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A Environment Variables (EV)

A.1 Clarification of oracle Environment Variables (EV)

We first clarify environment variables (EV) from the following aspects:

(1) What is EV: EV are disentangled factors in the environment observation rather than perfect
abstract representation of the environment state that experts provide. It comes from observation, and
can include noise or lacks some key information of the true environment state. We conduct sensitivity
analysis experiments of EV in appendix A that verify the quality of EV does not seriously hurt the
performance of CDHRL.

(2) How to acquire EV in practicality: For environments providing state vector-based observa-
tion (which cover a broad category of environments, such as Atari [1], Mujoco [14], 2d-Minecraft
[13], and so on), obtaining "Environment Variables" (EV) is relatively convenient. The most sig-
nificant property of the EV is disentanglement. The state vector-based observation can be directly
transformed into the EV vector since information of different dimensions is disentangled. Many
HRL methods [9, 13, 6, 2, 5] commonly use them as the standard inputs. For example, LESSON [9]
assumes that each input state dimension represents an independent feature. DSC [2] uses disentangled
factors like position, orientation, linear velocity, rotational velocity, and a Haskey indicator as the
state space. For environments with image-based observation, finding EV has been largely studied,
like CausalVAE[15] and DEAR [11].

(3) What EVs do we use in our experiment: In our experiments, we utilize part of the observation
of the environment as EV. In Eden, we use the state values of the agent and the map as EV (including
much useless noise). In 2d-Minecraft, we use the backpack observation as EV (also used by other RL
methods for Mineraft [13, 10, 12].

(4) Why we employ EV: One reason is the acquisition of EV is easy in state vector-based
observation. Another important reason is described in section 4.1 of the paper. How to discover
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disentangled representation and how to exploit it are orthogonal and both important. Our paper focuses
on how to leverage causality to discover a high-quality subgoal hierarchy upon disentangled EV. So
we employ an oracle function. Besides, to ensure fairness and show the effect of causality-driven
discovery, we run all baselines with EV to compare.

A.2 Sensitivity analysis on Environment Variables (EV)
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Figure 1: Sensitivity analysis on environment variables. (a): Exploration capability comparison. (b)
and (c): Performance of CDHRL under different missing ratio of EVs

We want to explain that CDHRL does not necessarily build the complete causality graph on a perfect
EV set to take effect. We consider the following three cases:

(1) Incomplete causality graph: As long as some causality is discovered, the exploration effi-
ciency would be improved. i = 5 in Figure 1(a) means that CDHRL has iterated five cycles. The bars
of i = 5 shows that CDHRL can already explore hard-to-reach subgoals more efficiently than MEGA
and HAC even though the causality graph has not been converged.

(2) Existing noisy environment variables: We have already included noisy EVs in the experiment
setting, like unavailable materials and tools in 2D-Minecraft, and state values that irrelevant to survival
in Eden. Our methodology filters the noisy variables during causality graph generation because they
are uncontrollable environment variables for the agent.

(3) Missing effective environment variables: Missing a few effective EVs (10%) does not sig-
nificantly hurt the methodology. Figure 1(b) and Figure 1(c) show the performance of CDHRL
under different missing ratios of environment variables. We can see CDHRL still has competitive
performance compared with HAC even if missing some effective variables. This is because CDHRL
can discover A → C instead A → B → C if B is missing, and thus can guide to discover A’s
subgoals before C’s to promote efficiency. As demonstrated in section 6.3, even though the discovered
causality lost some variables and there are some long causality instead of true short causality, CDHRL
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still significantly outperforms existing methodologies, which also shows that CDHRL effectiveness is
not essentially sensitive to EVs.

B Causality-driven Hierarchical Reinforcement Learning (CDHRL) Details

B.1 CDHRL framework

The detail processing flow of the CDHRL framework is as described in Algorithm 1. As lines 6-12
shown, after causality discovery, we first select new effect variables, whose cause variables have been
in the controllable intervention variables set SIV , as candidate controllable variables SCC . Then, we
train subgoals of the candidate controllable variables. Furthermore, the subgoal training success ratios
are compared with the pre-defined threshold φcausal to select successfully trained subgoals. Finally,
we add new controllable variables SC that with successfully trained subgoals to the intervention
variables set SIV before the next round of intervention sampling and causality discovery.

Algorithm 1 CDHRL
Parameter Threshold φcausal

1: initial SCM’s structure parameters η, functional parameters θ; subgoal-based policies πh
2: Initial the intervention variables set SIV = {Vaction}
3: while True do
4: Intervention data DI = InterventionSampling(πh, SIV )
5: Causality graph C = CausalityDiscovery(η, θ,DI , SIV )
6: Candidate controllable variables set SCC =

{
Vi | Vi 6∈ SIV and Vpa(i,C) ⊂ SIV

}
7: if SCC is empty then
8: Break
9: else

10: Controllable variable set SC = SubgoalTraining(πh, C, SCC , φcausal)
11: SIV = SIV + SC
12: end if
13: end while
14: initial upper policy πt over subgoal-based policies πh
15: train πt maximizing the calculated extrinsic reward

B.2 Causality Discovery

We adopt the classic SCM-based casual discovery methodology to learn the causality between
environment variables. As show in the structure equation,

Xi := fi(Xpa(i,C), Ni), ∀i ∈ {0, . . . ,M − 1}, (1)

SCM over M variables consists of two sets of parameters: structural parameters η ∈ RM×M

models the causality graph C and functional parameters θ model the generating functions fi. The
matrix η ∈ RM×M is the soft adjacency matrix of the directed acyclic causality graph. σ(ηij)
represents the probability that Xj is a direct cause of Xi, where σ(x) = 1/(1 + exp(−x)). By
Bernoulli sampling Ber(σ(η)), we can draw a hypothesis configuration C of true causality graph. θi
are the parameters of Xi’s conditional probability function fi given Xi’s parent variable set Xpa(i,C).

In the implementation, the soft adjacent matrix η in SCM is modeled by a M ×M tensor. Each
variable’s generating function fθi is modeled by a 3-layer MLP network. For variable Xi’s generating
function fθi , all values of variables X∗,t are transformed to one-hot vectors and then concatenated
as the input of the network. But all variables’ values except Xi’s cause variables Xpa(i,C),t are
masked when computing. The output of fθi activated by a softmax layer are used to model the
discrete distribution of Xi,t+1. Figure 2(c) shows the generation function fθA of variable A under
the causality graph C in figure 2(a). When computing A’s distribution, variable values except for A’s
parents B,C are masked as zero.

Mathematically, we can optimize parameters η and θ to learn the causality between variables. We
adopt a two-phase iterative and continuous optimization method similarly to SDI [8] to alternately
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Figure 2: An implementation example. (a): A causality graph with four variables A,B,C,D. (b):
Implementation of the subgoal hierarchy based on the causality graph in (a). The arrows pointing to
the subgoal indicate the subgoal’s action space. For example, subgoal Bi’s action space consists of
B’s parent variable D’s subgoals and primitive action space. (c): Implementation of variable A’s
generation function fθA .

learn the η and θ parameters. The pseudo-code of the optimization process is as described in
Algorithm 2. Fs is function parameters θ’s training times in one iteration, Qs is structural parameters
η’s training times in one iteration, and K is the sampling times to estimate the gradient of η.

In the first phase, called function learning, θ can be optimized by fixing η and maximizing the
likelihood of the collected data. Specifically, we first collect intervention data of different variables.
Then we sample the hypothesis configuration C of the causality graph from σ(η) to control the input
of the generation function f . Finally, we maximize the likelihood of the data under the configuration
C to optimize θ (see lines 4-7 in algorithm 2).

In the second phase, called structure learning, we estimate the gradient of η through a REINFORCE-
like predictor proposed by Bengio et al. [3]. For the causality with the variable Xj as the cause, the
gradient gij of ηij is estimated from its intervention data X by the following formula:

gij =
∑
k

(σ(ηij)− c(k)ij )

(
L
(k)
C,i(X)∑
k L

(k)
C,i(X)

)
, ∀i ∈ {0, . . . ,M − 1}, (2)

where k represents the k-th draw of hypothesis configuration C under the current η. L
(k)
C,i(X)

represents the Xi’s likelihood of the intervention data based on C(k) (see lines 13-20 in algorithm 2).
The two optimization phase cycle until convergence. In practice, we train T iterations and return the
causalities whose estimated probability exceeds 80% (see line 25 in algorithm 2).
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Algorithm 2 CausalityDiscovery
Parameter Structural parameters η ∈ RM×M ; Functional parameters θ; Intervention data set DI ;
Intervention variable set SIV ;

1: while T times iteration do
2: while fidx < Fs do
3: for variable i = 0 to Size(SIV ) do
4: X ∼ DI [i]
5: C ∼ Ber((σ(η)))
6: L = − logP (X|C; θi)
7: θi ← Adam(θi,∇θiL)
8: end for
9: fidx = fidx + 1

10: end while
11: while qidx < Qs do
12: for variable j = 0 to Size(SIV ) do
13: while k < K do
14: X ∼ DI [j]
15: C(k) ∼ Ber((σ(η)))
16: L

(k)
C = − logP (X|C; θ)

17: k = k + 1
18: end while
19: g:,j =

∑
k(σ(η:,j)− c

(k)
:j )

(
L

(k)
C∑

k L
(k)
C

)
20: ηj ← ηj + gj
21: end for
22: qidx = qidx + 1
23: end while
24: end while
25: return C = {1σ(ηij)>0.8}

The causality graph discovered in 2d-Minecraft has been shown in the results section, that discovered
in Eden is shown in the figure 3(a).
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(a) Causality Graph discovered in Eden

B.3 Subgoal Training

The pseudo-code of the subgoals training process is as described in Algorithm 3. The k =
MaxDepth(c) in line 3 shows that the max depth in the causality graph C is k. As the hierar-
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chy of subgoals is transformed from the causality graph, we should keep that k is also the level
number of subgoal-based hierarchical policy πh. A simple example of the causality graph and the
corresponding subgoal hierarchy is shown in Figure 2(a) and 2(b). The max depth of the causality
graph and the level number of the subgoal-based hierarchical policy are both equal to three. As
lines 3-7 show, when there is new causality, we check its depth in the causality graph first to decide
whether to build a new subgoal level. Then we insert the new subgoals to the corresponding levels.
Because all subgoal policies of the same level are implemented in one policy neural network, we
need to ensure the agent will not forget the old subgoals when training new subgoals. Thus, whenever
we train new subgoals in level k, we train all subgoals at level k together (see lines 10-16). After
training, we return variables whose corresponding subgoal success ratio exceeds the pre-defined ratio
φcausal as controllable variables.

Algorithm 3 SubgoalTraining
Parameter subgoal-based hierarchical policy πh; causality graphC; Candidate controllable variables
set SCC ; Verification threshold φcausal

1: Change Function Set F = {fi, fd}
2: Candidate goals GC = {(X, y)|X ∈ SCC , y ∈ F}
3: k =MaxDepth(C)
4: if k > πh.levels then
5: BuildNewLevel(k, πh)
6: end if
7: InsertSubgoal(GC , πh)
8: kmin =MinDepth(GC)
9: kmax =MaxDepth(GC)

10: for kidx = kmin to kmax do
11: Trainning goals GT = {g|g.depth = kidx}
12: Trained steps t = 0
13: while t < T do
14: Random goal g = RandomSelect(GT )
15: Execute g and put trajectory into replay buffer D
16: Train πh using D
17: t = t+ Length(trajectory)
18: end while
19: end for
20: Controllable variables set SC = {X|SuccessRatio((X, y)) > φcausal, y ∈ F}
21: return SC

B.4 Implementation Parameters

B.4.1 Causality Discovery parameters

• Function model: 3-layer MLP, hidden size = 128.
• Batch: 256.
• T: 50 iterations.
• Fs: 1000.
• Qs: 100.
• K: 25 per cycle.
• learning rate: lrθ = 5e− 3, lrη = 5e− 2

B.5 Subgoal Training Parameters

• Exploration in DQN: ε− greedy exploration with ε = 0.05.
• Batch: 128.
• Goal horizon H: The max steps to achieve a goal, Heden = 10, H2D−Minecraft = 15

• Goal policy Gamma: γeden = 0.9, γ2D−Minecraft = 0.9
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(b) 2D-Minecraft (c) Eden

Figure 3: Environments

• Task policy gamma: γeden = 0.99, γ2D−Minecraft = 0.95

• learning rate: lr = 1e− 4

• Causal threshold: φcausal = 0.8

• Goal trained threshold: φtrained = 0.6

• Max goal trained steps: T = 10000

C Environment Details

C.1 Descriptions

C.1.1 2D-Minecraft

2D-Minecraft [13] is a simplified 2D version of the famous Minecraft [7] with a 10× 10 grid map as
shown in Figure 3(b). In one episode with limited steps, the agent needs to navigate in the map, pick
up various materials, and craft tools in specific positions to obtain advanced materials until getting
the diamond. There are 21 kinds of objects and complicated relationships in the environment, as
shown in 4(a). The observation consists of the positions of each material and the contents of the
backpack. The environment variables are the numbers of different items in the backpack (including
has not acquired ones). The actions include moving, picking, and crafting. The extrinsic reward in the
experiments is highly sparse since the agent can only get a positive reward when obtaining a diamond
during an episode.

C.1.2 Eden

Eden [4] is a survival game which is similar to “Don’t Starve” as shown in Figure 3(c) To make a
living in a 40× 40 grid map, the agent with 8× 8 vision range must chase animals to obtain food to
maintain satiety, find rivers to get water to prevent being thirsty, and collect materials to craft tools to
be survived in the night. The agent can only get a negative reward when its satiety or thirst value
drops to zero and dies. Compared to 2D-Minecraft, the acquisition relationship between items in
Eden is relatively simple. However, the observation and action space are more complicated. The
observation consists of positions of different resources, various state values about the agent and
environment, and contents in the backpack. The actions include flexible moving, attacking, gathering,
crafting, discarding, and consuming items. The environment variables include the number of items in
the backpack, distances to different resources, and state values such as satiety, thirst, and time.
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EV Ranges
Workspace 2

Furnace 2
Jeweler shop 2

Wood 2
Stone 2
Coal 2

Iron ore 2
Silver ore 2
Gold ore 2
Diamond 2

Stick 2
Stone pickaxe 2

Iron 2
Silver 2

Iron pickaxe 2
Gold 2

Earings 2
Ring 2

Goldware 2
Bracelet 2
Necklace 2
Action 6

Table 1: 2D-Minecraft Environment variables

EV Ranges
Pig 3

River 3
Tree 3
Wolf 3
Meat 5
Water 5
Wood 5
Torch 5
Satiety 5
Thirsty 5

Hp 5
Vision 2
Time 12

Action 11
Table 2: Eden Environment variables
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Figure 4: Causality graphs

C.2 Environment Variables (EV) definitions and Causality Graph

Table 1 and Table 2 shows Environment variables (EV) of the two environments. The ground truth
causality graphs are as shown in Figure 4(a) and 4(b).
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