ Rm×n s.t. min(m,n) ≥ |η|, where X is full rank,

V(η)† = X⊤D(η)((XX⊤)Sη)
†D(η)((XX⊤)Sη)

†D(η)X

Also,
Tr(V†) = Tr(D(η)1/2((XX⊤)Sη)

†D(η)1/2)

If n = |η|, then

V(η)† = X⊤(XX⊤)−1D(η)−1(XX⊤)−1X = X†D(η)−1(X⊤)†. (58)

Proof. Tedious verification of four pseudo-inverse criteria.

H.1 Auxiliary

Lemma 9. Let A ∈ Rl×l ≻ 0, and X ∈ Rd×l diagonal where d ≤ l, then

A ⪰ X⊤(XA−1X⊤)−1X. (59)

Proof. Let S be a set that selects exactly the non-zero elements of matrix X and further suppose
w.l.o.g. the matrix is in such permutations that this block is right-upper most.

By Lemma 5, we know that (ASS)
−1 ⪯ (A−1)SS . Due to the monotonicity of the operation (Lemma

6) XSS(ASS)
−1X⊤

SS ⪯ XSS(A
−1)SSX

⊤
SS . Inverse operator reverse the above inequality, hence,

(XSS(ASS)
−1X⊤

SS)
−1 ⪰ (XSS(A

−1)SSX
⊤
SS)

−1 (60)

(X−⊤
SS (ASS)X

−1
SS) ⪰ (XSS(A

−1)SSX
⊤
SS)

−1 (61)

(Y⊤
SS(ASS)YSS) ⪰ (XSS(A

−1)SSX
⊤
SS)

−1 (62)

(ASS) ⪰ X⊤
SS(XSS(A

−1)SSX
⊤
SS)

−1XSS (63)

where definite following matrix Y s.t. YSS = (XSS)
−1 and zero-otherwise.
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Lastly, we know that AS has eigenvalues strictly smaller than A, and also note that XA−1X⊤ =
XSS(A

−1)X⊤
SS . Thus applying Lemma 6 we can lift the expression to l × l matrices,

(A) ⪰ I:S(A)SSIS: ⪰ I:SX
⊤
SS(XSS(A

−1)SSX
⊤
SS)

−1XSSIS: ⪰ X⊤(XSS(A
−1)SSX

⊤
SS)

−1X

= X(XA−1X)−1X

Theorem 17. Let A ∈ Rl×l ≻ 0, and M ∈ Rd×l, where d ≤ l, and rank(M) = d then

M⊤(MA−1M⊤)−1M ⪯ A (64)

Proof. Let M = USV⊤, where U ∈ Rd×d and V ∈ Rl×l, be an SVD decomposition of M and
A = R⊤ΛR, where R ∈ Rl×l. be eigendecomposition of A.

We perform the set of following equivalent operations to reduce the problem to diagonal case,

R⊤ΛR ⪰ (USV⊤)⊤(USV⊤R⊤Λ−1R(USV⊤)⊤)−1USV⊤ (65)

R⊤ΛR ⪰ VS⊤U⊤(USV⊤R⊤Λ−1RVS⊤U)−1USV⊤ (66)

R⊤ΛR ⪰ VS⊤(SV⊤R⊤Λ−1RVS⊤)−1SV⊤ (67)

Λ ⪰ GS⊤(SG⊤Λ−1GS⊤)−1SG⊤ (68)

B ⪰ S⊤(SB−1S⊤)−1S (69)

where V = R⊤G is a new rotation matrix, and B = G⊤ΛG = V⊤R⊤ΛRV = V⊤AV. The rest
follows from Lemma 9.

Proposition 18. Let X ∈ Rn×m, and M ∈ Rk×m, where k ≤ m, and rank(M) = k then if ∃A s.t.
M = AX, where A ∈ k × n and k ≤ n, the following holds,

M⊤(M(X⊤X)+M⊤)−1M ⪯ X⊤X. (70)

Proof. The pseudo-inverse of (X⊤X)+ = X⊤(XX⊤)−2X. Consequently,

M⊤(M(X⊤X)+M⊤)−1M = X⊤A⊤(AXX⊤(XX⊤)−2XX⊤A⊤)−1AX (71)

= X⊤A⊤(AA⊤)−1AX ⪯ X⊤X (72)

where the last line follows from the properties of a projection.
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