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Abstract

In the stochastic contextual low-rank matrix bandit problem, the expected reward
of an action is given by the inner product between the action’s feature matrix and
some fixed, but initially unknown d1 by d2 matrix Θ∗ with rank r � {d1, d2},
and an agent sequentially takes actions based on past experience to maximize
the cumulative reward. In this paper, we study the generalized low-rank matrix
bandit problem, which has been recently proposed in [26] under the Generalized
Linear Model (GLM) framework. To overcome the computational infeasibility and
theoretical restrain of existing algorithms on this problem, we first propose the
G-ESTT framework that modifies the idea from [17] by using Stein’s method on the
subspace estimation and then leverage the estimated subspaces via a regularization
idea. Furthermore, we remarkably improve the efficiency of G-ESTT by using a
novel exclusion idea on the estimated subspace instead, and propose the G-ESTS
framework. We also show that both of our methods are the first algorithm to achieve
the optimal Õ((d1 + d2)r

√
T ) bound of regret presented in [26] up to logarithm

terms under some mild conditions, which improves upon the current regret of
Õ((d1 +d2)3/2

√
rT ) [26]. For completeness, we conduct experiments to illustrate

that our proposed algorithms, especially G-ESTS, are also computationally tractable
and consistently outperform other state-of-the-art (generalized) linear matrix bandit
methods based on a suite of simulations.

1 Introduction

The contextual bandit has proven to be a powerful framework for sequential decision-making prob-
lems, with great applications to clinical trials [36], recommendation system [22], and personalized
medicine [4]. This class of problems evaluates how an agent should choose an action from the poten-
tial action set at each round based on an updating policy on-the-fly so as to maximize the cumulative
reward or minimize the overall regret. With high dimensional sparse data becoming ubiquitous in
various fields nowadays, the most fundamental (generalized) linear bandit framework, although has
been extensively studied, becomes inefficient in practice. This fact consequently leads to a line of
work on stochastic high dimensional bandit problems with low dimensional structures [16, 24], such
as the LASSO bandit and low-rank matrix bandit.
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Table 1: Comparison with other low-rank matrix bandit algorithms in rounds T . (d = max{d1, d2},
Drr is the r-th largest singular value of Θ∗ that is free of d)

METHOD REGRET BOUND; ORDER OF d COMMENT

UCB-GLM (2017) Õ(d1d2
√
T ); 2

ESTR (2019) Õ(
√
d1d2drT/Drr); 1.5 BILINEAR

ε-FALB (2021) Õ(
√
d1d2dT ); 1.5 BILINEAR

LOW(G)LOC (2021) Õ(
√
d1d2drT ); 1.5

LOWESTR (2021) Õ(
√
d1d2drT/Drr); 1.5

G-ESTT (OURS) Õ(d
√
rT/Drr); 1

G-ESTS (OURS) Õ(d
√
rT/Drr); 1

In this work, we investigate on the generalized low-rank matrix bandit problem firstly studied
in [26]: at round t = 1, . . . , T , the algorithm selects an action represented by a d1 by d2 matrix Xt

from the admissible action set Xt (Xt may be fixed), and receives its associated noisy reward yt =
µ(〈Θ∗, Xt〉)+ηt where Θ∗ ∈ Rd1×d2 is some unknown low-rank matrix with rank r � {d1, d2} and
µ(·) is the inverse link function. More details about this setting are deferred to Section 3. This problem
has vast applicability in real world applications. On the one hand, matrix inputs are appropriate when
dealing with paired contexts which are omnipresent in practice. For instance, to design a personalized
movie recommendation system, we can formulate each user as m d1-dimensional feature vectors
(x1, . . . , xm ∈ Rd1) and each movie as m d2-dimensional feature vectors (y1, . . . , ym ∈ Rd2). A
user-item pair can then be naturally represented by a feature matrix defined as the summation of
the outer products

∑m
k=1 xky

>
k ∈ Rd1×d2 , which will become the contextual feature observed by

the bandit algorithm. Other applications involve interaction features between two groups, such as
flight-hotel bundles [26] and dating service [17] can also be similarly established. Besides, low-rank
models have gained tremendous success in various areas [5]. In particular, our problem can be
regarded as an extension of the inductive matrix factorization problem [14, 38], which estimates
low-rank matrices with contextual information, under the online learning scenario.

Our study is inspired by a line of work on stochastic contextual low-rank matrix bandit [15, 17, 26].
To design an algorithm for matrix bandit problems, a naïve approach is to flatten the d1 by d2 feature
matrices into vectors and then apply any (generalized) linear bandit algorithms, which, however, would
be inefficient when d1d2 is large. To take advantage of the low-rank structure, [17] have introduced
the bilinear low-rank bandit problem and proposed a two-stage algorithm named ESTR which
could achieve a regret bound of Õ((d1 + d2)3/2

√
rT/Drr)

1. Subsequently, [15] constructed a new
algorithm called ε-FALB for bilinear bandits and achieved a better regret of Õ(

√
d1d2(d1 + d2)T ).

However, they only studied the linear reward framework and also restricted the feature matrix as a
rank-one matrix. As a follow-up work, [26] further released the rank-one restriction on the action
feature matrices, and they introduced an algorithm LowGLOC based on the online-to-confidence-
set conversion [2] for generalized low-rank matrix bandits with Õ(

√
(d1 + d2)3rT ) regret bound.

However, this regret bound is still loose compared with the optimal rate Õ((d1 + d2)r
√
T ) deduced

in [15], and the arm set is still assumed fixed at each round. This algorithm is also computationally
prohibitive since it requires to calculate the weights of a self-constructed covering of the admissible
parameter space at each iteration. And how to find this covering for low-rank matrices is also unclear.

In this work, we propose two efficient methods called G-ESTT and G-ESTS for this problem by
modifying two stages of ESTR appropriately from different perspectives. To the best of our knowledge,
the proposed methods are the first two generalized (contextual) low-rank bandit algorithms that are
computationally feasible, and achieve an improved regret bound of Õ((d1+d2)r

√
T ) upon all existing

works on (bilinear) low-rank bandits. The main contributions of this paper can be summarized as: 1)
we propose two novel two-stage frameworks G-ESTT and G-ESTS under some mild assumptions.
Compared with ESTR in [17], ε-FALB in [15] and LowESTR in [26], our algorithms are proposed for
the nonlinear reward framework with arbitrary action matrices. Compared with LowGLOC in [26],
our algorithms not only achieve a better regret bound in theory, but also are computationally feasible
in practice. 2) For G-ESTT, we extend the GLM-UCB algorithms [11] via a novel regularization
technique. 3) Our proposed G-ESTS is simple and could be easily implemented based on any

1Õ ignores the polylogarithmic factors.
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state-of-the-art generalized linear bandit algorithms. In particular, when we combine G-ESTS with
some efficient algorithms (e.g. SGD-TS [9]), the total time complexity after a warm-up stage scales
as O(Tr(d1 + d2)). 4) We verify that G-ESTT and G-ESTS are the first two algorithms to attain the
Õ((d1 + d2)r

√
T ) optimal regret bound of low-rank matrix bandit problems up to logarithmic terms.

And their practical superiority is also validated in experiments.
Notations: For a vector x ∈ Rn, we use ‖x‖p to denote the lp-norm of the vector x and ‖x‖H =√
x>Hx to denote its weighted 2−norm with regard to a positive definite matrix H ∈ Rn×n. For

matrices X,Y ∈ Rn1×n2 , we use ‖X‖op, ‖X‖nuc and ‖X‖F to define the operator norm, nuclear
norm and Frobenious norm of matrix X respectively, and we denote 〈X,Y 〉 := trace(X>Y ) as the
inner product between X and Y . We write f(n) � g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).

2 Related Work

In this section, we briefly discuss some previous algorithms on low-rank matrix bandit problems.
Besides the works we have discussed in the former section, [18, 33] considered the rank-one bandit
problems where the expected reward forms a rank-one matrix and the player selects an element from
this matrix as the expected reward at each round. In addition, [19] also studied the rank-one matrix
bandit via an elimination-based algorithm. Alternatively, [12, 20, 25] considered the general low-rank
matrix bandit, and furthermore [13] considered a stochastic low-rank tensor bandit. However, for all
these works the feature matrix of an action could be flattened into a one-hot basis vector, and our
work yields a more general structure.

Additionally, [24] extended some previous works [16] and presented a unified algorithm based on a
greedy search for high-dimensional bandit problems. But it’s nontrivial to extend the framework to
the matrix bandit problem. For example, they assume that the minimum eigenvalue of the covariance
matrix could be strictly lower bounded, but this lower bound would mostly depend on the size of
feature matrices, and hence would affect the regret bound consequently.

3 Preliminaries

In this section we review our problem setting and introduce the assumptions for our theoretical
analysis. Let T be the total number of rounds and Xt be the action set (Xt could be fixed or not).
Throughout this paper, we denote the action set Xt = X as fixed for notation simplicity, while our
frameworks also work with the same regret bound when Xt varies over time (see Appendix H.3 for
more details.) Algorithms along with theory could be identically obtained when the action set varies
(Appendix H.3). At each round t ∈ [T ], The agent selects an action Xt ∈ Xt and gets the payoff yt
which is conditionally independent of the past payoffs and choices. For the generalized low-rank
matrix bandits, we assume the payoff yt follows a canonical exponential family such that:

pΘ∗(yt|Xt) = exp

(
ytβ − b(β)

φ
+ c(yt, φ)

)
, where β = vec(Xt)

>vec(Θ∗) := 〈Xt,Θ
∗〉, (1)

EΘ∗(yt|Xt) = b′(〈Xt,Θ
∗〉) := µ(〈Xt,Θ

∗〉),
where Θ∗ ⊆ Θ is a fixed but unknown matrix with rank r � {d1, d2} and Θ is some admissible
compact subset of Rd1×d2 (w.l.o.g. d1 = Θ(d2)). We also call µ(〈Xt,Θ

∗〉) the reward of action Xt.

In addition, one can represent model (1) in the following Eqn. (2). Note that if we relax the definition
of µ(·) to any real univariate function with some centered exogenous random noise ηt, the model
shown in Eqn. (2) generalizes our problem setting to a single index model (SIM) matrix bandit, and
the generalized low-rank matrix bandit problem is a special case of this model.

yt = µ(〈Xt,Θ
∗〉) + ηt. (2)

Here, ηt follows the sub-Gaussian property with some constant parameter σ0 conditional on the
filtration Ft = {Xt, Xt−1, ηt−1, . . . , X1, η1}. We also denote d = max{d1, d2}. And it is natural
to evaluate the agent’s strategy based on the regret [3], defined as the difference between the total
reward of optimal policy and the agent’s total reward in practice:

Regrett =

t∑
i=1

max
X∈X

µ(〈X,Θ∗〉)− µ(〈Xi,Θ
∗〉).
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We also present the following two definitions to facilitate further analysis via Stein’s method:
Definition 3.1. Let p : R→ R be a univariate probability density function defined on R. The score
function Sp : R→ R regarding density p(·) is defined as:

Sp(x) = −∇xlog(p(x)) = −∇xp(x)/p(x), x ∈ R.

In particular, for a random matrix with its entrywise probability density p = (pij) : Rd1×d2 →
Rd1×d2 , we define its score function Sp = (Sp

ij) : Rd1×d2 → Rd1×d2 as Sp
ij(x) = Spij (x) by

applying the univariate score function to each entry of p independently.
Definition 3.2. (Fact 2.6, [27]) Given a rectangular matrix A ∈ Rd1×d2 , the (Hermitian) dilation
H : Rd1×d2 → R(d1+d2)×(d1+d2) is defined as:

H(A) =

(
0 A
A> 0

)
.

We would omit the subscript x of ∇ and the superscript p of S when the underlying distribution is
clear. With these definitions, we make the following mild assumptions:
Assumption 3.3. (Finite second-moment score) There exists a sampling distribution D over X such
that for the random matrix X drawn from D with its associated density p : Rd1×d2 → Rd1×d2 , we
have E[(Sp(X))2

ij ] ≤M,∀i, j.
Assumption 3.4. The norm of true parameter Θ∗ and feature matrices in X is bounded: there exists
S ∈ R+ such that for all arms X ∈ X , ‖X‖F , ‖Θ∗‖F ≤ S0.
Assumption 3.5. The inverse link function µ(·) in GLM is continuously differentiable and there
exist two constants cµ, kµ such that 0 < cµ ≤ µ′(x) ≤ kµ for all |x| ≤ S0.

Assumption 3.3 is commonly used in Stein’s method [7], and easily satisfied by a wide range of
distributions that are non-zero-mean or even non sub-Gaussian thereby allowing us to work with
cases not previously possible. For example, to find D we only need the convex hull of X contains a
ball with radius R, and then we can use pij as centered normal p.d.f. with variance R2/(didj). This
choice works well in our experiments and please refer to Appendix I for more details. Furthermore,
Assumption 3.4 and 3.5 are also standard in contextual generalized bandit literature, and they explicitly
imply that we have an upper bound as |µ(〈X,Θ〉)| ≤ |µ(0)|+ max{|cµ|, |kµ|}S0 := Sf .

4 Main Results

In this section, we present our novel two-stage frameworks, named Generalized Explore Subspace
Then Transform (G-ESTT) and Generalized Explore Subspace Then Subtract (G-ESTS) respectively.
These two algorithms are inspired by the two-stage algorithm ESTR proposed in [17]. ESTR estimates
the row and column subspaces for the true parameter Θ∗ in stage 1. In stage 2, it exploits the estimated
subspaces and transforms the original matrix bandits into linear bandits with sparsity, and then invoke
a penalized approach called LowOFUL.

To extend their work into the nonlinear reward setting, we firstly adapt stage 1 into the GLM
framework by estimating Θ∗ via the following quadratic optimization problem in Eqn. (6) inspired
by a line of work in nonlinear signal estimation [29, 37]. And then we propose two different methods
based on the estimated subspaces to deal with GLM bandits for stage 2: for G-ESTT we adapt the
idea of LowOFUL into the GLM framework and propose an improved algorithm with regularization.
For G-ESTS we innovatively drop all negligible entries to get a low-dimensional bandit, which could
efficiently be solved by any modern generalized linear bandit algorithm with much less computation.

4.1 Stage 1: Subspace Exploration
For any real-value function f(·) defined on R, and symmetric matrix A ∈ Rd×d with its SVD
decomposition as A = UDU>, we define f(A) := U diag(f(D11), . . . , f(Ddd))U

>. To explore
the valid subspace of the parameter matrix Θ∗, we firstly define a function ψ : R→ R [27] in Eqn. (5)
and subsequently we define ψ̃ν : Rd1×d2 → Rd1×d2 as ψ̃ν(A) = ψ(νH(A))1:d1,(d1+1):(d1+d2)/ν

for some parameter ν ∈ R+.

ψ(x) =

{
log(1 + x+ x2/2), x ≥ 0;

− log(1− x+ x2/2), x < 0.
(5)
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Algorithm 1 Generalized Explore Subspace Then Transform (G-ESTT)

Input: X , T, T1,D, the probability rate δ, parameters for Stage 2: λ, λ⊥.
Stage 1: Subspace Estimation

1: for t = 1 to T1 do
2: Pull arm Xt ∈ X according to D, observe payoff yt.
3: end for
4: Obtain Θ̂ based on Eqn. (6).
5: Obtain the full SVD of Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]> where Û ∈ Rd1×r, V̂ ∈ Rd2×r.

Stage 2: Sparse Generalized Linear Bandits
6: Rotate the arm feature set: X ′ := [Û , Û⊥]>X [V̂ , V̂⊥] and the admissible parameter space:

Θ ′ := [Û , Û⊥]>Θ [V̂ , V̂⊥].
7: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are negligible:

X0 := {vec(X ′1:r,1:r), vec(X ′r+1:d1,1:r), vec(X ′1:r,r+1:d2), vec(X ′r+1:d1,r+1:d2)}, (3)

and similarly define the parameter set:

Θ0 := {vec(Θ ′1:r,1:r), vec(Θ ′r+1:d1,1:r), vec(Θ ′1:r,r+1:d2), vec(Θ ′r+1:d1,r+1:d2)}. (4)

8: For T2 = T −T1 rounds, invoke (P)LowGLM-UCB with X0,Θ0, k = (d1 +d2)r− r2, (λ0, λ⊥).

We consider the following well-defined regularized minimization problem with nuclear norm penalty:

Θ̂ = arg min
Θ∈Rd1×d2

LT1
(Θ) + λT1

‖Θ‖nuc , LT1
(Θ) = 〈Θ,Θ〉 − 2

T1

T1∑
i=1

〈ψ̃ν(yi · S(Xi)),Θ〉. (6)

An interesting fact is that our estimator is invariant under different choices of function µ(·), and we
could present the following oracle inequality regarding the estimation error

∥∥∥Θ̂− µ∗Θ∗
∥∥∥
F

for some
nonzero constant µ∗ by adapting generalized Stein’s Method [7].
Theorem 4.1. (Bounds for GLM) For any low-rank generalized linear model with samples
X1 . . . , XT1 drawn from X according to D in Assumption 3.3, and assume Assumption 3.4 and
3.5 hold, then for the optimal solution to the nuclear norm regularization problem (6) with
ν =

√
2 log(2(d1 + d2)/δ)/((4σ2

0 + S2
f )MT1d1d2) and

λT1 = 4

√
2(4σ2

0 + S2
f )Md1d2 log(2(d1 + d2)/δ)

T1
,

with probability at least 1− δ it holds that:∥∥∥Θ̂− µ∗Θ∗
∥∥∥2

F
≤
C1d1d2r log( 2(d1+d2)

δ )

T1
, (7)

for C1 = 36(4σ2
0 + S2

f )M and some nonzero constant µ∗.

The proof of Theorem 4.1 is based on a novel adaptation of Stein-typed Lemmas and is deferred
to Appendix B. We believe this oracle bound is non-trivial since the rate of convergence is better
than that deduced from the restricted strong convexity (details in Appendix J) even without assuming
the sub-Gaussian property. We also present an intuitive explanation on why our Stein-type method
is better than existing matrix estimation approaches under our problem setting in Appendix J.2
Remark. In addition, this bound also holds under a more general SIM in Eqn. (2) other than just
GLM. Furthermore, although there exists a non-zero constant µ∗ in the error term, it will not affect
the singular vectors and subspace estimation of Θ∗ at all.

After acquiring the estimated Θ̂ in stage 1, we can obtain the corresponding SVD as Θ̂ =

[Û , Û⊥] D̂ [V̂ , V̂⊥]>, where Û ∈ Rd1×r, Û⊥ ∈ Rd1×(d1−r), V̂ ∈ Rd2×r and V̂⊥ ∈ Rd2×(d2−r).
And we assume the SVD of the matrix Θ∗ can be represented as Θ∗ = UDV > where U ∈ Rd1×r
and V ∈ Rd2×r. To transform the original generalized matrix bandits into generalized linear bandit
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Algorithm 2 LowGLM-UCB

Input: T2, k,X0, the probability rate δ, penalization parameters (λ0, λ⊥).
Initialize M1(cµ) =

∑T1

i=1 xs1,i x
>
s1,i

+ Λ/cµ.
for t ≥ 1 do

Estimate θ̂t according to (10).
Choose the arm xt = arg maxx∈X0{µ(x>θ̂t) + ρt(δ) ‖x‖M−1

t (cµ)}, receive yt,
Update Mt+1(cµ)←−Mt(cµ) + xtx

>
t .

end for

problems, we follow the works in [17] and penalize those covariates that are complementary to Û
and V̂ . Specifically, we could orthogonally rotate the parameter space Θ and the action set X as:

Θ ′ = [Û , Û⊥]>Θ [V̂ , V̂⊥], X ′ = [Û , Û⊥]>X [V̂ , V̂⊥],

Define the total dimension p := d1d2, the effective dimension k := d1d2 − (d1 − r)(d2 − r) and
the r-th largest singular value for Θ∗ as Drr, and vectorize the new arm space X ′ and admissible
parameter space as shown in Eqn. (3) and (4). Then for the true parameter θ∗ after transformation,
we know that θ∗k+1:p = vec(Θ∗, ′r+1:d1,r+1:d2

) is almost null based on results in [32] and Theorem 4.1:∥∥θ∗k+1:p

∥∥
2

=
∥∥∥Û>⊥UDV >V̂⊥∥∥∥

F
≤
∥∥∥Û>⊥U∥∥∥

F

∥∥∥V̂ >⊥ V ∥∥∥
F
· ‖D‖op .

d1d2r

T1D2
rr

log

(
d1 + d2

δ

)
:= S⊥.

(8)

Therefore, this problem degenerates to an equivalent d1d2−dimensional generalized linear bandit
with a sparse structure (i.e. last p− k entries of θ∗ are almost null according to Eqn. (8)). To reload
the notation we define X0,Θ0 as the new feature set and parameter space as shown in Algorithm 1.

Remark. Note the magnitude of Drr would be free of d since Θ∗ contains only r nonzero singular
values, and hence we assume that Drr = Θ(1/

√
r) under Assumption 3.4. This issue has been

ignored in all previous analysis of explore-then-commit-type algorithms (e.g. ESTR [17], Low-
ESTR [26]), where the final regret bound of them should be of order Õ(d3/2r

√
T ) instead of the

originally-used Õ(d3/2
√
rT ) because of the existence of Drr. However, due to the fact that r � d, it

is intriguing and crucial to reduce the order of d in the final regret bound, while the order of r is less
important. As shown in Table 1, the regret bounds of all previous low-rank matrix bandits algorithms
depend on d by the order 3/2, and we would show that both of our frameworks could improve the
cumulative regret bound by a factor of

√
d, which coincides with the dependence of d in the minimax

lower bound of the low-rank matrix bandit problem deduced in [26]. A detailed analysis is presented
in the rest of our paper.

4.2 Stage 2 of G-ESTT

After reducing the original generalized matrix bandit problem into an identical p-dimensional gen-
eralized linear bandit problem in stage 2, we can reformulate the problem in the following way: at
each round t, the agent chooses a vector xt of dimension p from the transformed action set X0, and
observes a noisy reward yt = µ(xt

>θ∗)+ηt. To make use of our additional knowledge shown in Eqn.
(8), we propose LowGLM-UCB as an extension of the standard generalized linear bandit algorithm
GLM-UCB [11] combined with self-normalized martingale technique [1]. Specifically, we consider
the following maximum quasi-likelihood estimation problem shown in Eqn. (9) for each round with a
weighted regularizer, where the regularizer is ‖θ‖2Λ /2 = θ>Λθ/2 for some positive definite diagonal
matrix Λ = diag(λ0, . . . , λ0, λ⊥, . . . , λ⊥) with λ0 only applied to the first k diagonal entries. By
enlarging λ⊥, we ensure more penalization forced on the last p− k element of θ∗ as desired.

θ̂t = arg max
θ
L̃Λ
t (θ),

L̃Λ
t (θ) =

T1∑
i=1

[
ys1,ixs1,i

>θ − b(xs1,i>θ)
]

+

t−1∑
i=1

[
yixi

>θ − b(xi>θ)
]
− 1

2
‖θ‖2Λ . (9)
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Here xs1,i in Eqn. (9) is the special vectorization shown in Eqn. (3) of [Û , Û⊥]>Xi[V̂ , V̂⊥] where
Xi is the arm we randomly pull at i-th step in stage 1, and ys1,i is the corresponding payoff we
observe. xi in the second summation of Eqn. (9) refers to the arm we pull at i-th step in stage 2.
Since L̃Λ

t (θ) is a strictly concave function of θ, we have its gradient equal to 0 at the maximum θ̂t,
i.e. ∇θL̃Λ

t (θ)|θ̂t = 0. In what follows, for t ≥ 2, θ ∈ Rp we define the function gt(θ) and have that

∇θL̃Λ
t (θ) =

T1∑
i=1

ys1,i xs1,i +

t−1∑
i=1

yi xi −
( T1∑

i=1

µ(xs1,i
>θ)xs1,i +

t−1∑
i=1

µ(xi
>θ)xi + Λθ︸ ︷︷ ︸

:= gt(θ)

)
,

∇θL̃Λ
t (θ)|θ̂t = 0 =⇒ gt(θ̂t) =

T1∑
i=1

ys1,i xs1,i +

t−1∑
i=1

yi xi. (10)

We also define a matrix function Mt(s) =
∑T1

i=1 xs1,ix
>
s1,i

+
∑t−1
k=1 xkx

>
k + Λ/s for s ∈ R+ and

denote Vt := Mt(1). Furthermore, a remarkable benefit of reusing the actions {Xi}T1
i=1 we randomly

pull in stage 1 is that they contain more randomness and are preferable to the ones we select based
on some strategy in stage 2 regarding the parameter estimation because most vector recovery theory
requires sufficient randomness during sampling. More inspiring, the projection step in the tradition
GLM-UCB [11], which might be nonconvex and hence hard to solve, is no longer required due the
consistency of θ̂t after reutilizing {Xi}T1

i=1. Specifically, if we assume the true parameter θ∗ lies in the
interior of Θ0 and the sampling distribution D satisfies sub-Gaussian property with parameter σ, and
Assumption 3.4, 3.5 held, then we can show that

∥∥∥θ̂t − θ∗∥∥∥
2
≤ 1 holds with probability at least 1− δ

as long as T1 ≥ ((Ĉ1
√
p+ Ĉ2

√
log(1/δ))/σ2)2 + 2B/σ2 holds for some absolute constants Ĉ1, Ĉ2

with the definition B := 16σ2
0(p + log(1/δ))/c2µ. An intuitive explanation along with a rigorous

proof are deferred to Appendix D due to the space limit. The proposed LowGLM-UCB is shown in
Algorithm 2, and its regret analysis is presented in Theorem C.1 in Appendix.

Notice that we can simply replace Mt(cµ) by Vt in Algorithm 2, and the regret bound would increase
at most up to a constant factor (Appendix G). A potential drawback of Algorithm 2 is that in each
iteration we have to calculate θ̂t, which might be computationally expensive. We could resolve this
problem by only recomputing θ̂t whenever |Mt(cµ)| increases significantly, i.e. by a constant factor
C > 1 in scale. And consequently we only need to solve the Eqn. (10) for O(log(T2)) times up to
the horizon T2, which remarkably saves the computation. Meanwhile, the bound of the regret would
only increase by a constant multiplier

√
C. We call this modified algorithm as PLowGLM-UCB with

the initial letter “P” standing for “Parsimonious”. Its pseudo-code and regret analysis are given in
Appendix H.1. Equipped with LowGLM-UCB in stage 2, we deduce the overall regret of G-ESTT:

4.2.1 Overall regret of G-ESTT

To quantify the performance of our algorithm, we first define αxt (·) and βxt (·) as

αt(δ) :=
kµ
cµ

(
σ0

√
k log(1 +

cµS2
0t

kλ0
) +

cµS2
0t

λ⊥
− log(δ2) +

√
cµ(
√
λ0S0 +

√
λ⊥S⊥)

)
, (11)

βxt (δ) := αt(δ) ‖x‖M−1
t (cµ) . (12)

And the following Theorem 4.2 exhibits the overall regret bound for G-ESTT.

Theorem 4.2. (Regret of G-ESTT) Suppose we set T1 �
√
d1d2rT log((d1 + d2)/δ)/Drr, and we

invoke LowGLM-UCB (or PLowGLM-UCB) in stage 2 with ρt(δ) = αt+T1
(δ/2), p = d1d2, k =

(d1 +d2)r−r2, λ⊥ = cµS
2
0T/(k log(1+cµS

2
0T/(kλ0))), and the rotated arm sets X0 and available

parameter space Θ0. The overall regret of G-ESTT is, with probability at least 1− δ,

RegretT = Õ

(
(

√
rd1d2

Drr
+ k)
√
T

)
Note G-ESTT improves all existing regret bounds by a

√
d factor based on Table 1 given that r � d.
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Algorithm 3 Generalized Explore Subspace Then Subtract (G-ESTS)

Input: X , T, T1,D, the probability rate δ, parameters for Stage 2: λ, λ⊥.
Stage 1: Subspace Estimation

1: Randomly choose Xt ∈ X according to D and record Xt, Yt for t = 1, . . . T1.
2: Obtain Θ̂ from Eqn. (6), and calculate its full SVD as Θ̂ = [Û , Û⊥] D̂ [V̂ , V̂⊥]> where Û ∈

Rd1×r, V̂ ∈ Rd2×r.
Stage 2: Low Dimensional Bandits

3: Rotate the arm feature set: X ′ := [Û , Û⊥]>X [V̂ , V̂⊥] and the admissible parameter space:
Θ ′ := [Û , Û⊥]>Θ [V̂ , V̂⊥].

4: Define the vectorized arm set so that the last (d1 − r) · (d2 − r) components are negligible, and
then drop them:

X0,sub := {vec(X ′1:r,1:r), vec(X ′r+1:d1,1:r), vec(X ′1:r,r+1:d2)}, (13)

and also refine the parameter set accordingly:

Θ0,sub := {vec(Θ ′1:r,1:r), vec(Θ ′r+1:d1,1:r), vec(Θ ′1:r,r+1:d2)}. (14)

5: For T2 = T −T1 rounds, invoke any generalized linear bandit algorithm with X0,sub,Θ0,sub, k =
(d1 + d2)r − r2.

4.3 Stage 2 of G-ESTS

Although G-ESTT is more efficient than all existing algorithms on our problem setting, it still needs
to calculate the MLE in high dimensional space which might be increasingly formidable with large
sizes of feature matrices. Note this computational issue remains ubiquitous among most bandit
algorithms on high dimensional problems with sparsity, not to mention these algorithms rely on
multiple unspecified hyperparameters. Therefore, to handle this practical issue, we propose another
fast and efficient framework called G-ESTS in this section.

Inspired by the success of dimension reduction in machine learning [34], we propose G-ESTS as
shown in Algorithm 3. And we summarize the core idea of G-ESTS as: After rearranging the
vectorization of the action set X ′ and the unknown Θ′ ∗ as we have shown in Eqn. (3) and (4) for
G-ESTT, we can simply exclude, rather than penalize, the subspaces that are complementary to the
rows and columns of Θ̂. In other words, we could remove the last p− k entries directly, i.e. Eqn. (13)
and (14). Intriguingly, not only can we get a low-dimensional (k) generalized linear bandit problem
in stage 2, where redundant dimensions are excluded and hence any state-of-the-art algorithms could
be readily invoked. But also we obtain the optimal regret bound of scale Õ(dr

√
T ) again as shown in

Table 1 with Drr = O(1/
√
r). Besides, G-ESTS requires exceedingly less computation compared

with other existing algorithms since consequently we get a low-dimensional bandit problem. In
summary, our G-ESTS is superior regarding both theoretical guarantee and computational efficiency.

4.3.1 Overall regret of G-ESTS

Theorem 4.3. (Regret of G-ESTS) Suppose we set T1 �
√
d1d2rT log((d1 + d2)/δ)/Drr, and we

invoke any efficient generalized linear bandit algorithm with regret bound Õ(k
√
T ) 2 in stage 2 with

p = d1d2, k = (d1 + d2)r − r2, and the reduced arm sets X0,sub and available parameter space
Θ0,sub. The overall regret of G-ESTS is, with probability at least 1− δ,

RegretT = Õ

(
(

√
rd1d2

Drr
+ k)
√
T

)

According to Theorem 4.2 and 4.3, both G-ESTT and G-ESTS could achieve an improved Õ(dr
√
T )

regret bound with Drr = Θ(1/
√
r). Surprisingly, this matches the lower bound of low-rank matrix

bandits presented in [26] up to logarithm terms. To the best of our knowledge, our methods are the
first two methods that attain this optimal rate. In addition, given the finite arm set, our G-ESTS

2Modern generalized linear bandit algorithms can achieve Õ(k
√
T ) bound of regret.
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Table 2: Time in minutes required to make decisions all over round T in simulations (480 arms).

d 10 12

r 1 2 1 2

G-ESTS 39.46 45.41 41.28 48.52
G-ESTT 516.14 531.95 520.25 539.83
SGD-TS 99.57 101.34 101.82 104.42
LOWESTR 401.88 419.15 410.31 425.92

framework can even achieve a better regret bound of order Õ(
√
d1d2rT/Drr) (detailed proof in

Appendix F.2), and this result is better than the lower regret bound with infinite arms by a k
√
T term.

In the following experiments, We will implement the SGD-TS algorithm [9] in stage 2 of G-ESTS
since SGD-TS could efficiently proceed with only O(dT ) complexity for d−dimensional features
over T rounds. Therefore, the total computational complexity of stage 2 is at most O(T2(d1 + d2)r),
which is significantly less than that of other methods for low-rank matrix bandits (e.g. LowESTR [26]).
And the total time complexity of G-ESTS would only scale O(T1d1d2/ε

2 + T2(d1 + d2)r) where
ε is the accuracy for subgradient methods in stage 1. This fact also firmly validates the practical
superiority of our G-ESTS approach. We naturally believe that this G-ESTS framework can be easily
implemented in the linear setting as a special case of GLM, where in stage 2 one can utilize any linear
bandit algorithm accordingly. In addition, we can easily modify our approaches for the contextual
setting by merely transforming the action sets at each iteration with the same regret bound. More
details with pseudo-codes for the contextual case are in Appendix H.3.

5 Experiments

In this section, we show by simulation experiments that our proposed G-ESTT (with LowGLM-UCB),
G-ESTS (with SGD-TS) outperform existing algorithms for the generalized low-rank matrix bandit
problems. Since we are the first to propose a practical algorithm for this problem, currently there is
no existing literature for comparison. In order to validate the advantage of utilizing low-rank structure
and generalized reward functions, we compare with the original SGD-TS after naïvely flattening the
d1 by d2 matrices without using the low-rank structure, and LowESTR [26], which works well for
linear low-rank matrix bandits.

We simulate a dataset with d1 = d2 = 10 (12) and r = 1 (2): when r = 1, we set the diagonal
matrix Θ∗ as diag(Θ∗) = (0.8, 0, · · · , 0). When r = 2, we set Θ∗ = v1v

>
1 + v2v

>
2 for two random

orthogonal vectors v1, v2 with ‖v1‖2 = ‖v2‖2 = 3. For arms we draw 480 (1000) random matrices
from {X ∈ Rd1×d2 : ‖X‖F ≤ 1}, and we build a logistic model where the payoff yt is drawn from
a Bernoulli distribution with mean µ(X>t θ

∗). More details on the hyper-parameter tuning are in
Appendix I. Each experiment is repeated 100 times for credibility and the average regret, along with
standard deviation, is displayed in Figure 1. Note that our experiments are more comprehensive than
those in [26]. And due to the expensive time complexity of UCB-based baselines (Table 2), it is
formidable for us to increase d here.

From the plots, we observe that our algorithms G-ESTT and G-ESTS always achieve less regret
compared with LowESTR and SGD-TS in all four scenarios consistently. Intriguingly, in the warm-up
period SGD-TS incurs less regret compared with our methods due to the sacrifice of random sampling
in stage 1, but our proposed framework quickly overtakes SGD-TS after utilizing the low-rank
structure as desired. This phenomenon exactly coincides with our theory. Notice that G-ESTT is
slightly better than G-ESTS in the case for r = 2 especially in the very beginning of stage 2, and we
believe it is because that our G-ESTT could reutilize the actions in stage 1 and hence could yield
more robust performance when switching to stage 2. However, G-ESTS would gradually catch up
with G-ESTT in the long run as expected. Besides, it costs G-ESTS extremely less running time than
other existing methods to update the decisions due to its dimensional reduction as shown in Table
2. We also observe that the cumulative regret of G-ESTS tends to become better eventually if we
increase T1 decently. (Further investigation and plots for 1000 arms are in Appendix I.) Moreover, to
pre-check the efficiency of our Stein’s lemma-based method for subspace estimation shown in Eqn.
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Figure 1: Plots of regret curves of algorithm G-ESTS, G-ESTT, SGD-TS and LowESTR under four
settings (480 arms). (a): diagonal Θ∗ d1 = d2 = 10, r = 1; (b): diagonal Θ∗ d1 = d2 = 12, r = 1;
(c): non-diagonal Θ∗ d1 = d2 = 10, r = 2; (d): non-diagonal Θ∗ d1 = d2 = 12, r = 2.

(6), we also tried some other low-rank subspace detection algorithms for comparison. The details are
also deferred to Appendix I.4 due to the space limit.

6 Conclusion

In this paper, we discussed the generalized linear low-rank matrix bandit problem. We proposed two
novel and efficient frameworks called G-ESTT and G-ESTS, and both methods could achieve an
improved Õ(dr

√
T ) bound of regret under some mild conditions, which matches the optimal lower

bound of our problem setting up to polylogarithmic terms. The practical superiority of our proposed
frameworks is also validated under comprehensive experiments.

There are several directions for our future work. Firstly, although the GLM has achieved tremendous
success in various settings, recently some other models [39] that are proved to be powerful were
proposed, so we can study these modern frameworks in the low-rank matrix case. Secondly, it seems
more reasonable to continuously update the subspace estimation via online SVD over the total time
horizon [17] on-the-fly with a randomized strategy. Therefore, we can consider something like
arbitrarily choosing an admissible subset of the action set at each round [31] without hurting the
regret too much.
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