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Abstract
Optimal experimental design seeks to determine the most informative allocation of
experiments to infer an unknown statistical quantity. In this work, we investigate the
optimal design of experiments for estimation of linear functionals in reproducing
kernel Hilbert spaces (RKHSs). This problem has been extensively studied in the
linear regression setting under an estimability condition, which allows estimating
parameters without bias. We generalize this framework to RKHSs, and allow
for the linear functional to be only approximately inferred, i.e., with a fixed bias.
This scenario captures many important modern applications, such as estimation
of gradient maps, integrals, and solutions to differential equations. We provide
algorithms for constructing bias-aware designs for linear functionals. We derive
non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian
noise, enabling us to certify estimation with bounded error with high probability.

1 Introduction
Optimal Experimental Design (OED) aims to determine data collection schemes – designs – to
efficiently estimate unknown quantities of interest given limited resources (Chaloner and Verdinelli,
1995). As common, we model experiments via an oracle that yields a (noisy) response to a given
input. A design is usually either an (adaptive) policy for querying the oracle, or a (nonadaptive) fixed
allocation of query budget to different oracle inputs. OED has a rich history and close relations to the
field of bandits (Szepesvari and Lattimore, 2020) and active learning (Settles, 2009).

We consider the regression setting, where observations at a fixed input x ∈ X can be obtained via the
noisy oracle by:

y = θ⊤Φ(x) + ϵ where x ∈ X (1)

and ·⊤· denotes the inner product in a Hilbert space Hκ, ϵ is independent, sub-Gaussian noise with
known variance proxy σ2, and θ is a bounded element from a separable reproducing kernel Hilbert
space Hκ from kernel κ, with a bound θ⊤V0θ ≤ λ−1, where V0 : Hk → Hk is a positive definite
operator. 1 Depending on whether λ is known or unknown, we will propose different estimators. The
norm constraint (under V0) can be interpreted as a bound on the total effect and its parameters if
the Hilbert space is finite dimensional. For infinite dimensional spaces this assumption can model
the additional constraint on regularity. For example, for kernels that induce Sobolev spaces, it
explicitly bounds the total squared derivatives of functions – quantities known to govern complexity
of approximation difficulty. The exact bound depends on the specific definition of κ, but if two
spaces are isometrically isomorphic, the difference can be absorbed to V0 to induce the desired prior
regularity, e.g., the regularity of the derivatives. Here we assume that kernel κ and the operator V0

are known due to prior analysis and/or first principles modeling of the system.

In contrast to the classical ED task of estimating θ (see Fedorov and Hackl, 1997), we are interested
in estimating a projection of θ. Namely, let C : Hκ → Rp be a known linear operator. The map C is

1In most cases, but not all, V0 is chosen to be the identity.
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such that C⊤C is full rank p, where C⊤ denotes the adjoint. Our goal is to identify an estimate of
Cθ efficiently, i.e., with low query complexity or with a maximal reduction of uncertainty given a
fixed query budget T .

The formalism above captures, or occurs as a subroutine in, numerous practical problems. For
example, evaluation at specific target points, integration and differentiation are all linear operators,
among many other useful linear functionals. Other examples include ordinary or partial differential
equations operators, spectral transforms, and stability metrics from control engineering. In Section 7
we detail several example applications.

A naive approach would be to first obtain an estimate θ̂ of θ, and compute Cθ̂. However, the appeal
of estimating linear functionals directly is that the number of unknowns of interest may be much
lower than for the original overall unknown element θ (which might even be infinite-dimensional).
Consequently, we would hope that the query complexity of reducing the variance of the estimate
Cθ scales in the dimension of the range of C, which is p. For example, when focusing on finite-
dimensional RKHSs, the operator C : Rm → Rp, where m is the dimension of Hκ, becomes a
matrix. In this work, we study the cases where p < m, and show that the estimation error can indeed
scale with p, and the geometry of the query set {Φ(x)|x ∈ X}. The estimation bias plays a central
role in this work as for very large m estimating Cθ might not be possible up to any precision. The
difficulty depends among other things the richness of the query set X , as we will detail later in Sec. 3.

Sequential Experiment Design Apart from classical experiment design, where we first commit to
what set of queries x we choose, referred to as a fixed design, we also consider sequential design,
where the selected queries depend on past observations. Suppose for example, we are gathering data
to test whether the null H0: θ⊤Φ(x) ≥ 0 for all x ∈ X or otherwise. We can incrementally gather
evidence and check whether the null hypothesis has already been rejected. As our data depends on
prior evaluation points it forms an adaptive design. In this work, we develop confidence sets for
both fixed and adaptive designs – which are of paramount importance in the context of sequential
experiment designs, e.g., to define stopping rules of adaptive hypothesis testing problems.
Contributions A) We consider objectives for experiment design for linear functionals in general
RKHS spaces, which carefully take the bias of the estimator into account. B) We provide bounds on
the query complexity required to reach ϵ accuracy to estimate linear functionals with high probability.
C) We construct novel non-asymptotic confidence sets for linear estimators of linear functionals of
RKHS elements, both for fixed and adaptive designs, where queries are independent of previous noise
realizations, and where they are not, respectively. D) We demonstrate the improved inference error
due to specially defined designs and new confidence sets on the problems of learning differential
equations, linear bandits, gradient maps estimation, and stability verification of non-linear systems.

2 Background and Related Work
Linear Estimators Let S ⊂ X be a finite set of selected evaluations s.t. |S| = n, potentially
repeated. We focus on linear estimators of the form L : Rn → Rp, where Ly is estimating Cθ. An
estimator is understood here as the algorithm to find the random estimate Ly. Notice that given S , L is
not a random quantity; the randomness rather comes from the realizations y. To choose the estimator
L, one classically looks at the second moment of the residuals Cθ−Ly, E(L) = E[(Cθ−Ly)(Cθ−
Ly)⊤], where the argument signifies how the random variable y is transformed (noise is averaged)

E(L) = σ2LL⊤ + (LX−C)θθ⊤(LX−C)⊤, where E(L) ∈ Rp×p, (2)

and the matrix X contains stacked evaluation functionals of the RKHS Xi,x = Φi(x) for x ∈ S ⊆ X .
We will then seek a way to transform y via estimator L such that the second moment of residuals
is minimized in certain sense.
Importance of Bias and RKHS Classical experimental design studies estimation of C : Rm → Rp

where the RKHS is finite dimensional (Pukelsheim, 2006) and X ∈ Rn×m. On top of that, they
consider only estimators which are unbiased for any θ, in other words, LX = C. While, with
finite dimensions, this simplification might be reasonable, for infinite dimensionial RKHSs, bias
is inevitable and must be controlled. Consider the case of estimating the gradient of a continuous
function f . We can nearly never learn it up to arbitrary precision from noisy point queries. However,
estimation up to a small error is always possible and sufficient. Estimating ∇xf(x) from points close
to f(x) will incur small bias but larger variance as the change in f compared noise ϵ is small. Hence
balancing these two sources of error is crucial for an informative design in RKHSs.
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Experiment Design: Classical Perspective Consider an m dimensional version of the model in
(1). Then, among all unbiased estimators, linear least-squares estimators minimize (2) under the
Löwner order due to the famed Gauss-Markov theorem. Unbiasedness in this form is synonymous
with estimability, which means that by repeating the evaluation in X, arbitrary precision can be
reached (Pukelsheim, 2006). The second moment of residuals then becomes W−1

† = CV†C⊤,
where ·† denotes a generalized pseudo-inverse and V = X⊤X. The matrix W is often referred to
as the information matrix. Gaffke (1987) and Krafft (1983) note that estimability implies that W†
is non-singular. We relax this condition and allow the estimator to have a bias; this means that we
cannot in general reduce the error arbitrarily by repeating the measurements. In fact, our extension
uses the fact that W† as defined above will not be singular even if estimability condition is not
satisfied. We will show that the matrix W† can still play the role of the information matrix.
Experiment Design: Modern Challenges Mutný et al. (2020) use experimental design to estimate
the Hessian of an unknown RKHS function, while Kirschner et al. (2019) use it to estimate the gradient
of it for use in Bayesian optimization. Perhaps most related, Shoham and Avron (2020) study over-
parametrized experimental design for one-shot active deep learning and analyze the bias in connection
to experiment design, similarly as in the seminal work of Bardow (2008). They do not consider bias
arising from the limited design space nor do they treat linear functionals. More broadly, the uncertainty
propagation is studied in the Bayesian framework in the field of probabilistic numerics for linear and
nonlinear operators (see Cockayne et al., 2017; Owhadi and Scovel, 2016, and citations therein).
Confidence sets Unlike classical statistics, our focus is on non-asymptotic confidence sets on
regression estimators. They can be found in, e.g., Draper and Smith (2014) and Abbasi-Yadkori
et al. (2011), for fixed and adaptive designs, respectively. Our goal is to define the confidence sets
in the appropriate norm such that their width scales with the dimension of the range of C, i.e., p,
and the geometry of {Φ(x)|x ∈ X}, but not directly dim(Hκ) nor number of data T . Mutný et al.
(2020) derive non-asymptotic confidence sets that scale in p, but grow with the number of points T
as they do not use the appropriate norm (see Appendix B.4). Similarly, Khamaru et al. (2021) study
estimators for adaptively collected data, and propose asymptotic confidence sets for their estimators.
Without a specific condition, their confidence sets can grow with T , however, they consider more
general noise distributions apart from sub-Gaussian as we do here.

3 Estimation and Bias
In this section, we motivate the linear estimators and identify information matrices. Information
matrices are the inverses of second moment matrices of residuals E as in Eq. (2). They are an
important object in the analysis of the error of the estimators and their confidence sets. Also, they
depend on the evaluations that define the estimator L, X. Maximizing the information matrices as
a function of the chosen observations and their proportions X gives rise to optimal experimental
designs.

Further, we identify quantities that influence the bias of the estimators. We study two estimators: the
least-norm estimator (interpolation), when the bound on ∥θ∥V0

is unknown but finite, or the ridge
regularized least squares estimator, where ∥θ∥V0

≤ λ−1 is known. Both estimators are motivated as
minimizing the error residuals E in trace norm under these two bound assumptions.

3.1 Estimators
Interpolation As apparent from Eq. (2), without the knowledge of an explicit bound on the norm
θ, the worst case over θ causes the optimal estimator L to minimize only the trace of the bias. This
leads to minmization of (C− LX)V−1/2

0 in Frobenius norm, leading to the familiar interpolation
estimator,

Cθ̂ := L†y = CV−1
0 X⊤K−1y, where K = XV−1

0 X⊤ (3)
The second moment of residuals can then be expressed as

E(L†) ⪯ σ2CV−1
0 X⊤K−2XV−1

0 C⊤︸ ︷︷ ︸
variance

+
1

λ
CPXC⊤︸ ︷︷ ︸

bias

,

where PX = V−1/2
0 (V−1/2

0 X⊤K−1XV−1/2
0 − I)V−1/2

0 is a scaled projection matrix. Unlike as in
the classical ED treatment, the second moment has two terms: bias and variance. If the span of the
scaled projection operator lies in the null space of C, the bias (classically) vanishes. To control the
error of estimation, we need to control both terms. For the special case of interpolation estimator,
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we will control the second term separately using a bias condition, and the variance term will be
controlled by the information matrix W† as we will see in Section 4

W†(X) = (CV−1
0 X⊤K−2XV−1

0 C⊤)−1. (4)

Regularized Regression The ridge regularized estimator is motivated by using θ⊤V0θ ≤ λ−1, and
minimizing then the trace of this upper bound, leading to an estimator,

Cθ̂λ := Lλy = CV−1
0 X⊤(λσ2I+K)−1y. (5)

Like above, we can give an upper bound on the second moment of the residuals. Conve-
niently, this estimator automatically balances the error due to variance and bias in one term:
E(Lλ) ⪯ Cθθ⊤C⊤ −CV−1

0 X⊤(Iσ2λ+K)−1XV−1
0 C⊤. Using the matrix inversion lemma, we

can express the above bound in a more concise form, and subsequently its inverse motivates the
definition of the information matrix for the regularized estimator,

Wλ(X) = σ−2(C(σ2λV0 +X⊤X)−1C⊤)−1. (6)
3.2 Design objectives: Scalarization
The information matrices such as in (4) and (6) represent the inverse of estimation error, and the
goal of optimal design is to maximize them (hence minimizing the error) with a proper choice of X.
As the Löwner order is not a total order, we need to resort to some scalarization of the information
matrices, thus we solve maxX f(W(X)), where f is the scalarization Rp → R. We focus on two
common forms of scalarization and refer to them as E- and A-design (Pukelsheim, 2006).

• fE(W) = λmin(W) – when constructing non-asymptotic high probability confidence sets;

• fA(W) = 1/Tr(W−1) – when minimizing mean squared error of estimation.

Other popular criteria include D, V , and G-designs (Chaloner and Verdinelli, 1995), which we do
not consider due to space considerations, but can be equivalently used should the experimenter have
a reason for it. If p = 1, C is an element in Hk and the design problem degenerates into a special
case known as c-optimality due to Elfving (1952) and, as W ∈ R, no scalarizations are needed.
Robust Designs The linear functionals are sometimes unknown, or parametrized by an unknown
parameter γ as Cγ , where γ belongs to a known set Γ. If we were to construct a design that has low
estimation error for the worst case selection of γ, we can maximize the information in the following
worst case metric maxX infγ∈Γ f

((
CγV−1

0 X⊤K−2XV−1
0 C⊤

γ

)−1
)
, for the interpolation estimator

(and analogously for ridge regression). If the original function f(W) is concave, then so is the
function defined as the infimum over the compact index set Γ, which is true for the design criteria
considered in this work (Boyd and Vandenberghe, 2004).

4 Fixed Designs and their Confidence Sets

Figure 1: A two dim. example. Left: fixed design
with our and projected confidence sets from two
dimensions. Right: Adaptive confidence sets com-
pared with projected ones due to Abbasi-Yadkori
and Szepesvari (2012). In this example C = (1, 0)
and θ = 0.

In RKHS spaces, especially infinite dimensional
ones, the estimability without bias is too restric-
tive. Given a finite evaluation budget T , we can
only construct a discrete design X : Hκ →
RT , and there are many practical examples,
where, given a finite query budget, Cθ cannot be
learned to arbitrary precision, most prominently
gradients and integrals among many others.

Estimation with Bias and Interpolation Es-
timator Our goal is to establish a condition
on the design space X such that the estimation
with the interpolation estimator is possible up to
a certain bias ϵ measured under the Euclidean
norm. We measure the bias scaled by the magni-
tude of the Frobenius norm of the estimator and call this the relative ν-bias. This condition will allow
us to balance the error due to the bias and noise.

Definition 1 (Relative ν-bias). Let C : Hκ → Rk. The estimator L† on the design space X is said
to have relative ν-bias if ∥∥∥(C− L†X)V−1/2

0

∥∥∥2
F
≤ ν2 ∥L†∥2F . (7)
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The ∥·∥F corresponds to the Frobenius norm of the maps Hκ → Hκ. Due to the cyclic property of the
trace, we can take the adjoint of the operator and calculate the quantity by taking a trace of p×pmatrix
instead. If ν = 0 and dim(Hκ) = m, as we show in Lemma 1 in the Appendix, this is equivalent
to the classical estimability condition due to Pukelsheim (2006). The left hand side corresponds
to the classical bias bias(L†y) = ∥E[L†y]−Cθ∥2 of an estimator L† under the Frobenius norm.
This is exactly the quantity that L† minimizes. The classical bias cannot be improved by repeated
measurements or allocations thereof. Using a relation which we show formally in Proposition 5 in
Appendix B, we can bound the bias(L†y) = ∥E[L†y −Cθ]∥2 ≤ λmin(W†)

−1/2ν/
√
λ.

To check whether the condition (7) is satisfied given a design space X, one needs to evaluate the trace.
Finding the value of p× p matrix, however, depends strongly on the form of the operator C, and a
general recipe cannot be provided. Due to Riesz’s representer theorem, and fact that the range of C is
finite-dimensional, this is always possible. For example, for an integral operator

∫
Φ(x)⊤ · q(x)dx,

using shorthand v = K−1y, it holds that L†y =
∑n

i=1

∫
κ(x, xi)vidx where we used n points.

Notice that we used only evaluations of kernel κ to do this calculation. Also notice that calculation of
(7) reduces to the calculation of the maximum mean discrepancy (Gretton et al., 2005) between the
empirical distribution (defined on X), and q(x) for this example. The general recipe is to (locally)
project the Hilbert space on a truncated finite-dimensional basis Φm(x) with size m and, in that case,
the check involves a solution to a linear system, but this is not always necessary.

4.1 Confidence sets
To construct confidence sets for both estimators considered, we split them into two categories: fixed
designs, where the evaluation queries do not depend on the observed values y, and adaptive designs,
where the queries Φ(xi) may depend on prior evaluations yi−1, . . . y1. Proofs are in Appendix B.

Theorem 1 (Interpolation – Fixed Design). Under the regression model in Eq. (1) with T data
point evaluations, let θ̂ be the estimate as in (3). Let X satisfy the bias from Def. 1 with W† =

(CV−1/2
0 V†V−1/2

0 C⊤)−1. Then,

P

(∥∥∥C(θ̂ − θ)
∥∥∥
W†

≥ σ
√
ξ(δ) +

ν√
λ

)
≤ δ, (8)

where V† = V−1/2
0 X⊤(XV−1

0 X⊤)−2XV−1/2
0 , and ξ(δ) = p+ 2

(√
p log( 1δ ) + log

(
1
δ

))
.

Notice that in order to balance the source of the error due to bias and variance with high probability,
we need to match σ

√
ξ(δ) ≈ ν√

λ
. Repeating the queries in X T times reduces σ by 1/

√
T but

leaves the bias ν, as well as W†, unchanged. This is because with the interpolation estimator the
noisy repeated queries are averaged, which can be interpreted as a reduction in variance. Hence, by
balancing ν/

√
λ with σ

√
ξ(δ)/

√
T , we balance the bias and variance such that they are of the same

magnitude. It does not make sense to repeat measurements more times if the bias dominates the error
of estimation. A detailed example of estimating the gradient with fixed bias is given in Sec. 7.2.

We derive confidence sets for the regularized estimator of Eq. (5), albeit without the relative bias.

Proposition 2 (Regularized estimate – Fixed Design). Under the model in Eq. (1)
with T data point evaluations, let θ̂λ be the regularized estimate as in (5). Then

P

(∥∥∥C(θ̂λ − θ)
∥∥∥
Wλ

≥
√
ξ(δ) + 1

)
≤ δ, where ξ(δ) = p+ 2

(√
p log( 1δ ) + log

(
1
δ

))
.

Notice that, since the regularized estimator is designed to balance the bias and variance automatically,
we do not need to specifically control the bias, which is contained within the information matrix Wλ.
Despite this elegant property, the regularized estimator involves a more challenging analysis. The main
motivation to study the interpolation estimator is to understand the l2 error as we show in Section 6.

5 Adaptive Design and Confidence Sets
To provide confidence sets for adaptively collected data, we need to project the data in X onto C,
where we will denote the projection by Z further on. With the data projected, we can reason about
the reduction of the uncertainty of Cθ for each point separately, since to each Φ(xi) we can associate
a unique zi in Rp.
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Definition 2 (Projected data). Let z(x) ∈ Rp, projected data, be a vector field s.t. Φ(x)V−1/2
0 =

z(x)CV−1/2
0 + j(x), where x ∈ S ⊆ X and j(x) ∈ Hκ, |S| = n, such that CV−1/2

0 j(x) = 0.

Classically, the adaptive confidence sets are understood only for C = I, i.e., the identity (Abbasi-
Yadkori et al., 2011). In fact, we can always derive confidence sets for Cθ from confidence sets for θ,
as they only project the ellipsoid to a smaller dimensional space. However, their resulting size may
be unnecessarily large, as the confidence parameter scales as O(dim(Hk)) in general (see Figure 1
for a visual example).

The martingale analysis of Abbasi-Yadkori et al. (2011) and de la Peña et al. (2009) specifically
assumes that information matrix Vt, (where C = I) can be additively decomposed to information
matrices due to a single evaluation Vt =

∑t
i=1 Φ(xi)Φ(xi)

⊤ each at a different time. With the matrix
Wλ,t, this additive decomposition is not always possible. Therefore, to utilize the martingale analysis,
which requires this additive property, we consider a different information matrix, which upper bounds
Wλ. The information matrix we use, Ωλ, is constructed from the projections z(xi), which have the
necessary additive property. It gives rise to confidence sets, where, under the ellipsoidal norm, their
size scales as Θ(p). The estimation error depends on Ωλ still, but under this norm, the confidence
parameter and information matrix are decoupled in a similar way as for the fixed design.

Theorem 3 (Ridge estimate – Adaptive Design). Under the regression model in Eq. (1) with t
adaptively collected data points, let θ̂λ,t be the regularized estimate as in (5). Further, assume that Z
is as in Def. 2 where Xt = ZtC+ JtV1/2

0 . Then for all t ≥ 0,

∥∥∥C(θ̂t − θ)
∥∥∥
Ωλ,t

≤

√
2 log

(
1

δ

det(Ωλ,t)1/2

det(λS)1/2

)
+ 1 (9)

with probability 1− δ, where Ωλ,t =
1
σ2Z

⊤
t Zt + λS and S = (CV−1

0 C⊤)−1.

The matrix Zt can be calculated by solving a least-squares problem (projection), whereupon
CV−1/2

0 Jt = 0 as needed by Definition 2. Notice that, on one hand, the above confidence pa-
rameter grows only when Z is large, but at the same time, the ellipsoid shrinks only in that case
as well. Also, the ellipsoid above is necessarily smaller than the one with the information matrix
Wλ as Wλ ⪯ Ωλ (Lemma 3 in Appendix). This means we can use the same confidence parameter
to give a bound for ∥·∥Wλ,t

. Notice that the estimator is the same as before, i.e., θ̂λ, using X to
define the regression, only the information matrix changes. We also present a visual comparison in
Figure 1 on a simple example, showing that our fixed and adaptive sets are tighter than projected
non-asymptotic sets. Using the shorthand βt(δ) to define the confidence parameter in (9), we can in
fact bound the error as ∥C(θλ,t − θ)∥2 ≤ λmin(Ωλ,t)

−1/2βt(δ). It depends on m = dim(Hκ) only
via Ωλ,t. The dependence of the confidence parameter can be at most Θ(

√
log(1 + T )p), see Lemma

4 in Appendix B. The value of λmin(Ωλ,t)
−1 depends on the geometry of the set {Φ(x)|x ∈ X}

and the projection operator C as we show in Section 6.3. Note that the lower bound of (Szepesvari
and Lattimore, 2020, Ex. 20.2.3) does not apply here, since it makes a statement only about the
information matrix Wλ.

6 Convex Relaxations, Geometry and Dimensions
Suppose we are given a candidate set of experiments, i.e., a unique subset of evaluations S ⊂ X , |S| =
n and a budget T of total queries. We seek an allocation X, where the rows of X contain potentially
repeated evaluations from S. How many times should we repeat each experiment in order to find
maxX f(W(X))? To address this, experimental design literature relaxes this discrete optimization
problem, and optimizes over fractional allocation η ∈ ∆n, where the number of repetitions for Φ(xi)
is recovered by rounding ⌈ηiT ⌉. With this interpretation, the objectives in Sec. 3.2 can be written as

η∗ = argmax
η∈∆n

[
f(W†(D(η)1/2XS)) = f(C(V−1

0 X⊤
SD(η)XSV

−1
0 )†C⊤)

]
, (10)

where D(η) is the diagonalization operator that produces a diagonal matrix with vector η on the
diagonal and XS contains non-repeated elements in S. We have stated the problem above for the
interpolation estimator and dim(Hk) < ∞, but it naturally generalizes to kernelized estimators,
albeit in a less concise form (see Appendix C).

6



6.1 Optimizing allocations: experiment design algorithms
Given a subset S, the problem (10) can be approximately solved using either convex optimization
methods or a greedy algorithm. A comprehensive review of methods constructing designs η∗ and
rounding techniques to get X is beyond the scope of this work, and not the core issue addressed in this
work. We briefly review two versatile approaches for completeness (more details in Appendix C).
Greedy selection Firstly, one can greedily maximize the scalarized information matrix with the
update rule ηt+1 = t

t+1ηt +
1

1+tδt, δt = argmaxx∈X f
(
Wλ

(
t

t+1ηt +
1

t+1δx

))
, where f refers

to the scalarization and δx to the discrete measure corresponding to the feature map Φ(x). Due to the
form of the update rule, tηt is always an integer.

6.2 Convex optimization
Alternatively, convex optimization can provably solve the problem to optimality. Specifically, we
look for an allocation using convex optimization methods maxη∈∆n f(W◦(D(η)1/2X)) where
◦ ∈ {†, λ}. Care needs to be taken when selecting S, as we discuss in Appendix C. The most
common algorithms for ODE problems are the Frank-Wolfe algorithm (Todd, 2016) and mirror
descent algorithm (Silvey et al., 1978). Additionally, semi-definite reformulation of the above
optimization problems can be given as we shown in Appendix C.3. Optimal designs found via
convex optimization need to be rounded in practice. State-of-art rounding techniques are discussed
by Allen-Zhu et al. (2017) and Camilleri et al. (2021) for finite and infinite dimensional spaces,
respectively. The exhaustive cover of rounding techniques is out-of-scope of the current work.

6.3 Estimation error and its dimension dependence
If we were to bound the squared error of estimation in high probability, the importance of the
scalarization λmin(W†) becomes apparent. Using the Cauchy Schwarz inequality, we get

∥∥∥C(θ − θ̂)
∥∥∥
2
≤ λmin(W†)

−1/2
∥∥∥C(θ − θ̂)

∥∥∥
W†

≤
√
λmin(W†(η∗))−1

T
(σ
√
ξ(δ) + ν/

√
λ),

where the term due to Proposition 1 scales as O(p) when properly balanced. Using the optimal alloca-
tion η∗, the number of repetitive evaluations is equal to η∗T . Inverting the relation above yields a query
complexity of the order T ≈ O( p

ϵ2λmin(W†(η
∗)−1)). The optimal value λmin(W†(η

∗)) represents
a problem dependent quantity that measures the difficulty of estimation and captures the geometry of
the set {Φ(x)|x ∈ S ⊂ X}. It cannot be bounded in general, but it has an elegant geometric interpre-
tation. In particular, it corresponds to the square inverse of the diameter of the largest inscribed ball
in the convex hull of symmetrized {Φ(x)|x ∈ S} in the range of C (Pukelsheim and Studden, 1993).

At first glance, calculating this quantity might seem complicated, but with an example it is apparent.
For example, if Φ(x) = x s.t. ∥x∥22 ≤ 1 (unit l2 ball in Rm) and C = v, where v is a unit vector
(p = 1), the inverse diameter of largest ball we can inscribe in direction of v inside ∥x∥22 ≤ 1 equates
to 1, which is independent of d. This is not surprising, since it represents an “easy” design space,
where for any direction v one can find an action x aligned with that coincides with the optimal
design. This is true even if C has more rows. On the other hand, if we assume evaluation in the
l1 ball ∥x∥1 ≤ 1 and C is a vector of ones (again p = 1). Then the diameter of the inscribed ball
is proportional to the inverse square height of a simplex, namely, 1

m , despite p = 1. Hence, despite
the confidence parameter being O(1), the complexity depends primarily on the geometry of this set.

To give a more exotic example, if C = ∇xΦ(x), and the design space are points with fixed length
steps in all unit derection {x|Φ(x± eih)}, where h is the stepsize and ei are principal vectors in Rd,
we can show that λmin(W†)

−1 ≤ dh+O(h2), leaving the overall complexity to learn a gradient to
scale with d instead of the dimensionality of the RKHS which can be infinite. All formal proofs and
references are provided in Appendix D.1.

7 Applications
We now discuss concrete applications that benefit from our contributions. Details of the experiments,
and further applications, e.g., in statistical contamination, can be found in Appendices E and F. We
provide information about optimization and rationale in choosing the κ, and V0 in C and F respectively.
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(a) Pharmacokinetics (b) Gradient estimation (c) Controller stability

Figure 2: Experiments: a) Pharmacokinetics. We compare the equally spaced design (black) with
the optimized design (yellow). The optimized design mimics the classical pharmacokinetics approach
of spreading the initial measurements more densely after the initial dose (Gabrielsson and Weiner,
1995). For us, this rule elegantly emerges from first principles. In general, these trajectories follow a
decaying pattern as the examples in light purple. The uncertainty in cb due to the unknown dynamics
γ is depicted in shaded region. b) Gradient estimation. The upper plot shows the total error of ∇f(x)
we can certify with high probability as a function of the step-size h for a finite difference design. The
minima of these errors exactly correspond to step-sizes derived from the bias-variance trade-off we
proposed for the interpolation estimator. With increasing T , noise can be reduced more, and hence
bias of the design needs to decrease accordingly, hence the decrease in the step size (e.g., red→green).
c) Stability: We report the upper bound on the Lyapunov function in the whole operating domain, as
a function of data points. The color coding (explained in the text) represents different data acquisition
algorithms while dashed lines correspond to the confidence sets from prior work. Our confidence sets
(solid) provide a tighter upper bound as a function of the number of data points, and allows faster
termination, which happens when the upper bound is zero.

7.1 Linear bandits with finite number of arms
A special but important theoretical consequence of our adaptive confidence set is an improved
regret bound for the upper confidence bound (UCB) algorithm (Auer, 2002) for linear bandits
when the set of queries X is finite. The queries are known as actions in the bandit literature
(Szepesvari and Lattimore, 2020). The UCB algorithm is a procedure which iteratively queries
the action according to xt = argmaxx∈X maxϑ∈Ct−1

ϑ⊤Φ(x), where Ct is confidence set for θ in
round t. Different to this, in our analysis of the UCB algorithm, we use the confidence sets due
to Theorem 3, which are confidence sets for the projections Φ(x)⊤θ directly. We construct |X |
confidence sets, one for each of the linear functionals Cx = Φ(x), and denote them by cft(x). The
UCB algorithm then just becomes xt = argmaxx∈X maxy∈cft(x) y. We now analyze its cumulative
regret RT :=

∑T
t=1(Φ(x

∗) − Φ(xt))
⊤θ, where x∗ = argmaxx∈X Φ(x)⊤θ, and θ is the true

unknown pay-off vector of the bandit game.

Theorem 4. Let θ ∈ Rd be an unknown pay-off vector, and a set of actions x ∈ X such that |X | <∞.
Then the cumulative regret of the UCB algorithm is bounded by

RT ≤ O(
√
Td log(T (|X |+ 1)/δ)) with 1− δ probability.

Thus, our adaptive confidence sets for linear functionals yield a regret bound that is a factor of
√
d

tighter than the standard bound. Note that this does not break the known lower bound O(d
√
T ) for

X being the unit ball in Rd from Rusmevichientong and Tsitsiklis (2010), as we gain a logarithmic
dependence on |X |. For an ϵ covering of the extreme points of the unit ball in Rd, one needs
|X | ∝ (1/ϵ)d points, leading to a regret scaling as O(d

√
T log(1/ϵ) + ϵT ). Choosing ϵ = 1/T

would, for a fixed T , recover the lower bound up to logarithmic terms. Using standard doubling-trick
techniques, one can provide anytime result. However, for different query sets (such as the l1 ball),
whose extreme points (i.e., number of vertices) are finite (equal to d), these results can vastly improve
the regret bounds. There are alternative algorithms based on arm-elimination, which achieve this
regret bound, e.g., the algorithm of Szepesvari and Lattimore (2020), the SupLinRel algorithm
of Auer (2002), and the algorithm of Valko et al. (2014). The proof of Theorem 4 is deferred to
Appendix G, but it is a straightforward application of previous results.

The above technique can be extended to infinite dimensional RKHS, where the role of dimension is
played by, γT called maximum information gain (Srinivas et al., 2010), defined in Appendix G. The
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remaining challenge is to bound the ϵ-covering of extreme points of the set {Φ(x)|x ∈ [−1, 1]d} ⊂
Hk, where [−1, 1]d is the continuous action set. If all evaluation operators have ∥Φ(x)∥k = 1, for all
x ∈ [−1, 1], such as for Matérn kernels (Mutný and Krause, 2018), we can use covering numbers
of unit balls in these spaces as the upper bound on this number. These spaces are known to be
isometrically isomorphic to Sobolev spaces (Wendland, 2004), and the bounds on covering numbers
of unit balls are known to be of order ( 1ϵ )

2d/s, where s ∈ N, s > d/2, refers to regularity of the
Sobolev space (Cucker and Smale, 2002). This yields a bound on the cumulative regret of the order
O(
√
C(d)γTT log T ), where C(d) can depend on dimension.

7.2 Gradient maps

Gradients of any order are linear operators. We can express the gradient at x as dimension-wise
evaluation of the following operator ∇x(Φ(x)

⊤θ) = (∇xΦ(x))
⊤θ =: Cθ. Clearly, estimability is

nearly always impossible, since any evaluation infinitesimally away from x will be insufficient to
eliminate bias. Thus our estimates will invariably be biased for any function with infinite Taylor
expansion. Yet, while estimating the gradient from evaluations very close to the original x leads
to low bias, it at the same time increases the variance, since the difference in the functional value
between the two point evaluations is very small compared to the noise magnitude. Given a finite
budget or desired accuracy, the best we can do is to find the best design with optimal bias-variance
trade-off given the kernel κ, budget T , and noise variance σ. We consider a class of parametrized
finite difference designs {Φ(x ± hei)}, where h is the stepsize and ei are unit vectors. In Fig. 2b,
we plot the total error with high probability with the budget T as a function of the step-size h. Notice
that the lowest error occurs exactly when the variance of observations scaled with the confidence
parameter is equal to the relative ν (two lines cross).

7.3 Learning linear ODE solutions and their parameters

A solution to a linear ordinary differential equation (ODE) u satisfies d
dtu(t) = Mu(t) + s(t), where

M is a linear operator and s(t) is the non-homogeneous term. Assume that the solution to the equation
u(t) = Φ(t)⊤u is a member of a Hilbert space Hκ, then Tu :=

(
d
dt −M(t)

)
Φ(t)⊤u = s(t) for

t ∈ [t0, t1].Hence, the differential equation becomes a linear constraint for estimating u from samples.
In fact, due to differential equations being fully specified by initial conditions, the only unknowns are
due to initial conditions. To reveal the linear functional here, one needs to consider the solution to the
differential equation, which can be written as u = T†s(t)+C⊤v, where v ∈ Hκ\span(T) belongs to
the null space of T. In this case, we span it with rows of C. Consequently, the unknown element v can
be found as C(u−T†s). Thus, what needs to be estimated from samples, is the linear projection Cu,
since CT†s is known a priori. In Appendix F, we discuss implementation and calculation of the opera-
tor C on a discretized domain. Also note that, Z itself induces a Hilbert space Hz containing the solu-
tions u (González et al., 2014). However, as we will see, for robust designs it is sometimes convenient
to pick a larger Hilbert space Hκ s.t. Hz ⊂ Hκ and then apply the differential equation constraint.

Robust Design As a specific example, consider an example of a pharmacokinetic model capturing
the concentration of a medication in blood and stomach via differential equations: (d/dt)cs = −acs
and (d/dt)cb = bcs−dcb for t ∈ [t0, t1], where cs and cb are the concentration in stomach and blood
respectively. The goal of this analysis is to infer γ = (a, b, d) from the measurements of the blood
concentration levels with fixed, but perhaps noisy, initial conditions (Gabrielsson and Weiner, 1995).
To apply the above procedure, we need a fixed differential operator Tγ to define the operator Cγ .
However, γ is itself unknown. Instead, we can give a generally plausible set of γ ∈ Γ, initial condi-
tions of concentration in blood cb(0) = 0, and norm constraints on the initial stomach concentration
(cs(0)− cdose)

2 ≤ λ−1 (prior V0) in order to apply our framework. We use the squared exponential
kernel to embed trajectories and consider robust A-optimal design (as in Sec. 3.2) by maximizing
the worst case metric infγ∈Γ 1/Tr(CγV

−1
λ C⊤

γ ) with the regularized estimator. This way, the design
is appropriate for any γ. After estimating the trajectory, we can use the estimated trajectories (given
γ) to optimize for γ via the maximum likelihood. Fig. 4a presents the concentrations cb and cs with
their estimates and uncertainties due to the unknown γ. We show the equally spaced (black) and
optimized designs (yellow). The more accurately we can infer the trajectory, the more accurately
we can estimate γ, which we quantitatively show in Appendix E in Fig. 4b, where we decrease the
MSE of estimating γ by a factor of 10 in comparison to equally spaced design.
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7.4 Sequential Design: Certifying Lyapunov Stability
Consider a non-linear system with x ∈ Rd such that d

dtx(t) = f(x(t), t)+u(x(t), t) = AΦ(x(t), t)+
u(x(t), t), where the rows of Ai ∈ Hκ for i ∈ [d] model the system dynamics and Φ(x(t), t) are
known evaluation functionals of Hκ. We assume that the control laws u(x(t), t) can be written as
u(x(t), t) = BΦ(x(t), t). We want to understand whether a given a control law B stabilizes the
above system. A common approach is to create an estimate Â of A from data samples of trajectories,
and use the controller B = Â−P, where P is often a simple reverting law with a known gain that
compensates the imprecise estimation of A with Â, see below for an example. With this choice of
u, the system can be written as d

dtx(t) = (A− Â−P)Φ(x(t), t) = (Ã−P)Φ(x(t), t), where the
Ã = A− Â is the residual error in estimating A. We can certify the stability of the resulting system
using a known quadratic Lyapunov function as commonly done in control theory, in this case, using
V (x, t) = (x(t)− xref(t))

⊤Σ(x(t)− xref(t)). Classical stability theory dictates that if the total time
derivative of V ,

dV/dt = (x(t)− xref(t))
⊤Σ(Ã−P)ϕ(x(t), t) + ∂V /∂t, (11)

is negative for all x(t) ∈ O then we can guarantee stability in the operating region of x ∈ O (Khalil,
2002). The above condition defines a linear operator Cx = (x − xref)

⊤Σ · ϕ(x) operating on the
unknown Ã for each x ∈ O. The linearity is best seen with vectorization as θ = vec(A), using
the shorthand z(t) = x(t)− xref(t), z⊤ΣAϕ(x) = vec(Σzϕ(x)⊤)⊤ vec(A) = Cxθ. The operator
is parametrized by x, Cx for each x ∈ O. Even for continuous domains x ∈ O, Cx usually has
low-rank structure, which can be calculated and depends on the size O and the size Hκ. If the rank of
the operator is small (e.g., the operating space is small) then we can certify negativity of Eq. (11)
faster than learning the whole A. In other words, we reduce uncertainty only where we need to as in
the seminal work of Berkenkamp et al. (2016). We can sequentially query data points from x and
check whether Cxθ ≤ 0 for all x.

Consider a two dimensional nonlinear system from Lederer et al. (2021),

dx

dt
= x+

1

1 + exp(−2x1)

(
1
−1

)
+ 0.5

(
sin(πx2)
cos(πx1)

)
+ u.

The reverting controller is PΦ(x(t), t) = −K(x − xref(t)) + (d/dt)xref, where the refer-
ence trajectory corresponds to a circle xref(t) = (sin(t), cos(t)). The Lyapunov function is
V = (x(t)− xref(t))

⊤(x(t)− xref(t)). We assume that we can set the system to an initial condition
x(0) and observe a noisy observations of the state y(0 + ∆) at rapid sampling times ∆. From these,
we create a derivative oracle, (d/dt)x(t) ≈ (x(t+∆)− x(t))/∆, a common approach in nonlinear
data-driven control (Umlauft et al., 2018). We use this example to showcase our adaptive confidence
sets. We follow an adaptive stopping rule, where we query new data points if negativity cannot be
certified. Due to this adaptive stopping rule, the data is adaptively collected.

We compare our confidence sets (solid) with the classical confidence sets of Abbasi-Yadkori et al.
(2011) (dashed) and report upper bounds on the supremum over x ∈ O of Eq. (11) in Fig. 2c.
The operating region is a “tube” around the circular reference trajectory xref(t). We see that our
confidence sets shrink much faster than the classical confidence sets, since we can eliminate redundant
information by projecting onto C. Fig. 2c compares random sampling of datapoints from the whole
domain (random) and the operating region (random-ref) and sampling according to uncertainty in the
dynamics in the whole domain (unc) and within the tube around the reference trajectory (unc-ref).
As expected, focused exploration methods work much better. However, and more importantly, the
tightness of our confidence sets enable much quicker stability certification (termination). Note that
the classical confidence sets may even grow in the cases where redundant information for estimation
of C is inserted into the estimation, e.g., with random sampling.

8 CONCLUSION
We considered the problem of learning a linear function of an element in a reproducing kernel
Hilbert space. We addressed the challenging case where linear estimators incur a non-negligible bias
and provided confidence sets for the two most commonly used linear estimators. We demonstrated
the generality of our approach and the tightness of our confidence sets on several challenging
applications. We believe our results lay important foundations for principled and efficient experiment
design in complex real-world settings.
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González, J., Vujačić, I., and Wit, E. (2014). Reproducing kernel hilbert space based estimation of
systems of ordinary differential equations. Pattern Recognition Letters, 45:26–32.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical dependence
with hilbert-schmidt norms. In International conference on algorithmic learning theory, pages
63–77. Springer.

Huszár, F. and Duvenaud, D. (2012). Optimally-weighted herding is bayesian quadrature. arXiv
preprint arXiv:1204.1664.

Khalil, H. (2002). Nonlinear Systems. Patience Hall.

Khamaru, K., Deshpande, Y., Mackey, L., and Wainwright, M. J. (2021). Near-optimal inference in
adaptive linear regression. arXiv preprint arXiv:2107.02266.

Kirschner, J., Mutný, M., Hiller, N., Ischebeck, R., and Krause, A. (2019). Adaptive and safe bayesian
optimization in high dimensions via one-dimensional subspaces. ICML 2019.

Krafft, O. (1983). A matrix optimization problem. Linear Algebra and its Applications, 51:137 –
142.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338.

Lederer, A., Capone, A., Beckers, T., Umlauft, J., and Hirche, S. (2021). The impact of data on the
stability of learning-based control. Conference on Learning for Dynamics and Control.

Leykekhman, D., Vexler, B., and Walter, D. (2020). Numerical analysis of sparse initial data
identification for parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis.

Mutný, M., Johannes, K., and Krause, A. (2020). Experimental design for orthogonal projection
pursuit regression. AAAI2020.

Mutný, M. and Krause, A. (2018). Efficient high dimensional bayesian optimization with additivity
and quadrature fourier features. In Neural and Information Processing Systems (NeurIPS).

Owhadi, H. and Scovel, C. (2016). Toward machine Wald. In Springer Handbook of Uncertainty
Quantification, pages 1–35. Springer.

Pukelsheim, F. (2006). Optimal Design of Experiments (Classics in Applied Mathematics) (Classics
in Applied Mathematics, 50). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA.

Pukelsheim, F. and Studden, W. J. (1993). E-optimal designs for polynomial regression. The Annals
of Statistics, pages 402–415.

Rasmussen, C. and Williams, C. (2006). Gaussian processes for machine learning, vol. 1. The MIT
Press, Cambridge, doi, 10:S0129065704001899.

Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411.

Settles, B. (2009). Active learning literature survey. University of Wisconsin-Madison Department
of Computer Sciences.

Shoham, N. and Avron, H. (2020). Experimental design for overparameterized learning with
application to single shot deep active learning. arXiv preprint arXiv:2009.12820.

Silvey, S., Titterington, D., and Torsney, B. (1978). An algorithm for optimal designs on a design
space. Communications in Statistics - Theory and Methods, 7(14):1379–1389.

12



Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010). Gaussian process optimization in the
bandit setting: No regret and experimental design. International Conference on Machine Learning.

Szepesvari, C. and Lattimore, T. (2020). Bandit Algorithms. Cambridge University Press.

Todd, M. J. (2016). Minimum-Volume Ellipsoids: Theory and Algorithms. SIAM, mos-siam series
on optimization edition.

Umlauft, J., Pöhler, L., and Hirche, S. (2018). An uncertainty-based control lyapunov approach for
control-affine systems modeled by gaussian process. IEEE Control Systems Letters, 2(3):483–488.

Valko, M., Munos, R., Kveton, B., and Kocak, T. (2014). Spectral bandits for smooth graph functions.
In International Conference on Machine Learning, pages 46–54.

Wendland, H. (2004). Scattered data approximation, volume 17. Cambridge university press.

Zhang, F. (2011). Matrix Theory: Basic Results and Techniques. Springer Science & Business Media.

13



Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] No. Theory
paper.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] It’s insignificant. I just used a
personal machine.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


