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Abstract

Given an unsupervised novelty detection task on a new dataset, how can we au-
tomatically select a “best” detection model while simultaneously controlling the
error rate of the best model? For novelty detection analysis, numerous detectors
have been proposed to detect outliers on a new unseen dataset based on a score
function trained on available clean data. However, due to the absence of labeled
anomalous data for model evaluation and comparison, there is a lack of systematic
approaches that are able to select the “best” model/detector (i.e., the algorithm as
well as its hyperparameters) and achieve certain error rate control simultaneously.
In this paper, we introduce a unified data-driven procedure to address this issue.
The key idea is to maximize the number of detected outliers while controlling
the false discovery rate (FDR) with the help of Jackknife prediction. We estab-
lish non-asymptotic bounds for the false discovery proportions and show that the
proposed procedure yields valid FDR control under some mild conditions. Nu-
merical experiments on both synthetic and real data validate the theoretical results
and demonstrate the effectiveness of our proposed AutoMS method. The code is
available at: https://github.com/ZhangYifan1996/AutoMS.

1 Introduction

With the development of big data, novelty detection has become critical for many machine learning
applications, such as network intrusion detection [1], fraud detection in finance [2, 3], event detection
in the earth sciences [4], and so on. For these applications, there are a very large number of “normal”
instances (i.e., inlier) but a lack of “abnormal” data (i.e., novelty, or outlier), because collecting
abnormal data is much more expensive or difficult than collecting normal data [5]. This leads us to
a situation where the available historical dataset contains only normal observations, and the basic
goal is to detect outliers on a new unseen test dataset. Novelty detection has achieved remarkable
success in many application domains with numerous methods/algorithms being developed in machine
learning literature [6–8], however, two problems need to be addressed in the current novelty detection
models, (1) lack of error rate control in detection algorithms, and (2) ad-hoc model selection of
algorithms/hyperparameters.

The most common way to solve the novelty detection problem is to use a detection algorithm to learn
a plausible score function that assigns a score to each point in the test dataset. Generally, data with
large scores are more likely to be detected as outliers. A decision threshold is given to determine
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whether a data point is an outlier or not. There is an obvious trade-off between precision and recall:
a small threshold would detect more outliers but make more false discoveries as well. Therefore,
a more viable way is to reformulate the novelty detection problem as a multiple hypothesis testing
problem, and adopt some error rate control procedure as suitable criteria to choose the threshold [9].

Model selection (including algorithm selection or hyperparameter tuning) is a well-known feature of
these novelty detection algorithms and arises naturally since none of these methods can universally
outperform others on all tasks as noted in Wolpert and Macready [10], Zhao et al. [11]. Due to the
special setting of novelty detection, model evaluation and model comparison are not feasible when
only “clean” data are provided as training dataset. Those strategies are usually ad-hoc [11, 12], which
may greatly hamper their applicability to novelty detection in general cases. Furthermore, these
methods only target the recall through model selection without considering the false discoveries.
Therefore, it is desirable to develop a unified framework to select the “best” detector with certain
error rate control.

We see that designing a data-driven procedure to select the “best” model/detector while simultaneously
achieving some error rate control remains an open challenge. In this paper, we propose a data-
driven procedure, AutoMS, to implement automatic model selection for novelty detection with error
rate control. We apply the Jackknife technique [13] to fully explore the clean data and avoid the
randomness caused by data-splitting. With the help of Jackknife prediction, we select from a pool of
diversified models/detectors the “best” detector that maximizes the number of detected outliers while
controlling the false discovery rate. The theoretical guarantees for the FDR control of the selected
“best” detector requires further investigation because the error distribution of the “best” detector is
different from that of a given detector. We address this issue by carefully studying the bound of false
discovery proportion (FDP) and FDR which is calculated by taking expectation of FDP.

To our best knowledge, this is the first work to systematically select the “best” model while achieving
certain error rate control. The main contributions of this work are summarized as follows.
(1) The proposed AutoMS can select the best model and simultaneously control the error rate of the
best model. Notably, AutoMS is a unified data-driven framework, and it does not rely on any labeled
anomalous data for model selection.
(2) To our best knowledge, it is the first effort to select the “best” model/detector with theoretical
guarantees in the view of FDR control. We establish non-asymptotic bounds for the FDP and show
that the proposed AutoMS yields valid FDR control.
(3) The AutoMS can be easily coupled with commonly used novelty detection algorithms. Extensive
numerical experiments indicate that AutoMS outperforms other methods significantly, with respect to
both error rate control and detection power.

2 Related Work

FDR Control. Reformulating the outlier detection problem as a multiple testing problem, a
commonly-used error rate in this setting is the false discovery rate (FDR): the expected propor-
tion of true inliers among the test points reported as outliers. The FDR control [14–16] has been fully
studied in the statistical literature and is a particularly useful tool to maintain the ability to reliably
detect true alternatives without excessive false discovery results when large-scale hypotheses are
simultaneously tested.

Along this line, Bates et al. [17] pioneered a method to split the clean dataset into two independent
parts, one for training the score function and one for validating the empirical cumulative distribution
function of the score function which will be used for constructing p-values for the new observations.
They showed that the FDR control can be achieved with theoretical finite sample guarantees. It
involves, however, a one-time random split of the clean dataset, which leads to a “p-value lottery”
problem. That is, those p-values based on sample-splitting are sensitive and difficult to be reproduced
in practice. Moreover, the procedure in Bates et al. [17] can only control the FDR for a given novelty
detection model, and no model efficiency is considered in their paper.

Model Selection in Novelty Detection. As described in Sect. 1, various detection algorithms
have been developed for different problems or different types of data, such as LOF [18], one-class
SVM [19], iForest [20] and so on. More discussions can be found in Pimentel et al. [6], Aggarwal
[21]. However, no universal learning model performs well on all problem instances Wolpert and
Macready [10]. Therefore, it raises the problem of model selection, including algorithm selection
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and hyperparameter tuning. For example, AutoOD [12] proposed an automated outlier detection
framework focusing on automatic neural architecture search. Recent work METAOD [11] built a
measure for task similarity and use meta-learning to select the most similar task compared to the
historical ones. Most existing work is usually based on sophisticated black-box machine learning
algorithms to learn the space of the normal data. While generally effective in practice, they rarely
offer a clear guarantee about the output.

We note that some statistical criteria can be used for model selection in novelty detection; e.g. using
mass-volume and excess-mass [22] or some clustering validation metrics [23] to measure the quality
of a score function, and using IREOS [24] to assess the separability. However, Ma et al. [25] indicated
that those criteria are not useful in practice and cannot lead to a universal detector for general cases.
Our proposed AutoMS is not limited to one specific algorithm or model but can select the “best” one
among any set of models/detectors.

3 Methodology: Automatic Model Selection

In novelty detection problems, we are given a clean training dataset of inliers D = {Z̃j}mj=1

containing m independently and identically distributed (i.i.d.) observations Z̃j which is drawn P0.
The goal of the novelty detection problem is to identify the outlier set O = {Zi ∈ U : Zi ≁ P0}
among a new unseen test dataset U = {Zi}ni=1.

One of the most common approaches in addressing novelty detection is to employ a detection
algorithm M to learn a plausible score function SM(·) with the clean dataset D and use the score
SM(Zi) to assess whether Zi ∈ U is an outlier. Generally, it is assumed that the larger the score
SM(Zi), the more likely Zi is an outlier. Hence, the decision set (detected outlier set) is selected as:
ÔM = {Zi ∈ U : SM(Zi) ≥ LM}, where LM is a threshold associated with detector M. Denote
the subset of U containing all inliers as Oc = {Zi ∈ U : Zi ∼ P0} with size n0, and O

⋃
Oc = U .

Let |A| denote the number of the elements in set A. Denote a ∨ b = max{a, b}.

Taking a multiple testing perspective, the null hypothesis is that a new observation is an inlier, and the
alternative asserts it is an outlier. That is, the novelty detection problem is translated into a multiple
testing problem as follows,

H0i : Zi ∼ P0 v.s. H1i : Zi ≁ P0 i = 1, · · · , n. (1)

3.1 Problem Definition

Problem (Model Selection of Unsupervised Novelty Detection) The model selection problem for
unsupervised novelty detection problem can be stated as follows.

Given a training dataset of inliers D = {Z̃j}mj=1, a new unlabeled dataset U = {Zi}ni=1 which
may contain outliers, and all models G =

⋃
M;

Select the best model M∗ ∈ G, such that the FDR of M∗ is controlled under the target level α.

The false discovery proportion (FDP) and true discovery proportion (TDP) are defined as follows

FDP =
|ÔM

⋂
Oc|

1 ∨ |ÔM|
, TDP =

|ÔM
⋂
O|

|O|
. (2)

The false discovery rate (FDR) is the expectation of FDP, i.e., FDR = E(FDP). The true detection
rate (TDR) is defined as the expectation of TDP, i.e., TDR = E(TDP). A detector is superior to
another if the former has a larger TDR for the same FDR level.

3.2 Construction of AutoMS

We begin with the FDR control for a given detector M and then give the AutoMS of how to select the
“best” detector from G. For a detector M, we learn a score function SM(·) based on the historical
clean dataset D and evaluate the score SM(Zi) at the new data point Zi ∈ U . The canonical approach
to FDR control in multiple testing problem is to apply the Benjamini-Hochberg (BH) procedure [14–
16] to the p-values of scores SM(Zi) for any Zi ∈ U . That is, the data-dependent threshold L is
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selected as follows,

L = inf

{
t > 0 :

nGM(t)

|{Zi ∈ U : SM(Zi) ≥ t}| ∨ 1
≤ α

}
,

where GM(t) = PH0(SM(Zi) ≥ t|D) is the p-value of SM(Zi) for Zi ∈ U when H0 holds.

However, it is quite a challenge to estimate reliable p-values GM(t) since P0 is unknown and the score
function SM(·) may be derived from a sophisticated black-box machine learning algorithm. Bates
et al. [17] suggested randomly splitting D into two disjoint parts with equal sample size, one for
training the score function SM(·) and the other for estimating GM(t) with the help of conformal
inference. This single-random-splitting based method suffers from, (1) the estimation of the p-values
depends on the random split; (2) different split ratios also lead to different results.

To yield more stable estimates of p-values in practice, we propose to learn the score function SM(·)
on the whole clean dataset D, where our key idea stems from the Jackknife estimate. Denote
D[−j] = D\{Z̃j} as the subset of D with the j-th observation removed. Define S

[−j]
M (·) as the score

function trained on D[−j]. Then we can evaluate m scores {S[−j]
M (Z̃j)}mj=1 on the whole clean dataset

D. The p-value function can be estimated by

Gm,M(t) =
|{Z̃j ∈ D : S

[−j]
M (Z̃j) ≥ t}|
m

. (3)

The Jackknife technique provides an approximation of the score, S[−j]
M (Z̃j), for any Z̃j ∈ D. Under

the null H0 that Zi ∈ U is from P0, S[−j]
M (Z̃j) can be used for estimating the empirical distribution

of SM(Zi). And the corresponding threshold LM is determined via

LM = inf

{
0 < t < t̄m,M :

nGm,M(t)

|{Zi ∈ U : SM(Zi) ≥ t}| ∨ 1
≤ α

}
, (4)

where t̄m,M is the upper bound for t and its choice will be discussed in Sect. 4 in detail, and SM(·)
is the same score function trained on D. Then, the detected set is identified as

ÔM = {Zi ∈ U : SM(Zi) ≥ LM}. (5)

Further, we select the “best” detector M∗ via

M∗ = arg max
M∈G

|ÔM|. (6)

Algorithm 1 AutoMS: Automatic Model Selection
1: Input: New dataset U , clean dataset D, target FDR level α and a pool of detectors G.
2: for M ∈ G do
3: for j = 1, · · · ,m do
4: Train score function S

[−j]
M (·) based on D[−j] (i.e. D[−j] = D\{Z̃j} );

5: Compute the score at Z̃j ∈ D, i.e., S[−j]
M (Z̃j);

6: end for
7: Learn score function SM(·) based on D;
8: Compute the scores SM(Zi) for any Zi ∈ U , and find a threshold LM by Eq. (4);
9: The detected set is ÔM = {Zi ∈ U : SM(Zi) ≥ LM}.

10: end for
11: Select the “best” detector M∗ from G via Eq. (6).
12: Output: ÔM∗ = {Zi ∈ U : SM∗(Zi) ≥ LM∗}.

We refer to our procedure as AutoMS short for Automatic Model Selection and it is summarized
in Algorithm 1. In fact, our AutoMS consists of two phases: offline training in lines 2-7 and online
prediction in lines 8-9 of pseudo-code in Algorithm 1. Note that the running time of offline training
is not critical. Meanwhile, the additional running time is the detector selection in line 11, which
should incur a small run-time overhead due to only maximizing a finite set.

Note that the pool of detectors G =
⋃
M can be a set of different algorithms or a set of hyperpa-

rameters for one typical algorithm, or both, which fits the definition of model selection including
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algorithm selection and hyperparameter tuning. Note that the size of G, |G|, can be infinite, and |G| is
allowed to increase as the size of D. More details will be discussed in Sect. 4.

Rationale. Here is the intuition why the selected detector obtained by AutoMS is the “best” one.
The general idea is as follows. A good detector needs to achieve a large TDR while controlling
the false discoveries under the target FDR level α. With FDR control, the selected detector which
has the largest number of discoveries is roughly the one with the largest TDR. Otherwise, simply
selecting the largest number of discoveries without FDR control, is not even a correct criterion,
because in this case, most detected discoveries may be inliers and true outliers may not be detected.
For every detector M ∈ G, with FDR control, its FDP can be approximately controlled around the
target FDR level α, as the proposed AutoMS resets the corresponding novelty threshold for every M.
Therefore, there are roughly |ÔM|(1− α) true outliers in the detected set ÔM, with the TDR being

approximated by |ÔM|(1−α)
|O| . Since the number of true outliers |O| and the target FDR level α are

fixed in a given novelty detection task, selecting the largest |ÔM∗ |(1−α)
|O| , namely the largest |ÔM∗ |,

leads to the “best” detector M∗.

Why Jackknife not Jackknife+. Barber et al. [26] introduced the Jackknife+ as a new method
for constructing predictive confidence intervals. They provide non-asymptotic coverage guarantees
under no assumptions beyond the training and test dataset being exchangeable and also study the
theoretical guarantees for the original Jackknife with stability assumptions (see Section 5 of their
paper). Jackknife+ needs to calculate m leave-one-out predictions for one test point while the original
Jackknife only calculates one predicted value [26]. The model evaluation cost (counts the number of
times evaluating a fitted model on a new point) of Jackknife+ is mn whereas the original Jackknife
is of cost n, indicating that Jackknife+ has a much higher computation complexity compared to
the original. Thus, since most novelty detection algorithms satisfy the stability assumption, we are
more inclined to apply the original Jackknife technique rather than Jackknife+ to detectors that meet
stability assumption, and we also give theoretical guarantees to achieve the non-asymptotic bounds
of FDP and maintain FDR control.

4 Statistical Performance Guarantees

In this section, we will theoretically establish NON-asymptotic bounds for FDP of the selected
detector M∗ by AutoMS and further show that it can control the FDR under the following mild
assumptions. Define the number of detectors ϖm = |G| and let An = o(n) be a pre-specified
sequence.
Assumption 1 (Density). For any detector M ∈ G and sufficiently large m, the conditional density
of SM(Z) given training dataset D is uniformly bounded above by a universal constant cf > 0,
where Z ∈ U is a new point.
Assumption 2 (Learning stability). For any fixed M, the score SM satisfies: for large enough m,

P(|SM(Z)− µ̃M(Z)| ≤ κm) ≥ 1− ζm,

with some sequences satisfying κm = o(1) and ζm = o(1) as m → ∞, and some function µ̃M.
Assumption 3 (Rates). Denote Bm = 2cfκm + 3ζm. Suppose that Bm = o(1), nϖmBm = o(1)

and mϖm/A
2/3
n = o(1).

Our main theoretical result on the validity of the AutoMS method for both FDP and FDR control is
given by the next theorem.
Theorem 1 (FDR control). Suppose Assumptions 1–3 hold. Let 0 < δ < 1 and 0 < α < 1. There
exist universal constants C1 > 0 and C2 > 0 so that the FDP of the proposed method satisfies

FDP(LM∗) ≤ α

[
1 +

4nBm

An
+ C1

√
ϖm

δA
2/3
n

+ C2

√
ϖmWmn

δ

]
, (7)

with probability at least 1− 2δ, and

lim sup
(m,n)→∞

FDR(LM∗) ≤ α, (8)

where Wmn =
(

n

mA
2/3
n

+ n

A
4/3
n

)
(1 + 15Bm + 2m2Bm).
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It is worth mentioning that even if all detectors control the FDR, we cannot assert without theoretical
proof that the optimal detector M∗ can still guarantee the FDR control. And Bates et al. [17] only
gives the expectation version that FDR can be controlled for a given detector. Briefly, we first prove
that the FDP of each detector can be bounded uniformly through the uniform convergence of the
Jackknife estimator. Hence, the selected “best” detector M∗ with the largest number of discoveries
will have the same non-asymptotic bounds for FDP. Then we give the asymptotic FDR control for the
optimal detector. Detailed proofs for theoretical results are provided in Appendix E.

In Eq. (4), we specify a data-driven upper bound t̄m,M when determining LM. We define t̄m,M =
G−

m,M(An/n) where Gm,M(t) is defined in Eq. (3) and G−
m,M(y) = inf {t ≥ 0 : Gm,M(t) ≤ y}

with 0 ≤ y ≤ 1. The upper bound t̄m,M for threshold LM can facilitate the derivation of non-
asymptotic bounds for FDP but is actually not required in practice. In other words, this makes an
implicit assumption that a non-trivial (not ∞) threshold can be attained within the interval (0, t̄m,M].
By Theorem 1, we can see that a large An would yield faster convergence of FDP. However, too
large An may lead to a trivial threshold. In fact, how large An could be depends on the number of
identifiable outliers in U [27], which is certainly unknown to us. Alternatively, by examining the
requirements in Assumption 3, we can set An ∼ min{(mϖm)2, n1/2} for simplicity.
Remark 1 (Stability). Since we use the Jackknife to estimate FDP, certain stability conditions seem
to be necessary. In Assumption 2, µ̃ needs not to be close to an optimal population detector. We only
need the SM to concentrate around µ̃. This is just a stability assumption rather than a consistency
assumption. When the sampling stability fails to hold, the S

[−j]
j,M may have a substantially different

distribution than Gn,M(t). In that case, we may resort to the sample-splitting procedure instead.
Remark 2 (Rates). In general, Assumption 3 is used to ensure the uniform consistency of the estimated
p-values, which performs an important role in the convergence of the FDR control. Specifically,
An = o(n) is a pre-specified sequence which gives a non-trivial lower bound of the true p-value
function GM(t) with GM(t) ≥ An

n = o(1). The Bm is a quantity used to measure the difference
of two p-values estimated in different ways, as in Lemma C.3 and Lemma C.2. And Bm = o(1)
indicates the two p-values should be close enough which is a very mild condition, and it can be
expected that the p-values will be close if the training sample sizes of inliers m and test sample
sizes of inliers n0 are large enough in practice. In the proposed AutoMS, the number of detectors
ϖm = |G| can go to infinity with some certain rate related to the training sample size m and test
sample size n. The assumptions nϖmBm = o(1) and mϖm/A

2/3
n = o(1) indicate the required rate

of ϖm to ensure the uniform consistency among detectors.
Remark 3 (FDP bound). Although the FDP bound might be slightly larger than the target FDR level
α in finite samples, the FDP bound converges asymptotically to the target FDR level α. Actually, in
novelty detection tasks, it is not necessary to obtain procedures of finite FDR control with additional
assumptions, instead, a powerful and stable procedure which controls FDR asymptotically is good
enough for most cases.

5 Experiments and Evaluation

5.1 Experiment Setting

In this section, we evaluate the performance of the proposed AutoMS in terms of FDR control and
detection power (TDP) through extensive numerical studies on both synthetic and real data. We report
the results based on 100 replication experiments throughout this paper. We construct a detector set
G with 83 candidate models by combining 6 novelty detection algorithms and their corresponding
hyperparameters (See Table S1 in Appendix A for the complete list). These models/detectors are
available in the Python “PyOD” [28] package. Note that the size of detector set G can be infinite and
our AutoMS can still be used.

Performance Measures. Since we focus on both error rate control and detection power, we use
FDR = E(FDP) and TDR = E(TDP) as performance measures for each model in this paper.
According to the definitions in Eq. (2) of Sect. 3, we have FDP = 1−Precision, and TDP = Recall.
Correspondingly, the empirical FDR and empirical TDR are calculated by averaging of FDPs and
TDPs over 100 replications, respectively. We say a detection procedure is superior to its competitor if
it has a larger TDR for the same target FDR level α, that is, a superior detector has a larger empirical
TDR whose empirical FDR is below or around the target FDR level α. The preset target FDR level α
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should be an acceptable level, which means all detectors that control the FDR at this level α should
be accepted. As long as the FDR of the selected detector is below a preset level α, we have achieved
our goal on FDR control and we should focus on improving TDR.

Table 1: Model-selection and error-rate-control methods.

Method Model Selection Error Rate Control

SRS [17] ✗ ✓
METAOD [11] ✓ ✗
AutoMS-SRS ✓ ✓
AutoMS-JK ✓ ✓

Baseline methods. To evaluate the
performance of the proposed AutoMS
method, we compare the proposed
AutoMS with two different types of
baselines: (i) model selection meth-
ods (METAOD [11]) and (ii) error-
rate-controlled methods (SRS-based
methods [17]). And we also consider
two versions of the proposed AutoMS:
AutoMS-JK and AutoMS-SRS, where AutoMS-JK uses Jackknife technique and AutoMS-SRS
replaces the Jackknife technique with single-random-splitting (SRS) technique for estimating score.
We explore the performances of the four methods with respect to FDR and TDR. It is worth mention-
ing that SRS is guaranteed with FDR control for any given detector, but there is no model selection
considered in SRS-based methods. METAOD is a model selection method using meta-learning
without considering error rate control, while the AutoMS can do both model selection and error rate
control, as shown in Table 1. For more details on the baseline methods, Refer to Appendix B.

5.2 Evaluation of the Jackknife
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Figure 1: Performance of SRS-OCSVM [17] under differ-
ent split ratios. Each box-plot shows the distribution of
FDP and TDP under 100 simulations. The red line shows
the corresponding results from Jackknife prediction. The
black dashed line is the target FDR level α = 0.1.

Firstly, We would like to show the ad-
vantage of Jackknife prediction with a
toy example using synthetic data. We
generate a training dataset D and a
test dataset U from a Gaussian mix-
ture model, where their sample sizes
are m = n = 2000 respectively and
U contains 10% outliers. More details
of the setting can be found in Sect. 5.3.
In Fig. 1, we compare the Jackknife pre-
diction to the single-random-splitting
(SRS) method in Bates et al. [17] with
different split ratios when the detector
M is the OCSVM with its default hy-
perparameter in the PyOD package [28].
Focusing on one training set D, we ran-
domly split D 100 times for each split ratio of SRS method while Jackknife technique only has one
prediction result. We can see from Fig. 1 that the Jackknife provides a quite tight FDP control and
achieves a high TDP while finding more true outliers. As discussed above, the SRS-based methods
depend on the random split and the split ratio and are usually unstable due to the randomness of the
segmentation, making it hard to reproduce.

The Jackknife estimate helps improve the stability and the accuracy of the scores due to the usage of
more samples to train the score function. Meanwhile, the Jackknife procedure will require a bit more
computation compared to one-time data splitting, if m is not too small. As the Jackknife procedure
for S[−j]

M (·) is trained offline, one can always replace the Jackknife with cross-validation to reduce
the computing burden to a certain extent. Instead of omitting one observation, we can randomly
partition D into k equal-sized folds and remove one fold from D as the subsample to train the score
function. In the following of this section, we use k = 100 folds in the AutoMS-JK procedure.

5.3 Synthetic Data

Data Description. We consider the same synthetic setting as in Bates et al. [17]. We will compare
the performance of different methods (the proposed AutoMS-JK, AutoMS-SRS, SRS-based methods
and METAOD) when the target FDR level is set to α = 0.1. Then we will show the results under
different target FDR levels. The data are generated by sampling each data point Zi ∈ R50 from a
multivariate Gaussian mixture model, Zi = Wi+

√
aVi, where Wi is one of 50 cluster centers sampled
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independently from the uniform distribution on [−3, 3]50 and Vi ∈ R50 are i.i.d from N(0, 1). The
difference between inliers and outliers is the constant a with H0 : a = 1 v.s. H1 : a = 2. We generate
a clean dataset D with m = 2000 observations and a test dataset U with n = 2000 observations in
which 90% are sampled as inliers. We aim to identify the remaining 10% of outliers in U .
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Figure 2: Comparisons of FDP (more stable around the dashed line) and TDP (the larger the
better) among AutoMS-JK, AutoMS-SRS, SRS-based methods (with different hyperparameters) and
METAOD. The dashed line is the target FDR level α which is set to α = 0.1.

Results. With the given target FDR level α = 0.1, the AutoMS (either AutoMS-JK or AutoMS-SRS)
outperforms all baseline methods as shown in Fig. 2. (a) All the SRS-based methods can perfectly
control the FDR with FDPs scattering around the given target FDR level α. But in terms of detection
power, the TDP performance of SRS-based methods vary greatly with different hyperparameters and
different algorithms. Some SRS-based methods, such as SRS-LODA, SRS-HOBOS, SRS-iForest,
even lose detection power with almost zero TDP/recall. This necessitates model selection among
numerous novelty detection methods. (b) On the other hand, METAOD gives large FDPs, which
means that most of the reported points are not true outliers. This phenomenon can be explained as
METAOD does not employ any FDR control procedure. And the TDPs of METAOD do not perform
well because the model selection of METAOD is based on historical data which may not be suitable
for the data we use. (c) AutoMS-JK and AutoMS-SRS are superior to all SRS-based methods and
METAOD with respect to the average TDR, with the average FDR slightly above the target FDR level
α, as it is more difficult to control the FDR of the selected detector than given detector. Additionally,
AutoMS-JK gives a higher TDR than AutoMS-SRS, which indicates that using the Jackknife method
instead of SRS enhances detection power. Although both AutoMS and SRS-based methods can
control the FDR, AutoMS has better detection power with a larger TDR compared to SRS-based
methods. (d) The reason why the FDR control of AutoMS is more difficult than SRS-based methods
is that the FDP distribution of our selected detector is different from a given detector. Take a simple
example: there are 10 standard Gaussian variables, each with a mean 0. The largest variable among
those 10 does not have a mean 0. Therefore, the selected detector is more difficult to control FDR.

Fig. 3 shows the performance of AutoMS-JK, AutoMS-SRS and SRS-based-best methods under
different target FDR levels. In particular, SRS-LOF-best is the best SRS-LOF detector with the largest
TDR among all its candidate hyperparameters. Although all SRS-based-best methods can control the
FDR under any target FDR level, the average TDPs of AutoMS-JK/AutoMS-SRS are higher than all
the SRS-based-best methods at every target FDR level. The average FDP of AutoMS-JK/AutoMS-
SRS is slightly larger than the given target FDR level α, but their difference FDP − α does not
increase as α becomes larger. The FDR of AutoMS-JK has a smaller deviation above the target α
than AutoMS-SRS. Actually, in novelty detection tasks, it is not necessary to obtain procedures with
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Figure 3: Performance of AutoMS-JK, AutoMS-SRS and SRS-based-best methods with different
target FDR level α. The difference between the FDP and the target FDR level α shows the deviation
of FDP from α.

finite FDR control, instead, a powerful and stable procedure that controls FDR asymptotically around
the target FDR level α is good enough for most cases. That is what AutoMS does. AutoMS can
uniformly offer much higher TDPs than SRS-based-best methods under different target FDR levels.

5.4 Real Data

We compare the proposed AutoMS with two different types of baselines: (i) model selection methods
(METAOD [11]) and (ii) error-rate-controlled methods (SRS-based methods [17]), as in Table 1.

Datasets. Four real-world datasets for outlier detection are considered, and the details of the datasets
are summarized in Table 2. We use empirical TDR (Recall) and empirical FDR (1-Precision) as
performance measures. For real data implementation, we construct the training dataset D by randomly
sampling m = min{20000, N0/3} inlier samples from the total N0 inliers. Then we focus on a test
dataset generating mechanism under which 90% of the n = min{2000, (N0 +N1)/6} observations
in each test dataset U are sampled from N0 inliers, and we seek to identify the remaining 10% of
outliers (i.e., 10% outlier ratio). For results on 11 more real-world datasets [29] as used in Zhao et al.
[11], refer to Appendix D.

Table 2: Summary of real-world datasets for novelty detection.

Credit Card [30] Covertype [31] Satellite [32] Shuttle [33]

# Features d 30 10 36 9
# Inliers N0 284,807 283,301 5,732 45,586
# Outliers N1 492 2747 703 12,414

Results. Fig. 4 shows the performance of different methods on real-world datasets, and Table 3
gives the empirical FDR and empirical TDR of different methods, where SRS-best is the best SRS
detector with the largest TDR among all detectors. From Fig. 4 and Table 3, we can observe that
AutoMS can maintain the FDPs well around the target FDR level α = 0.1, while METAOD has
inflated the empirical FDP to values around or above 0.5 on all real-world datasets, indicating that in
the detected set Ô obtained by METAOD, around 50% of the detected outliers are not true outliers. It
is worth mentioning that, all SRS-based methods can maintain the FDR level around 0.1 as well as
expected from their theoretical guarantees. As for true detection rate (TDR), AutoMS has reasonable
empirical TDR on all datasets, while SRS-based methods sometimes perform too conservatively,
have no detected outliers and their performance varies greatly from dataset to dataset.

In addition, the performances of SRS-LODA-best and SRS-LOF-best are rather different, particularly
on the “Covertype” dataset and “Credit Card” dataset, which means SRS-based-best methods can not
give a consistent good result on different tasks and its performance can be severely affected by the
base detector the SRS used. On the other hand, AutoMS keeps accurate and stable FDR levels on
all datasets and has reasonable TDR for different tasks. Overall, AutoMS can uniformly offer much
higher TDRs than SRS-based-best methods across all settings and AutoMS can maintain the FDR
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Figure 4: Performance on four different real-world datasets. Each box-plot shows the distribution of
FDP and TDP. The dashed line is the target FDR level α = 0.1.

level with a comparable TDR compared with METAOD. Table 4 shows results under different target
FDR α levels (refer to Appendix C for more results and details).

Table 3: Empirical FDR and TDR of different methods when the target FDR level is set α = 0.1.

Dataset AutoMS-JK AutoMS-SRS SRS-best METAOD
F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

Covertype 0.106 0.933 0.105 0.905 0.090 0.890 0.487 0.960
Credit Card 0.099 0.758 0.094 0.757 0.086 0.674 0.508 0.856
Satellite 0.114 0.968 0.134 0.974 0.069 0.963 0.495 0.948
Shuttle 0.100 0.942 0.102 0.926 0.088 0.914 0.573 0.689

Table 4: Empirical FDR and TDR under different target FDR levels α on “Shuttle” dataset.

Shuttle α = 0.05 α = 0.10 α = 0.15 α = 0.20

Method F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR F̂DR T̂DR

AutoMS-JK 0.042 0.883 0.100 0.942 0.151 0.951 0.209 0.953
AutoMS-SRS 0.051 0.659 0.102 0.926 0.159 0.952 0.216 0.956
SRS-HBOS-best 0.024 0.400 0.083 0.554 0.131 0.733 0.177 0.748
SRS-OCSVM-best 0.010 0.139 0.088 0.914 0.133 0.942 0.177 0.946
METAOD 0.573 0.689 0.573 0.689 0.573 0.689 0.573 0.689

6 Conclusion

The detector selection problem in novelty detection analysis is a challenging problem and it has
not been thoroughly investigated in the literature, especially in terms of theoretical guarantees.
In this paper, we propose an effective data-driven procedure, named AutoMS, that can select the
“best” detector which offers high TDR and controls FDR simultaneously. The AutoMS is fully
automatic without any supervision and is easily implemented. We give theoretical results showing
that the proposed AutoMS can achieve the non-asymptotic bounds of FDP and maintain FDR control
under mild conditions. Extensive experiments on synthetic and real-world datasets show AutoMS
significantly improves the detection power and yields accurate FDR control.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See at the end of Sect. 1, we summarize our main
contributions. And the experimental results in Sect. 5 validate the theoretical results in
Sect. 4.

(b) Did you describe the limitations of your work? [Yes] See Remark 1 in Sect. 4, we
discuss the stability limitation (Assumption 2) of detector algorithm.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is foundational research and not tied to particular applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We read the ethics review guidelines and ensured that our paper conforms
to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-

tion 1-Assumption 3 in Sect. 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix E in

the Supplementary material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Algorithm 1
in Sect. 3, we give the pseudo-code of our AutoMS procedure, and release the code on
github https://github.com/ZhangYifan1996/AutoMS.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe the generation of our synthetic data in Sect. 5.3 and
give the candidate detectors we use in Appendix A of the Supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Our experimental results are all shown with boxplots.
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using/curating? [N/A]
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