
(a) Discrete time weight
update

(b) Continuous time weight
update

(c) Galerkin condition

Figure 5: Panels (a)-(b): Graphical re-interpretation of the weight update step as a time-continuous
process. Panel (c): Orthogonal projection onto the tangent space of the low-rank manifoldMr. The
dashed line depicts the projection resulting in Ẇk(t), which is the tangent element minimizing the
distance between∇Wk

L(Wk(t)) and the tangent space TWk(t)Mr at the approximation Wk(t).

6 Appendix

6.1 Proofs of the main results

We provide here a proof of Theorems 1 and 2. The proof is based on a number of classical results as
well as recent advances in DLRA theory, including [4, 6, 32, 35, 44].

Recall that, for a fixed layer k, we reinterpret the training phase as a continuous-time evolution of the
weights on the manifold of low-rank matrices, as illustrated in Fig. 5(a-b). This boils down to solving
the manifold-constrained matrix differential equation

min
{
∥Ẇk(t)−Fk(Wk(t))∥ : Ẇk(t) ∈ TWk(t)Mrk

}
, (10)

where ∥ · ∥ is the Frobenius norm and Fk denotes the gradient flow of the loss with respect to the
k-th matrix variable, namely

Fk(Z) = −∇Wk
L(W1, . . . , Z, . . . ,WM ;N (x), y) .

For the sake of simplicity and for a cleaner notation, as all the results we will present hold for a
generic k, we drop the subscript k from now on. In particular, we assume W is the weight matrix of
a generic hidden layer with n input and m output neurons.

In order for our derivation to hold, we require the following two properties:

P1. The gradient flow F is locally bounded and locally Lipschitz continuous, with constants C1 and
C2, respectively. Namely, we assume there exist C1, C2 > 0 (independent of k) such that

∥F(Z)∥ ≤ C1 ∥F(Z)−F(Z̃)∥ ≤ C2∥Z − Z̃∥

for all Z, Z̃ ∈ Rm×n.
P2. The whole gradient flow is “not too far” from the rank-r manifoldMr. Precisely, we assume

that for any Z ∈Mr arbitrary close to W (t), the whole gradient flow F(Z) near t is such that

∥(I − P(Z))F(Z)∥ ≤ ε ,

where P(Z) denotes the orthogonal projection onto TZMr.

Note that both assumptions are valid for low-rank neural network training. In particular, Lipschitz
continuity and boundedness of the gradient are standard assumptions in optimization and are satisfied
by the gradient of commonly used neural networks’ losses. Moreover, assuming the gradient flow to
be close to the low-rank manifold is an often encountered empirical observation in neural networks
[15, 48, 53].

In order to derive the proof of Theorems 1 and 2 we first present a number of relevant background
lemmas. The first lemma shows that the subspace generated by the K-step in Algorithm 1 after the
QR-decomposition is O(η(η + ε)) close to the range of the exact solution, where η is the time-step
of the integrator and ε is the eigenvalue truncation tolerance.

14



Lemma 1 ([6, Lemma 2]). Let W 1 be the solution at time t = η of the full problem (2) with initial
condition W 0. Let U1 be the matrix obtained with the K-step of the fixed-rank Algorithm 1, after one
step. Under the assumptions P1 and P2 above, we have

∥U1U1,⊤W 1 −W 1∥ ≤ θ

where
θ = C1C2(4e

C2η + 9)η2 + (3eC2η + 4)εη .

Proof. The local error analysis of [32] shows that there exists L1 such that

∥U1L1,⊤ −W 1∥ ≤ θ.

It follows that,

∥U1L1,⊤ −W 1∥2 = ∥U1L1,⊤ − U1U1,⊤W 1 + U1U1,⊤W 1 −W 1∥2

= ∥U1U1,⊤(U1L1,⊤ −W 1) + (I − U1U1,⊤)(−W 1)∥2

= ∥U1U1,⊤(U1L1,⊤ −W 1)∥2 + ∥(I − U1U1,⊤)W 1∥2.

Therefore,
∥U1U1,⊤(U1L1,⊤ −W 1)∥2 + ∥(I − U1U1,⊤)W 1∥2 ≤ θ2.

Hence, since both terms must be bounded by θ2 individually, we obtain the stated result.

In the next lemma we show that also the space generated by the L step is close by the exact solution.
Namely, combined with the previous result, we have

Lemma 2 ([6, Lemma 3]). Let W 1, U1 be defined as above. Let V 1 be the matrix obtained from the
L-step of the fixed-rank Algorithm 1, after one step. The following estimate holds:

∥U1U1,⊤W 1V 1V 1,⊤ −W 1∥ ≤ 2θ.

Proof. The L-step is obtained as the K-step applied to the transposed function G(Y ) = F(Y ⊤)⊤.
Due to the invariance of the Frobenius norm under transposition, property P1 holds. Similarly,
property P2 continues to be satisfied because

∥(I − P(Y ))G(Y )∥ = ∥(I − P(Y ⊤))F(Y ⊤)∥ ≤ ε,

where the equality P(Y )Z⊤ =
[
P(Y ⊤)Z

]⊤
has been used [35, §4]. It follows from Lemma 1 that

∥U1U1,⊤W 1 −W 1∥ ≤ θ,

∥V 1V 1,⊤W 1,⊤ −W 1,⊤∥ ≤ θ.
(11)

This implies that

∥U1U1,⊤W 1V 1V 1,⊤ −W 1∥ ≤ ∥U1U1,⊤W 1V 1V 1,⊤ −W 1V 1V 1,⊤ +W 1V 1V 1,⊤ −W 1∥
≤ ∥U1U1,⊤W 1V 1V 1,⊤ −W 1V 1V 1,⊤∥+ ∥W 1V 1V 1,⊤ −W 1∥
≤ ∥
(
U1U1,⊤W 1 −W 1

)
V 1V 1,⊤∥+ ∥V 1V 1,⊤W 1,⊤ −W 1,⊤∥

≤ ∥U1U1,⊤W 1 −W 1∥ · ∥V 1V 1,⊤∥2 + ∥V 1V 1,⊤W 1,⊤ −W 1,⊤∥.

Because ∥V 1V 1,⊤∥2 = 1, the stated result follows from (11).

With the previous lemmas, we are in the position to derive the local error bound for the fixed-rank
KLS integrator of Section 4.

Lemma 3 (Local Error, [6, Lemma 4]). Let W 1, U1, V 1 be defined as above and let S1 be the matrix
obtained with the S-step of Algorithm 1 after one step. The following local error bound holds:

∥U1S1V 1,⊤ −W 1∥ ≤ η(ĉ1ε+ ĉ2η),

where the constants ĉi are independent of the singular values of W 1 and S1.

15



Proof. From Lemma 2 and the equality Y 1 = U1S1V 1,⊤, we have that

∥Y 1 −W 1∥ ≤ ∥Y 1 − U1U1,⊤W 1V 1V 1,⊤∥+ ∥U1U1,⊤W 1V 1V 1,⊤ −W 1∥
≤ ∥U1(S1 − U1,⊤W 1V 1)V 1,⊤∥+ 2θ

≤ ∥S1 − U1,⊤W 1V 1∥+ 2θ.

The local error’s analysis is reduced to bound the term ∥S1 − U1,⊤W 1V 1∥. For 0 ≤ t ≤ η, we thus
introduce the following auxiliary quantity:

S̃(t) := U1,⊤W (t)V 1.

We observe that the term W (t) can be re-written as

W (t) = U1U1,⊤W (t)V 1V 1,⊤ +
(
W (t)− U1U1,⊤W (t)V 1V 1,⊤

)
= U1S̃(t)V 1,⊤ +R(t),

whereR(t) denotes the term in big brackets. For 0 ≤ t ≤ η, it follows from Lemma 2 and the bound
C1 of the function F that

∥W (t)−W (η)∥ ≤
∫ η

0

∥Ẇ (s)∥ ds =
∫ η

0

∥F(W (s))∥ ds ≤ C1η.

Therefore, the termR(t) is bounded by
∥R(t)∥ ≤ ∥R(t)−R(η)∥+ ∥R(η)∥ ≤ 2C1η + 2θ.

We re-cast the function F
(
W (t)

)
as

F
(
W (t)

)
= F

(
U1S̃(t)V 1,⊤ +R(t)

)
= F

(
U1S̃(t)V 1,⊤)+D(t)

where the defect D(t) is given by

D(t) := F
(
U1S̃(t)V 1,⊤ +R(t)

)
−F

(
U1S̃(t)V 1,⊤).

Via the Lipschitz constant C2 of the function F , the defect is bounded by
∥D(t)∥ ≤ C2∥R(t)∥ ≤ 2C2(C1η + θ).

Now, we compare the two differential equations
˙̃
S(t) = U1,⊤F

(
U1S̃(t)V 1,⊤)V 1 + U1,⊤D(t)V 1, S̃(0) = U1,⊤W 0V 1,

Ṡ(t) = U1,⊤F
(
U1S(t)V 1,⊤)V 1, S(0) = U1,⊤W 0V 1.

The solution S1 obtained in the second differential equation is the same as given by the S-step of the
KLS integrator of Section 4. By construction, the solution obtained in the first differential equation at
time t = η is S̃(η) = U1,⊤W 1V 1. With the Gronwall inequality we obtain

∥S1 − U1,⊤W 1V 1∥ ≤
∫ η

0

eC2(η−s) ∥D(s)∥ ds ≤ eLη 2C2(C1η + θ)η.

The result yields the statement of the theorem using the definition of θ.

We are now in the position to conclude the proof of Theorem 1.

Proof of Theorem 1. In Lemma 3, the local error for the fixed-rank integrator of §4 has been provided.
The local error in time of the rank-adaptive version is directly obtained via a triangle inequality:

∥U1S1V 1,⊤ −W (η)∥ ≤ ĉ1εη + ĉ2η
2 + ϑ ,

where ϑ is the tolerance parameter chosen for the truncation procedure. Here, we abuse the notation
and we maintain the same nomenclature U1, S1, and V 1 also for the novel low-rank approximation
obtained via the truncation procedure.

Thus, we conclude the proof using the Lipschitz continuity of the function F . We move from the
local error in time to the global error in time by a standard argument of Lady Windermere’s fan [21,
Section II.3]. Therefore, the error after t steps of the rank-adaptive Algorithm 1 is given by

∥U tStV t,⊤ −W (tη)∥ ≤ c1ε+ c2η + c3ϑ/η .

16



To conclude with, we prove that after one step the proposed rank-adaptive DLRT algorithm decreases
along the low-rank approximations. We remind that only property P1 needs to be assumed here.

Proof of Theorem 2. Let Ŷ (t) = U1S(t)V 1,⊤. Here, S(t) denotes the solution for t ∈ [0, η] of the
S-step of the rank-adaptive integrator . It follows that

d

dt
L(Ŷ (t)) = ⟨∇L(Ŷ (t)),

˙̂
Y (t)⟩

= ⟨∇L(Ŷ (t)), U1Ṡ(t)V 1,⊤⟩
= ⟨U1,⊤∇L(Ŷ (t))V 1, Ṡ(t)⟩
= ⟨U1,⊤∇L(Ŷ (t))V 1, −U1,⊤∇L(Ŷ (t))V 1⟩ = −∥U1,⊤∇L(Ŷ (t))V 1∥2 .

The last identities follow by definition of the S-step. For t ∈ [0, η] we have

d

dt
L(Ŷ (t)) ≤ −α2 (12)

where α = min0≤τ≤1 ∥U1,⊤∇L
(
Ŷ (τη)

)
V 1∥. Integrating (12) from t = 0 until t = η, we obtain

L(Ŷ 1) ≤ L(Ŷ 0)− α2η.

Because the subspace U1 and V 1 contain by construction the range and co-range of the initial value,
we have that Ŷ 0 = U0S0V 0,⊤ [4, Lemma 1]. The truncation is such that ∥Y 1− Ŷ 1∥ ≤ ϑ. Therefore,

L(Y 1) ≤ L(Ŷ 1) + βϑ

where β = max0≤τ≤1 ∥∇L
(
τY 1 + (1− τ)Ŷ 1

)
∥. Hence, the stated result is obtained.

6.2 Detailed timing measurements

Table 3 displays the average batch training times of a 5-layer, 5120-neuron dense network on the
MNIST dataset, with a batch size of 500 samples. We average the timings over 200 batches and
additionally display the standard deviation of the timings corresponding to the layer ranks. The batch
timing measures the full K,L and S steps, including back-propagation and gradient updates, as well
as the loss and metric evaluations.

Table 3: Average batch training times for fixed low-rank training of a 5-layer fully-connected network
with layer widths [5120, 5120, 5120, 5120, 10]. Different low-rank factorizations are compared

ranks mean time [s] std. deviation [s]
full-rank 0.320 ±0.005227

[320, 320, 320, 320, 320] 0.855 ±0.006547
[160, 160, 160, 160, 10] 0.387 ±0.005657
[80, 80, 80, 80, 10] 0.198 ±0.004816
[40, 40, 40, 40, 10] 0.133 ±0.005984
[20, 20, 20, 20, 10] 0.098 ±0.005650
[10, 10, 10, 10, 10] 0.087 ±0.005734
[5, 5, 5, 5, 10] 0.071 ±0.005369

Table 4 shows the average test time of a 5-layer, 5120-neuron dense network, for different low-rank
factorizations and the full rank reference network. The timings are averaged over 1000 evaluations of
the 60K sample MNIST training data set. We measure the K step forward evaluation of the low-rank
networks as well as the loss and prediction accuracy evaluations.

6.3 Detailed training performance of adaptive low-rank networks

Tables 5 and 6 display a detailed overview of the adaptive low-rank results of §5.1. The displayed
ranks are the ranks of the converged algorithm. The rank evolution of the 5-Layer, 500-Neuron test
case can be seen in Fig. 6. The Evaluation parameter count corresponds to the parameters of the

17



Table 4: Average dataset prediction times for fixed low-rank training of a 5-layer fully-connected net-
work with layer widths [5120, 5120, 5120, 5120, 10]. Different low-rank factorizations are compared.

ranks mean time [s] std. deviation [s]
full-rank 1.2476 ±0.0471

[2560, 2560, 2560, 2560, 10] 1.4297 ±0.0400
[1280, 1280, 1280, 1280, 10] 0.7966 ±0.0438
[640, 640, 640, 640, 10] 0.4802 ±0.0436
[320, 320, 320, 320, 10] 0.3286 ±0.0442
[160, 160, 160, 160, 10] 0.2659 ±0.0380
[80, 80, 80, 80, 10] 0.2522 ±0.0346
[40, 40, 40, 40, 10] 0.2480 ±0.0354
[20, 20, 20, 20, 10] 0.2501 ±0.0274
[10, 10, 10, 10, 10] 0.2487 ±0.0276
[5, 5, 5, 5, 10] 0.2472 ±0.0322

K step of the dynamical low-rank algorithm, since all other matrices are no longer needed in the
evaluation phase. The training parameter count is evaluated as the number of parameters of the S
step of the adaptive dynamical low rank training, with maximal basis expansion by 2r, where r is
the current rank of the network. We use the converged ranks of the adaptive low-rank training to
compute the training parameters. Note that during the very first training epochs, the parameter count
is typically higher until the rank reduction has reached a sufficiently low level.

Table 5: Dynamical low rank training for 5-layer 500-neurons network. c.r. denotes the compression
rate relative to the full rank dense network.

NN metrics Evaluation Train
τ test acc. ranks params c.r. params c.r.

full-rank 98.54± 0.03% [500, 500, 500, 500, 10] 1147000 0% 1147000 0%

0.03 98.49± 0.02% [176, 170, 171, 174, 10] 745984 34.97% 1964540 -71.27%
0.05 98.56± 0.02% [81, 104, 111, 117, 10] 441004 61.56% 1050556 8.40%
0.07 98.52± 0.08% [52, 67, 73, 72, 10] 283768 75.26% 633360 44.78%
0.09 98.34± 0.14% [35, 53, 51, 46, 10] 199940 82.57% 429884 62.52%
0.11 98.11± 0.46% [27, 40, 37, 38, 10] 154668 86.52% 324904 71.67%
0.13 97.50± 0.23% [20, 31, 32, 30, 10] 123680 89.22% 255500 77.72%
0.15 97.22± 0.29% [17, 25, 26, 24, 10] 101828 91.13% 207320 81.92%
0.17 96.90± 0.45% [13, 21, 24, 20, 10] 86692 92.45% 174728 84.76%

Table 6: Dynamical low rank training for 5-layer 784-neurons network. c.r. denotes the compression
rate relative to the full rank dense network.

NN metrics Evaluation Train
τ test acc. ranks params c.r. params c.r.

full-rank 98.53± 0.04% [784, 784, 784, 784, 10] 2466464 0% 2466464 0%

0.03 98.61± 0.07% [190, 190, 190, 190, 10] 1199520 51.37% 2968800 -20.36%
0.05 98.59± 0.06% [124, 120, 125, 126, 10] 784000 68.22% 1805268 26.80%
0.07 98.58± 0.03% [76, 86, 85, 83, 10] 525280 78.71% 1151864 53.29%
0.09 98.49± 0.05% [56, 67, 63, 59, 10] 392000 84.41% 836460 66.08%
0.11 98.12± 0.21% [35, 49, 47, 43, 10] 280672 88.63% 584240 76.31%
0.13 97.95± 0.23% [29, 35, 38, 34, 10] 221088 91.04% 453000 81.63%
0.15 97.81± 0.17% [22, 29, 27, 27, 10] 172480 93.01% 348252 85.88%
0.17 97.40± 0.25% [17, 23, 22, 23, 10] 141120 94.28% 281724 88.57%

6.3.1 Lenet5 experiment

In Table 7 we report the results of five independent runs of the dynamic low-rank training scheme on
Lenet5; we refer to §5.1 for further details. For each column of the table, we report the mean value
together with its relative standard deviations. No seed has been applied for splitting the dataset and
generating the initial weights configuration.

18



a) Rank evolution for τ = 0.17 b) Rank evolution for τ = 0.15

c) Rank evolution for τ = 0.13 d) Rank evolution for τ = 0.11

e) Rank evolution for τ = 0.09 f) Rank evolution for τ = 0.07

g) Rank evolution for τ = 0.05 h) Rank evolution for τ = 0.03

Figure 6: Rank evolution of the dynamic adaptive low-rank training algorithm for the 5-layer, 500-
neuron dense architecture.

19



Table 7: Mean results and standard relative deviations of the dynamic low-rank training algorithm
over five independent runs on Lenet5. Adaptive learning rate of 0.05 with 0.96−exponentially
decaying tax.

NN metrics Evaluation Train
τ test acc. ranks params c.r. params c.r.
0.11 95.420± 1.865% [15, 46, 13, 10] 47975 88.9% 50585 88.2%
0.15 95.527± 1.297% [13, 31, 9, 10] 34435 92.0% 35746 91.69%
0.2 95.009± 1.465% [10, 20, 7, 10] 25650 94.04% 26299 93.89%
0.3 92.434± 1.757% [6, 9, 4, 10] 15520 96.39% 15753 96.34%

6.4 Detailed training performance of low-rank pruning

The proposed low-rank training algorithm does not need to be applied to train a network from random
initial weight guesses. When an already trained network is available, the proposed method can be
employed as a memory-efficient pruning strategy. A straightforward approach to reduce a trained
fully-connected network to a rank r network is to compute an SVD for all weight matrices and to
truncate those decompositions at rank r. However, while this choice is optimal to present weight
matrices, it might significantly reduce the accuracy of the network. Hence, retraining the determined
low-rank subnetwork is commonly necessary to obtain desirable accuracy properties. Three key
aspects are important to obtain an efficient pruning method for low-rank methods:

1. Retraining preserves the low-rank structure of the subnetwork.
2. Retraining does not exhibit the memory footprint of the fully connected network.
3. Retraining finds the optimal network among possible low rank networks.

Let us note that the attractor of the proposed dynamical low-rank evolution equations fulfills these
three requirements. Recall that for the evolution equations we have (3):

min
{
∥Ẇk(t) +∇Wk

L(Wk(t))∥F : Ẇk(t) ∈ TWk(t)Mrk

}
. (13)

The condition Ẇk(t) ∈ TWk(t)Mrk ensures that the weight matrices remain of low-rank. Moreover,
as previously discussed, the training method only requires memory capacities to store low-rank
factors. At the attractor, i.e., when Ẇk = 0, the last condition ensures that the attractor minimizes
∥∇Wk

L(Wk(t))∥F . That is, the attractor is the optimal low-rank subnetwork in the sense that it picks
the network with minimal gradient. To underline the effectiveness of our low-rank method as a pruning
technique, we take the fully connected network from Table 6. To demonstrate the poor validation
accuracy when simply doing an SVD on the full 784 by 784 weight matrices and truncating at a given
smaller rank, we perform this experiment for ranks r ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. It
turns out that though reducing memory requirements, this strategy leads to unsatisfactory accuracy of
about 10%, see the first column of Table 8. Then, we use the proposed low-rank training methods
with fixed rank r to retrain the network. As starting points, we use the low-rank networks which
have been determined by the truncated SVD. Retraining then reaches desired accuracies that are
comparable to the previously determined low-rank networks in Table 6.

6.5 Detailed derivation of the gradient

In this section, we derive the computation of the gradients in the K, L and S steps in detail. For this,
let us start with the full gradient, i.e., the gradient of the loss with respect to the weight matrix Wk.
We have

∂W ℓ
jk
L =

nM∑
iM=1

∂zM
iM

L∂W ℓ
jk
zMiM =

nM∑
iM=1

∂zM
iM

L∂W ℓ
jk
σM

∑
iM−1

WiM iM−1
zM−1
iM−1

+ bMiM


=

nM∑
iM=1

∂zM
iM

Lσ′
M

∑
iM−1

WiM iM−1
zM−1
iM−1

+ bMiM

 ∂W ℓ
jk

∑
iM−1

WiM iM−1
zM−1
iM−1

 . (14)

20



Table 8: Pruning methods with 784 Neurons per layer

test accuracy Evaluation
SVD low-rank training ranks params c.r.
98.63% 98.63% [784, 784, 784, 784, 10] 2466464 0%
9.91% 98.16% [100, 100, 100, 100, 10] 635040 74.25%
9.67% 98.44% [90, 90, 90, 90, 10] 572320 76.80%
9.15% 98.47% [80, 80, 80, 80, 10] 509600 79.34%
9.83% 98.58% [70, 70, 70, 70, 10] 446880 81.88%
9.67% 98.41% [60, 60, 60, 60, 10] 384160 84.42%
9.83% 98.39% [50, 50, 50, 50, 10] 321440 86.97%
10.64% 98.24% [40, 40, 40, 40, 10] 258720 89.51%
10.3% 98.24% [30, 30, 30, 30, 10] 196000 92.05%
9.15% 97.47% [20, 20, 20, 20, 10] 133280 94.60%
10.9% 95.36% [10, 10, 10, 10, 10] 70560 97.14%

For a general α, let us define

σ′
α,iα := σ′

α

∑
iα−1

Wα
iαiα−1

zα−1
iα−1

+ bαiα

 (15)

and note that for α ̸= ℓ

∂W ℓ
jk

∑
iα−1

Wα
iαiα−1

zα−1
iα−1

 =
∑
iα−1

Wα
iαiα−1

∂W ℓ
jk
zα−1
iα−1

, (16)

whereas for α = ℓ we have

∂W ℓ
jk

 nα−1∑
iα−1=1

Wα
iαiα−1

zα−1
iα−1

 =
∑
iα−1

δjiαδkiα−1
zα−1
iα−1

. (17)

Therefore, recursively plugging (15), (16) and (17) into (14) yields

∂W ℓ
jk
L =

nM∑
iM=1

∂zM
iM

Lσ′
M,iM

∑
iM−1

Wα
iM iM−1

∂W ℓ
jk
zM−1
iM−1

=

nM∑
iM=1

∂zM
iM

Lσ′
M,iM

∑
iM−1

Wα
iM iM−1

σ′
M−1,iM−1

∑
iM−2

Wα
iM−1iM−2

∂W ℓ
jk
zM−2
iM−2

= · · ·

=
∑

iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

∂W ℓ
jk

 nℓ−1∑
iℓ−1=1

W ℓ
iℓiℓ−1

zℓ−1
iℓ−1

 (18)

=
∑

iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

∑
iℓ−1

δjiℓδkiℓ−1
zℓ−1
iℓ−1

=
∑

iℓ+1,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,jδjiℓz

ℓ−1
k

Written in matrix notation and making use of the Hadamard product defined as y◦A◦x = (yiAijxj)ij ,
for A ∈ Rm×n, x ∈ Rn and y ∈ Rm, we have:

∂W ℓL =∂zML⊤

(
σ′
ℓ ◦

M∏
α=ℓ+1

W⊤
α ◦ σ′

α

)⊤

z⊤ℓ−1

21



Now, let us move to deriving the K, L and S-steps for the dynamical low-rank training. For the K-step,
we represent the weight matrix Wℓ as W ℓ

iℓiℓ−1
=
∑

m Kℓ
iℓm

V ℓ
iℓ−1m

. Hence, reusing the intermediate
result (18) yields

∂Kℓ
jk
L =

∑
iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

∂Kℓ
jk

 nℓ−1∑
iℓ−1=1

∑
m

Kℓ
iℓm

V ℓ
iℓ−1m

zℓ−1
iℓ−1


=

∑
iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

nℓ−1∑
iℓ−1=1

∑
m

δjiℓδkmV ℓ
iℓ−1m

zℓ−1
iℓ−1

=
∑

iℓ+1,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

nℓ−1∑
iℓ−1=1

δjiℓV
ℓ
iℓ−1k

zℓ−1
iℓ−1

In matrix notation we obtain

∂Kℓ
L =∂zML⊤

(
σ′
ℓ ◦

M∏
α=ℓ+1

W⊤
α ◦ σ′

α

)⊤ (
V ⊤
ℓ zℓ−1

)⊤
= ∂Wℓ

LVℓ,

which is exactly the right-hand side of the K-step. Hence, the K-step can be computed by a forward
evaluation of L and recording the gradient tape with respect to Kℓ. Similarly, for the L-step, we
represent Wℓ as W ℓ

iℓiℓ−1
=
∑

m U ℓ
iℓm

Lℓ
iℓ−1m

. Hence,

∂Lℓ
jk
L =

∑
iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

∂Lℓ
jk

 nℓ−1∑
iℓ−1=1

∑
m

U ℓ
iℓm

Lℓ
iℓ−1m


=

∑
iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

nℓ−1∑
iℓ−1=1

∑
m

U ℓ
iℓm

δjiℓ−1
δkmzℓ−1

iℓ−1

=
∑

iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

U ℓ
iℓm

zℓ−1
j .

In matrix notation, we obtain

∂Lℓ
L =

U⊤
ℓ ∂zML⊤

(
σ′
ℓ ◦

M∏
α=ℓ+1

W⊤
α ◦ σ′

α

)⊤

z⊤ℓ−1

⊤

= (∂Wℓ
L)⊤ Uℓ.

Lastly, for the S-step we write W ℓ
iℓiℓ−1

=
∑

n,m U ℓ
iℓm

SmnV
ℓ
iℓ−1n

. Then,

∂Sℓ
jk
L =

∑
iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

∂Sℓ
jk

(∑
n,m

U ℓ
iℓm

SmnV
ℓ
iℓ−1n

)

=
∑

iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

nℓ−1∑
iℓ−1=1

∑
m

U ℓ
iℓm

δjmδknV
ℓ
iℓ−1n

zℓ−1
iℓ−1

=
∑

iℓ,··· ,iM

∂zM
iM

L
M∏

α=ℓ+1

σ′
α,iαW

α
iαiα−1

σ′
ℓ,iℓ

U ℓ
iℓj

V ℓ
iℓ−1k

zℓ−1
iℓ−1

.

In matrix notation, we have

∂Sℓ
L = U⊤

ℓ ∂zML⊤

(
σ′
ℓ ◦

M∏
α=ℓ+1

W⊤
α ◦ σ′

α

)⊤ (
V ⊤
ℓ zℓ−1

)⊤
= U⊤

ℓ ∂Wℓ
LVℓ.

22



6.6 Low-rank matrix representation and implementation of convolutional layers

A generalized convolutional filter is a four-mode tensor W ∈ RF×C×J×K consisting of F filters of
shape C × J ×K, which is applied to a batch of N input C− channels image signals Z of spatial
dimensions U × V as the linear mapping,

(Z ∗W )(n, f, u, v) =

J∑
j=1

K∑
k=1

C∑
c=1

W (f, c, j, k)Z(n, c, u− j, v − k) . (19)

In order to train the convolutional filter on the low-rank matrix manifold, we reshape the tensor W
into a rectangular matrix W resh ∈ RF×CJK . This reshaping is also considered in e.g. [28]. An option
is, to see the convolution as the contraction between an three-mode tensor Zunfolded of patches and the
reshaped kernel matrix W resh using Pytorch’s fold-unfold function. We can construct the unfold by
stacking the vectorized version of sliding patterns of the kernel on the original input, obtaining in this
way a tensor Zunfolded ∈ RN×CJK×L, where L denotes the dimension of flatten version of the output
of the 2-D convolution. Thus, equation 19 can be rewritten as a tensor mode product:

(Z ∗W )(n, f, u, v) =

J∑
j=1

K∑
k=1

C∑
c=1

W resh(f, (c, j, k))Zunfolded(n, (c, j, k), (u, v))

=

r∑
p=

U(f, p)

r∑
q=1

S(p, q)

J∑
j=1

K∑
k=1

C∑
c=1

V ((c, j, k), q)Zunfolded(n, (c, j, k), (u, v))

(20)

As it is shown in (20), we can a decompose the starting weight W resh = USV ⊤ and then do all the
training procedure as a function of the factors (U, S, V ), without ever reconstructing the kernel. Then
we can apply the considerations of fully connected layers.

23


	Appendix
	Proofs of the main results
	Detailed timing measurements
	Detailed training performance of adaptive low-rank networks
	Lenet5 experiment

	Detailed training performance of low-rank pruning
	Detailed derivation of the gradient
	Low-rank matrix representation and implementation of convolutional layers


