
A Technical Lemmas

Lemma A.1 (Lemma 12 of [1]). Let A, B and C be positive semi-definite matrices with finite
dimension, such that A = B + C. Then, we have that:

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)

Lemma A.2 (Extension of Lemma A.1 to kernel matrix). Define positive definite matrices A =
λI+Φ⊤

1 Φ1+Φ⊤
2 Φ2 andB = λI+Φ⊤

1 Φ1, where Φ⊤
1 Φ1,Φ

⊤
2 Φ2 ∈ Rp×p and p is possibly infinite.

Then, we have that:

sup
ϕ̸=0

ϕ⊤Aϕ

ϕ⊤Bϕ
≤ det(I+ λ−1KA)

det(I+ λ−1KB)

where KA =

[
Φ1

Φ2

] [
Φ⊤

1 ,Φ
⊤
2

]
and KB = Φ1Φ

⊤
1 .

Proof of Lemma A.2. Similar to the proof of Lemma 12 of [1], we start from the simple case when
Φ⊤

2 Φ2 = mm⊤, where m ∈ Rp. Using Cauchy-Schwartz inequality, we have

(ϕ⊤m)2 = (ϕ⊤B1/2B−1/2m)2 ≤ ∥B1/2ϕ∥2∥B−1/2m∥2 = ∥ϕ∥2B∥m∥2B−1 ,

and thus,
ϕ⊤(B +mm⊤)ϕ ≤ ϕ⊤Bϕ+ ∥ϕ∥2B∥m∥2B−1 = (1 + ∥m∥2B−1)∥ϕ∥2B ,

so we have
ϕ⊤Aϕ

ϕ⊤Bϕ
≤ 1 + ∥m∥2B−1

for any ϕ. Then using the kernel trick, e.g., see the derivation of Eq (27) in [31], we have

1 + ∥m∥2B−1 =
det(I+ λ−1KA)

det(I+ λ−1KB)
,

which finishes the proof of this simple case. Now consider the general case where Φ⊤
2 Φ2 =

m1m
⊤
1 +m2m

⊤
2 + · · ·+mt−1m

⊤
t−1. Let’s define Vs = B +m1m

⊤
1 +m2m

⊤
2 + · · ·+ms−1m

⊤
s−1

and the corresponding kernel matrix KVs =

 Φ1

m⊤
1

. . .
m⊤

s−1

 [Φ⊤
1 ,m1, . . . ,ms−1

]
, and note that ϕ⊤Aϕ

ϕ⊤Bϕ
=

ϕ⊤Vtϕ
ϕ⊤Vt−1ϕ

ϕ⊤Vt−1ϕ
ϕ⊤Vt−2ϕ

. . . ϕ
⊤V2ϕ

ϕ⊤Bϕ
. Then we can apply the result for the simple case on each term in the

product above, which gives us

ϕ⊤Aϕ

ϕ⊤Bϕ
≤ det(I+ λ−1KVt)

det(I+ λ−1KVt−1
)

det(I+ λ−1KVt−1
)

det(I+ λ−1KVt−2
)
. . .

det(I+ λ−1KV2)

det(I+ λ−1KB)

=
det(I+ λ−1KVt)

det(I+ λ−1KB)
=

det(I+ λ−1KA)

det(I+ λ−1KB)
,

which finishes the proof.

Lemma A.3 (Eq (26) and Eq (27) of [31]). Let {ϕt}∞t=1 be a sequence in Rp, V ∈ Rp×p a positive
definite matrix, where p is possibly infinite, and define Vt = V +

∑t
s=1 ϕsϕ

⊤
s . Then we have that

n∑
t=1

min
(
∥ϕt∥2V −1

t−1

, 1
)
≤ 2 ln

(
det(I+ λ−1KVt

)
)
,

where KVt is the kernel matrix corresponding to Vt as defined in Lemma A.2.
Lemma A.4 (Lemma 4 of [4]). For t > tlast, we have for any x ∈ Rd

σ̂2
t (x) ≤ σ̂2

tlast
(x) ≤

(
1 +

t∑
s=tlast+1

σ̂2
tlast

(xs)
)
σ̂2
t (x)
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B Confidence Ellipsoid for DisKernelUCB

In this section, we construct the confidence ellipsoid for DisKernelUCB as shown in Lemma B.1.
Lemma B.1 (Confidence Ellipsoid for DisKernelUCB). Let δ ∈ (0, 1). With probability at least
1− δ, for all t ∈ [NT ], i ∈ [N ], we have

∥θ̂t,i − θ⋆∥At,i
≤

√
λ∥θ⋆∥+R

√
2 ln(NT/δ) + ln(det(KDt(i),Dt(i)/λ+ I)).

The analysis is rooted in [31] for kernelized contextual bandit, but with non-trivial extensions to
address the dependencies due to the event-triggered distributed communication. This problem also
exists in prior works of distributed linear bandit, but was not addressed rigorously (see Lemma H.1.
of [30]). First, recall that the Ridge regression estimator

θ̂t,i = A−1
t,i

∑
s∈Dt(i)

ϕsys = A−1
t,i

∑
s∈Dt(i)

ϕs(ϕ
⊤
s θ⋆ + ηs)

= θ⋆ − λA−1
t,i θ⋆ +A−1

t,i

∑
s∈Dt(i)

ϕsηs,

and thus, we have

∥A1/2
t,i (θ̂t,i − θ⋆)∥ = ∥−λA−1/2

t,i θ⋆ +A
−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥

≤ ∥λA−1/2
t,i θ⋆∥+ ∥A−1/2

t,i

∑
s∈Dt(i)

ϕsηs∥

≤
√
λ∥θ⋆∥+ ∥A−1/2

t,i

∑
s∈Dt(i)

ϕsηs∥

(5)

where the first inequality is due to the triangle inequality, and the second is due to the property of

Rayleigh quotient, i.e., ∥A−1/2
t,i θ⋆∥ ≤ ∥θ⋆∥

√
λmax(A

−1
t,i ) ≤ ∥θ⋆∥ 1√

λ
.

Difference from standard argument Note that the second term may seem similar to the ones
appear in the self-normalized bound in previous works of linear and kernelized bandits [1, 6, 31].
However, a main difference is that Dt(i), i.e., the sequence of indices for the data points used to
update client i, is constructed using the event-trigger as defined in Eq (2) . The event-trigger is
data-dependent, and thus it is a delayed and permuted version of the original sequence [t]. It is delayed
in the sense that the length |Dt(i)| < t unless t is the global synchronization step. It is permuted
in the sense that every client receives the data in a different order, i.e., before the synchronization,
each client first updates using its local new data, and then receives data from other clients at the
synchronization. This prevents us from directly applying Lemma 3.1 of [31], and requires a more
careful treatment as shown in the following paragraph.

First, we should note that during the time steps of global synchronization, i.e., t ∈ {tp}p∈[B], we
have Dt(i) = [t],∀i ∈ [N ], which recovers the case under centralized setting, i.e., the centralized
agent that has access to all data points in the learning system. Therefore, analogous to the proof of
RARELY SWITCHING OFUL algorithm in Appendix D of [1], with the standard argument in [31],
we have

∥A−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥ ≤ R
√
2 ln(1/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

for all t ∈ {tp}p∈[B] and i ∈ [N ], with probability at least 1 − δ. If our proposed algorithm has
no local update, or use the ‘hallucinating update’ as in [4], then this would suffice. However, the
existence of local update requires us to obtain self-normalized bounds for the local models that have
been updated using each client’s newly collected data after the synchronization step, which leads to
the issue mentioned in the previous paragraph. Therefore, we need to address this issue by a union
bound over all possible time steps of global synchronization and all clients.

Specifically, consider some time step t /∈ {tp}p∈[B] and client i. We denote the time step
of the most recent global synchronization to t as tlast, and define the filtration {Fs}tlast

s=0 ∪
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{Fs,i}∞s=tlast+1, where the σ-algebra Fs = σ
(
(xτ , ητ )τ∈[s]

)
for s ∈ [0, tlast], and Fs,i =

σ
(
(xτ , ητ )τ∈[tlast], (xτ , ητ )τ∈[tlast,s],iτ=i

)
for s ≥ tlast + 1. By applying the standard argument for

self-normalized bound using the filtration constructed above and then an union bound over N clients,
we have

∥A−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥ ≤ R
√

2 ln(N/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

for all t > tlast and i ∈ [N ], with probability at least 1− δ. As the time step of global synchronization
tlast is data-dependent, and thus can take any value in [T ], we apply another union bound, which
finishes the proof.

C Proof of Lemma 3.1: Regret and Communication Cost of DisKernelUCB

Based on Lemma B.1 and the arm selection rule in Eq (1), we have

f(x⋆
t ) ≤ µ̂t−1,it(x

⋆
t ) + αt−1,it σ̂t−1,it(x

⋆
t ) ≤ µ̂t−1,it(xt) + αt−1,it σ̂t−1,it(xt),

f(xt) ≥ µ̂t−1,it(xt)− αt−1,it σ̂t−1,it(xt),

and thus rt = f(x⋆
t )− f(xt) ≤ 2αt−1,it σ̂t−1,it(xt), for all t ∈ [NT ], with probability at least 1− δ.

Then following similar steps as DisLinUCB of [30], we can obtain the regret and communication
cost upper bound of DisKernelUCB.

C.1 Regret Upper Bound

We call the time period in-between two consecutive global synchronizations as an epoch, i.e., the
p-th epoch refers to [tp−1 + 1, tp], where p ∈ [B] and 0 ≤ B ≤ NT denotes the total number of
global synchronizations. Now consider an imaginary centralized agent that has immediate access to
each data point in the learning system, and denote by At =

∑t
s=1 ϕsϕ

⊤
s and K[t],[t] for t ∈ [NT ]

the covariance matrix and kernel matrix constructed by this centralized agent. Then similar to [30],
we call the p-th epoch a good epoch if

ln

(
det(I+ λ−1K[tp],[tp])

det(I+ λ−1K[tp−1],[tp−1])

)
≤ 1,

otherwise it is a bad epoch. Note that ln(det(I + λ−1K[NT ],[NT ])) ≤ 2γNT by definition of

γNT , i.e., the maximum information gain. Since ln(
det(I+λ−1K[t1],[t1])

det(I) ) + ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
) +

· · ·+ ln(
det(I+λ−1K[NT ],[NT ])

det(I+λ−1K[tB ],[tB ])
) = ln(det(I + λ−1K[NT ],[NT ])) ≤ 2γNT , and due to the pigeonhole

principle, there can be at most 2γNT bad epochs.

If the instantaneous regret rt is incurred during a good epoch, we have

rt ≤ 2αt−1,it∥ϕt∥A−1
t−1,it

≤ 2αt−1,it∥ϕt∥A−1
t−1

√
∥ϕt∥2A−1

t−1,it

/∥ϕt∥2A−1
t−1

= 2αt−1,it∥ϕt∥A−1
t−1

√
det(I+ λ−1K[t−1],[t−1])

det(I+ λ−1KDt−1(it),Dt−1(it))

≤ 2
√
eαt−1,it∥ϕt∥A−1

t−1

where the second inequality is due to Lemma A.2, and the last inequality is due to the defi-

nition of good epoch, i.e., det(I+λ−1K[t−1],[t−1])

det(I+λ−1KDt−1(it),Dt−1(it)
) ≤ det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
≤ e. Define

αNT :=
√
λ∥θ⋆∥+

√
2 ln(NT/δ) + ln(det(K[NT ],[NT ]/λ+ I)). Then using standard arguments,
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the cumulative regret incurred in all good epochs can be bounded by,

Rgood =

B∑
p=1

1{ln(
det(I+ λ−1K[tp],[tp])

det(I+ λ−1K[tp−1],[tp−1])
) ≤ 1}

tp∑
t=tp−1

rt ≤
NT∑
t=1

2
√
eαt−1,it∥ϕt∥A−1

t−1

≤ 2
√
eαNT

NT∑
t=1

∥ϕt∥A−1
t−1

≤ 2
√
eαNT

√
NT · 2 ln(det(I+ λ−1K[NT ],[NT ]))

≤ 2
√
eαNT

√
NT · 4γNT = O

(√
NT (∥θ⋆∥

√
γNT + γNT )

)
where the third inequality is due to Cauchy-Schwartz and Lemma A.3, and the forth is due to the
definition of maximum information gain γNT .

Then we look at the regret incurred during bad epochs. Consider some bad epoch p, and the cumulative
regret incurred during this epoch can be bounded by

tp∑
t=tp−1+1

rt =

N∑
i=1

∑
t∈Dtp (i)\Dtp−1

(i)

rt ≤ 2αNT

N∑
i=1

∑
t∈Dtp (i)\Dtp−1

(i)

∥ϕt∥A−1
t−1,i

≤ 2αNT

N∑
i=1

√
(|Dtp(i)| − |Dtp−1

(i)|)
∑

t∈Dtp (i)\Dtp−1
(i)

∥ϕt∥2A−1
t−1,i

≤ 2αNT

N∑
i=1

√√√√2(|Dtp(i)| − |Dtp−1(i)|) ln(
det(I+ λ−1KDtp (i),Dtp (i)

)

det(I+ λ−1KDtp−1
(i),Dtp−1

(i))
)

≤ 2
√
2αNTN

√
D

where the last inequality is due to our event-trigger in Eq (2). Since there can be at most 2γNT bad
epochs, the cumulative regret incurred in all bad epochs

Rbad ≤ 2γNT · 2
√
2αNTN

√
D = O

(
ND0.5(∥θ⋆∥γNT + γ1.5NT )

)
Combining cumulative regret incurred during both good and bad epochs, we have

RNT = Rgood +Rbad = O
(
(
√
NT +N

√
DγNT )(∥θ⋆∥

√
γNT + γNT )

)
C.2 Communication Upper Bound

For some α > 0, there can be at most ⌈NT
α ⌉ epochs with length larger than α. Based on

our event-trigger design, we know that (|Dtp(itp)| − |Dtp−1
(itp)|) ln(

det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≥

(|Dtp(itp)| − |Dtp−1
(itp)|) ln(

det(I+λ−1KDtp (itp ),Dtp (itp ))

det(I+λ−1KDtp−1
(itp ),Dtp−1

(itp ))
) ≥ D for any epoch p ∈ [B], where

itp is the client who triggers the global synchronization at time step tp. Then if the length of certain

epoch p is smaller than α, i.e., tp − tp−1 ≤ α, we have ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≥ ND

α . Since

ln(
det(I+λ−1K[t1],[t1])

det(I) ) + ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
) + · · ·+ ln(

det(I+λ−1K[tB ],[tB ])

det(I+λ−1K[tB−1],[tB−1])
) ≤ ln(det(I+

λ−1K[NT ],[NT ])) ≤ 2γNT , the total number of such epochs is upper bounded by ⌈ 2γNTα
ND ⌉. Combin-

ing the two terms, the total number of epochs can be bounded by,

B ≤ ⌈NT
α

⌉+ ⌈2γNTα

ND
⌉

where the LHS can be minimized using the AM-GM inequality, i.e., B ≤
√

NT
α

2γNTα
ND =

√
2γNTT

D .

To obtain the optimal order of regret, we set D = O( T
NγNT

), so that RNT = O
(√
NT (∥θ⋆∥

√
γNT +

γNT )
)
. And the total number of epochs B = O(

√
NγNT ). However, we should note that as

DisKernelUCB communicates all the unshared raw data at each global synchronization, the total
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communication cost mainly depends on when the last global synchronization happens. Since the
sequence of candidate sets {At}t∈[NT ], which controls the growth of determinant, is an arbitrary
subset of A, the time of last global synchronization could happen at the last time step t = NT .
Therefore, CT = O(N2Td) in such a worst case.

D Derivation of the Approximated Mean and Variance in Section 4

For simplicity, subscript t is omitted in this section. The approximated Ridge regression estimator for
dataset {(xs, ys)}s∈D is formulated as

θ̃ = argmin
θ∈H

∑
s∈D

(
(PSϕs)

⊤θ − ys

)2
+ λ∥θ∥22

where D denotes the sequence of time indices for data in the original dataset, S ⊆ D denotes the time
indices for data in the dictionary, and PS ∈ Rp×p denotes the orthogonal projection matrix defined
by S . Then by taking derivative and setting it to zero, we have (PSΦ

⊤
DΦDPS + λI)θ̃ = PSΦ

⊤
DyD,

and thus θ̃ = Ã−1b̃, where Ã = PSΦ
⊤
DΦDPS + λI and b̃ = PSΦ

⊤
DyD.

Hence, the approximated mean reward and variance for some arm x are

µ̃t,i(x) = ϕ(x)⊤Ã−1b̃

σ̃t,i(x) =

√
ϕ(x)⊤Ã−1ϕ(x)

To obtain their kernelized representation, we rewrite

(PSΦ
⊤
DΦDPS + λI)θ̃ = PSΦ

⊤
DyD

⇔ PSΦ
⊤
D(yD −ΦDPS θ̃) = λθ̃

⇔ θ̃ = PSΦ
⊤
Dρ

where ρ := 1
λ (yD − ΦDPS θ̃) = 1

λ (yD − ΦDPSPSΦ
⊤
Dρ). Solving this equation, we get ρ =

(ΦDPSPSΦ
⊤
D + λI)−1yD. Note that PSPS = PS , since projection matrix PS is idempotent.

Moreover, we have (Φ⊤Φ+ λI)Φ⊤ = Φ⊤(ΦΦ⊤ + λI), and (Φ⊤Φ+ λI)−1Φ⊤ = Φ⊤(ΦΦ⊤ +
λI)−1. Therefore, we can rewrite the approximated mean for some arm x as

µ̃(x) = ϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1yD

= (P
1/2
S ϕ(x))⊤(ΦDP

1/2
S )⊤[ΦDP

1/2
S (ΦDP

1/2
S )⊤ + λI]−1yD

= (P
1/2
S ϕ(x))⊤(P

1/2
S Φ⊤

DΦDP
1/2
S + λI)−1(ΦDP

1/2
S )⊤yD

= z(x;S)⊤
(
Z⊤

D;SZD;S + λI
)−1

Z⊤
D;SyD

To derive the approximated variance, we start from the fact that (PSΦ
⊤
DΦDPS + λI)ϕ(x) =

PSΦ
⊤
DΦDPSϕ(x) + λϕ(x), so

ϕ(x) = (PSΦ
⊤
DΦDPS + λI)−1PSΦ

⊤
DΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

= PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

Then we have

ϕ(x)⊤ϕ(x)

=
{
PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

}⊤{
PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

}
=ϕ(x)⊤PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSPSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x)

+ 2λϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPS(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

+ λϕ(x)⊤(PSΦ
⊤
DΦDPS + λI)−1λI(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

=ϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λϕ(x)⊤(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)
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By rearranging terms, we have

σ̃2(x) =ϕ(x)⊤(PSΦ
⊤
DΦDPS + λI)−1ϕ(x)

=
1

λ

{
ϕ(x)⊤ϕ(x)− ϕ(x)⊤PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x)

}
=
1

λ
{k(x,x)− z(x;S)⊤Z⊤

D;SZD;S [Z
⊤
D;SZD;S + λI]−1z(x|S)}

E Proof of Lemma 4.1

In the following, we analyze the ϵt,i-accuracy of the dictionary for all t, i.

At the time steps when global synchronization happens, i.e., tp for p ∈ [B], Stp is sampled from
[tp] = Dtp(i) using approximated variance σ̃2

tp−1,i
. In this case, the accuracy of the dictionary only

depends on the RLS procedure, and Calandriello et al. [4] have already showed that the following
guarantee on the accuracy and size of dictionary holds ∀t ∈ {tp}p∈[B].

Lemma E.1 (Lemma 2 of [4]). Under the condition that q̄ = 6 1+ϵ
1−ϵ log(4NT/δ)/ϵ

2, for some
ϵ ∈ [0, 1), with probability at least 1− δ, we have ∀t ∈ {tp}p∈[B] that the dictionary {(xs, ys)}s∈St

is ϵ-accurate w.r.t. {(xs, ys)}s∈Dt(i), and 1−ϵ
1+ϵσ

2
t (x) ≤ σ̃2

t (x) ≤ 1+ϵ
1−ϵσ

2
t (x),∀x ∈ A. Moreover,

the size of dictionary |St| ≤ 3(1 + L2/λ) 1+ϵ
1−ϵ q̄d̃, where d̃ := Tr(K[NT ],[NT ](K[NT ],[NT ] + λI)−1)

denotes the effective dimension of the problem, and it is known that d̃ = O(γNT ) [6].

Lemma E.1 guarantees that for all t ∈ {tp}p∈[B], the dictionary has a constant accuracy, i.e., ϵt,i =
ϵ,∀i. In addition, since the dictionary is fixed for t /∈ {tp}p∈[B], its size St = O(γNT ),∀t ∈ [NT ].

Then for time steps t /∈ {tp}p∈[B], due to the local update, the accuracy of the dictionary will degrade.
However, thanks to our event-trigger in Eq (4), the extent of such degradation can be controlled, i.e., a
new dictionary update will be triggered before the previous dictionary becomes completely irrelevant.
This is shown in Lemma E.2 below.

Lemma E.2. Under the condition that {(xs, ys)}s∈Stp
is ϵ-accurate w.r.t. {(xs, ys)}s∈Dtp (i)

, ∀t ∈
[tp + 1, tp+1], i ∈ [N ], Stp is

(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
-accurate w.r.t. Dt(i).

Combining Lemma E.1 and Lemma E.2 finishes the proof.

Proof of Lemma E.2. Similar to [3], we can rewrite the ϵ-accuracy condition of Stp w.r.t. Dt(i) for
t ∈ [tp + 1, tp+1] as

(1− ϵt,i)(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) + λI ⪯ (1 + ϵt,i)(Φ

⊤
Dt(i)

ΦDt(i) + λI)

⇔− ϵt,i(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i) ⪯ ϵt,i(Φ

⊤
Dt(i)

ΦDt(i) + λI)

⇔− ϵt,iI ⪯ (Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i))(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2 ⪯ ϵt,iI

⇔∥(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i))(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2∥ ≤ ϵt,i

⇔∥
∑

s∈Dtp

(
qs
p̃s

− 1)ψsψ
⊤
s +

∑
s∈Dt(i)\Dtp

(0− 1)ψsψ
⊤
s ∥ ≤ ϵt,i

where ψs = (Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2ϕs. Notice that the second term in the norm has weight −1

because the dictionary Stp is fixed after tp. With triangle inequality, now it suffices to bound

∥
∑

s∈Dtp

(
qs
p̃s

− 1)ψs,jψ
⊤
s +

∑
s∈Dt(i)\Dtp

(0− 1)ψsψ
⊤
s ∥ ≤ ∥

∑
s∈Dtp

(
qs
p̃s

− 1)ψsψ
⊤
s ∥+ ∥

∑
s∈Dt(i)\Dtp

ψsψ
⊤
s ∥.

We should note that the first term corresponds to the approximation accuracy of Stp w.r.t. the dataset
Dtp . And under the condition that it is ϵ-accurate w.r.t. Dtp , we have ∥

∑
s∈Dtp

( qsp̃s
− 1)ψsψ

⊤
s ∥ ≤ ϵ.

The second term measures the difference between Dt(i) compared with Dtp , which is unique to our
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work. We can bound it as follows.

∥
∑

s∈Dt(i)\Dtp

ψsψ
⊤
s ∥

=∥(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(
∑

s∈Dt(i)\Dtp

ϕsϕ
⊤
s )(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2∥

=max
ϕ∈H

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(
∑

s∈Dt(i)\Dtp
ϕsϕ

⊤
s )(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2ϕ

ϕ⊤ϕ

=max
ϕ∈H

ϕ⊤(
∑

s∈Dt(i)\Dtp
ϕsϕ

⊤
s )ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)ϕ

=1−min
ϕ∈H

ϕ⊤(Φ⊤
Dtp

ΦDtp
+ λI)ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)ϕ

=1− 1

maxϕ∈H
ϕ⊤(Φ⊤

Dtp
ΦDtp

+λI)−1ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i)
+λI)−1ϕ

=1− 1

maxx
σ2
tp,i(x)

σ2
t,i(x)

We can further bound the term
σ2
tp,i(x)

σ2
t,i(x)

using the threshold of the event-trigger in Eq (4). For any

x ∈ Rd,

σ2
tp,i

(x)

σ2
t,i(x)

≤ 1 +
∑

s∈Dt(i)\Dtp

σ̂2
tp,i(xs) ≤ 1 +

1 + ϵ

1− ϵ

∑
s∈Dt(i)\Dtp

σ̃2
tp,i(xs) ≤ 1 +

1 + ϵ

1− ϵ
D

where the first inequality is due to Lemma A.4, the second is due to Lemma E.1, and the third is due
to the event-trigger in Eq (4). Putting everything together, we have that if Stp is ϵ-accurate w.r.t. Dtp ,
then it is

(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
-accurate w.r.t. dataset Dt(i), which finishes the proof.

F Proof of Lemma 4.2

To prove Lemma 4.2, we need the following lemma.

Lemma F.1. We have ∀t, i that

∥θ̃t,i − θ⋆∥Ãt,i
≤

(
∥ΦDt(i)(I−PS)∥+

√
λ
)
∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+KDt(i),Dt(i))

with probability at least 1− δ.

Proof of Lemma F.1. Recall that the approximated kernel Ridge regression estimator for θ⋆ is defined
as

θ̃t,i = Ã−1
t,i PSΦ

⊤
Dt(i)

yDt(i)

where PS is the orthogonal projection matrix for the Nyström approximation, and Ãt,i =
PSΦ

⊤
Dt(i)

ΦDt(i)PS + λI. Then our goal is to bound

(θ̃t,i − θ⋆)
⊤Ãt,i(θ̃t,i − θ⋆)

=(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

yDt(i) − θ⋆)

=(θ̃t,i − θ⋆)
⊤Ãt,i[Ã

−1
t,i PSΦ

⊤
Dt(i)

(ΦDt(i)θ⋆ + ηDt(i))− θ⋆]

=(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆) + (θ̃t,i − θ⋆)
⊤Ãt,iÃ

−1
t,i PSΦ

⊤
Dt(i)

ηDt(i)
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Bounding the first term To bound the first term, we begin with rewriting

Ãt,i(Ã
−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆)

=PSΦ
⊤
Dt(i)

ΦDt(i)θ⋆ −PSΦ
⊤
Dt(i)

ΦDt(i)PSθ⋆ − λθ⋆

=PSΦ
⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λθ⋆

and by substituting this into the first term, we have

(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆)

=(θ̃t,i − θ⋆)
⊤PSΦ

⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λ(θ̃t,i − θ⋆)
⊤θ⋆

=(θ̃t,i − θ⋆)
⊤Ã

1/2
t,i Ã

−1/2
t,i PSΦ

⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λ(θ̃t,i − θ⋆)
⊤Ã

1/2
t,i Ã

−1/2
t,i θ⋆

≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆∥+ λ∥θ⋆∥Ã−1
t,i

)
≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

∥∥ΦDt(i)(I−PS)∥∥θ⋆∥+
√
λ∥θ⋆∥

)
≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥ΦDt(i)(I−PS)∥+

√
λ
)
∥θ⋆∥

where the first inequality is due to Cauchy Schwartz, and the last inequality is because
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

∥ =
√
ΦDt(i)PS(PSΦ⊤

Dt(i)
ΦDt(i)PS + λI)−1PSΦ⊤

Dt(i)
≤ 1.

Bounding the second term By applying Cauchy-Schwartz inequality to the second term, we have

(θ̃t,i − θ⋆)
⊤Ãt,iÃ

−1
t,i PSΦ

⊤
Dt(i)

ηDt(i)

≤∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

ηDt(i)∥

=∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSA
1/2
t,i A

−1/2
t,i Φ⊤

Dt(i)
ηDt(i)∥

≤∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSA
1/2
t,i ∥∥A−1/2

t,i Φ⊤
Dt(i)

ηDt(i)∥

Note that PSAt,iPS = PS(Φ
⊤
Dt(i)

ΦDt(i) + λI)PS = Ãt,i + λ(PS − I) and PS ⪯ I, so we have

∥Ã−1/2
t,i PSA

1/2
t,i ∥ =

√
∥Ã−1/2

t,i PSA
1/2
t,i A

1/2
t,i PSÃ

−1/2
t,i ∥ ≤

√
∥Ã−1/2

t,i (Ãt,i + λ(PS − I))Ã
−1/2
t,i ∥

=

√
∥I+ λÃ

−1/2
t,i (PS − I))Ã

−1/2
t,i ∥ ≤

√
1 + λ∥Ã−1

t,i ∥∥PS − I)∥

≤
√
1 + λ · λ−1 · 1 =

√
2

Then using the self-normalized bound derived for Lemma B.1, the term ∥A−1/2
t,i Φ⊤

Dt(i)
ηDt(i)∥ =

∥Φ⊤
Dt(i)

ηDt(i)∥A−1
t,i

can be bounded by

∥Φ⊤
Dt(i)

ηDt(i)∥A−1
t,i

≤ R
√

2 ln(NT/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

≤ R
√
2 ln(NT/δ) + 2γNT

for ∀t, i, with probability at least 1− δ. Combining everything finishes the proof.

Now we are ready to prove Lemma 4.2 by further bounding the term ∥ΦDt(i)(I−PStp
)∥.

Proof of Lemma 4.2. Recall that S̄t,i ∈ R|Dt(i)|×|Dt(i)| denotes the diagonal matrix, whose s-th
diagonal entry equals to qs√

p̃s
, where qs = 1 if s ∈ Stp and 0 otherwise (note that for s /∈ Stp , we set

p̃s = 1, so qs/p̃s = 0). Therefore, ∀s ∈ Dt(i) \ Dtp , qs = 0, as the dictionary is fixed after tp. We
can rewrite Φ⊤

Dt(i)
S̄⊤
t,iS̄t,iΦDt(i) =

∑
s∈Dt(i)

qs
p̃s
ϕsϕ

⊤
s , where ϕs := ϕ(xs). Then by definition of

the spectral norm ∥·∥, and the properties of the projection matrix PStp
, we have

∥ΦDt(i)(I−PStp
)∥ =

√
λmax

(
ΦDt(i)(I−PStp

)2Φ⊤
Dt(i)

)
=
√
λmax

(
ΦDt(i)(I−PStp

)Φ⊤
Dt(i)

)
.

(6)
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Moreover, due to Lemma E.2, we know Stp is ϵt,i-accurate w.r.t. Dt(i) for t ∈ [tp + 1, tp+1], where
ϵt,i =

(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
, so we have I−PStp

⪯ λ
1−ϵt,i

(Φ⊤
Dt(i)

ΦDt(i) + λI)−1 by the property of

ϵ-accuracy (Proposition 10 of [3]). Therefore, by substituting this back to Eq (6), we have

∥ΦDt(i)(I−PStp
)∥ ≤

√
λmax

( λ

1− ϵt,i
ΦDt(i)(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1Φ⊤
Dt(i)

)
≤

√√√√ λ

−ϵ+ 1
1+ 1+ϵ

1−ϵD

which finishes the proof.

G Proof of Theorem 4.3: Regret and Communication Cost of
Approx-DisKernelUCB

G.1 Regret Analysis

Consider some time step t ∈ [tp−1 +1, tp], where p ∈ [B]. Due to Lemma 4.2, i.e., the confidence el-
lipsoid for approximated estimator, and the fact that xt = argmaxx∈At,i

µ̃t−1,i(x)+αt−1,iσ̃t−1,i(x),
we have

f(x⋆
t ) ≤ µ̃t−1,i(x

⋆
t ) + αt−1,iσ̃t−1,i(x

⋆
t ) ≤ µ̃t−1,i(xt) + αt−1,iσ̃t−1,i(xt),

f(xt) ≥ µ̃t−1,i(xt)− αt−1,iσ̃t−1,i(xt),

and thus rt = f(x⋆
t )− f(xt) ≤ 2αt−1,iσ̃t−1,i(xt), where

αt−1,i =

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵD

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnNT/δ + 2 ln det((1 + λ)I+KDt−1(i),Dt−1(i)).

Note that, different from Appendix C, the αt−1,i term now depends on the threshold D and accuracy
constant ϵ, as a result of the approximation error. As we will see in the following paragraphs, their
values need to be set properly in order to bound αt−1,i.

We begin the regret analysis of Approx-DisKernelUCB with the same decomposition of good and bad

epochs as in Appendix C.1, i.e., we call the p-th epoch a good epoch if ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≤

1, otherwise it is a bad epoch. Moreover, due to the pigeon-hold principle, there can be at most 2γNT

bad epochs.

As we will show in the following paragraphs, using Lemma E.1, we can obtain a similar bound for
the cumulative regret in good epochs as that in Appendix C.1, but with additional dependence on D
and ϵ. The proof mainly differs in the bad epochs, where we need to use the event-trigger in Eq (4)
to bound the cumulative regret in each bad epoch. Compared with Eq (2), Eq (4) does not contain
the number of local updates on each client since last synchronization., and as mentioned in Section
4.2, this introduces a

√
T factor in the regret bound for bad epochs in place of the

√
γNT term in

Appendix C.1.

Cumulative Regret in Good Epochs Let’s first consider some time step t in a good epoch p, i.e.,
t ∈ [tp−1 + 1, tp], and we have the following bound on the instantaneous regret

rt ≤ 2αt−1,iσ̃t−1,i(xt) ≤ 2αt−1,iσ̃tp−1,i(xt) ≤ 2αt−1,i
1 + ϵ

1− ϵ
σtp−1,i(xt)

= 2αt−1,i
1 + ϵ

1− ϵ

√
ϕ⊤t A

−1
tp−1

ϕt ≤ 2αt−1,i
1 + ϵ

1− ϵ

√
ϕ⊤t A

−1
t−1ϕt

√
det(I+ λ−1K[t−1],[t−1])

det(I+ λ−1K[tp−1],[tp−1])

≤ 2
√
e
1 + ϵ

1− ϵ
αt−1,i

√
ϕ⊤t A

−1
t−1ϕt

where the second inequality is because the (approximated) variance is non-decreasing, the third
inequality is due to Lemma E.1, the forth is due to Lemma A.2, and the last is because in a good

epoch, we have det(I+λ−1K[t−1],[t−1])

det(I+λ−1K[tp−1],[tp−1])
≤ det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
≤ e for t ∈ [tp−1 + 1, tp].
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Therefore, the cumulative regret incurred in all good epochs, denoted by Rgood, is upper bounded by

Rgood ≤ 2
√
e
1 + ϵ

1− ϵ

NT∑
t=1

αt−1,i

√
ϕ⊤t A

−1
t−1ϕt ≤ 2

√
e
1 + ϵ

1− ϵ
αNT

√√√√NT ·
NT∑
t=1

ϕ⊤t A
−1
t−1ϕt

≤ 2
√
e
1 + ϵ

1− ϵ
αNT

√
NT · 2γNT

where αNT :=

(
1√

−ϵ+ 1

1+ 1+ϵ
1−ϵ

D

+1

)
√
λ∥θ⋆∥+R

√
4 lnNT/δ + 2 ln det((1 + λ)I+K[NT ],[NT ]).

Cumulative Regret in Bad Epochs The cumulative regret incurred in this bad epoch is

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

tp∑
t=tp−1+1

rt

≤ 2
B∑

p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

tp∑
t=tp−1+1

αt−1,iσ̃t−1,i(xt)

≤ 2αNT

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

∑
t∈Ntp (i)\Ntp−1

(i)

σ̃t−1,i(xt)

≤ 2αNT

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√√√√(|Ntp (i)| − |Ntp−1
(i)|)

∑
t∈Ntp (i)\Ntp−1

(i)

σ̃2
t−1,i(xt)

≤ 2αNT

√
D

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√
(|Ntp (i)| − |Ntp−1

(i)|)

≤ 2αNT

√
D

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√
tp − tp−1

N

≤ 2αNT

√
DN

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

√
tp − tp−1

≤ 2αNT

√
DN

√√√√ B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}(tp − tp−1) ·

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

≤ 2αNT

√
DN

√
2NTγNT

where the third inequality is due to the Cauchy-Schwartz inequality, the forth is due to our event-
trigger in Eq (4), the fifth is due to our assumption that clients interact with the environment in a
round-robin manner, the sixth is due to the Cauchy-Schwartz inequality again, and the last is due to
the fact that there can be at most 2γNT bad epochs.

Combining cumulative regret incurred during both good and bad epochs, we have

RNT ≤ Rgood +Rbad ≤ 2
√
e
1 + ϵ

1− ϵ
αNT

√
NT · 2γNT + 2αNT

√
DN

√
2NTγNT

G.2 Communication Cost Analysis

Consider some epoch p. We know that for the client i who triggers the global synchronization, we
have

1 + ϵ

1− ϵ

tp∑
s=tp−1+1

σ2
tp−1

(xs) ≥
tp∑

s=tp−1+1

σ̃2
tp−1

(xs) ≥
∑

s∈Dtp(i)\Dtp−1(i)

σ̃2
tp−1

(xs) ≥ D

Then by summing over B epochs, we have

BD <
1 + ϵ

1− ϵ

B∑
p=1

tp∑
s=tp−1+1

σ2
tp−1

(xs) ≤
1 + ϵ

1− ϵ

B∑
p=1

tp∑
s=tp−1+1

σ2
s−1(xs)

σ2
tp−1

(xs)

σ2
s−1(xs)

.
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Now we need to bound the ratio
σ2
tp−1

(xs)

σ2
s−1(xs)

for s ∈ [tp−1 + 1, tp].

σ2
tp−1

(xs)

σ2
s−1(xs)

≤
[
1 +

s∑
τ=tp−1+1

σ2
tp−1

(xτ )
]
≤
[
1 +

1 + ϵ

1− ϵ

s∑
τ=tp−1+1

σ̃2
tp−1

(xτ )
]

Note that for the client who triggers the global synchronization, we have∑
s∈Dtp−1(i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D, i.e., one time step before it triggers the synchroniza-

tion at time tp. Due to the fact that the (approximated) posterior variance cannot exceed L2/λ,
we have

∑
s∈Dtp (i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D + L2/λ. For the other N − 1 clients, we have∑
s∈Dtp (i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D. Summing them together, we have

tp∑
s=tp−1+1

σ̃2
tp−1

(xs) < (ND + L2/λ)

for the p-th epoch. By substituting this back, we have

σ2
tp−1

(xs)

σ2
s−1(xs)

≤
[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

]
Therefore,

BD <
1 + ϵ

1− ϵ

[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

] B∑
p=1

tp∑
s=tp−1+1

σ2
s−1(xs)

≤ 1 + ϵ

1− ϵ

[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

]
2γNT

and thus the total number of epochs B < 1+ϵ
1−ϵ [

1
D + 1+ϵ

1−ϵ (N + L2/(λD))]2γNT .

By setting D = 1
N , we have

αNT =

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵ
1
N

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+K[NT ],[NT ])

≤

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵ

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+K[NT ],[NT ])

because N ≥ 1. Moreover, to ensure −ϵ + 1
1+ 1+ϵ

1−ϵ

> 0, we need to set the constant ϵ < 1/3.

Therefore,

RNT = O
(√

NT (∥θ⋆∥
√
γNT + γNT )

)
and the total number of global synchronizations B = O(NγNT ). Since for each global synchroniza-
tion, the communication cost is O(Nγ2NT ), we have

CNT = O
(
N2γ3NT

)
H Experiment Setup

Synthetic dataset We simulated the distributed bandit setting defined in Section 3.1, with d =
20, T = 100, N = 100 (NT = 104 interactions in total). In each round l ∈ [T ], each client i ∈ [N ]
(denote t = N(l − 1) + i) selects an arm from candidate set At, where At is uniformly sampled
from a ℓ2 unit ball, with |At| = 20. Then the corresponding reward is generated using one of the
following reward functions:

f1(x) = cos(3x⊤θ⋆)

f2(x) = (x⊤θ⋆)
3 − 3(x⊤θ⋆)

2 − (x⊤θ⋆) + 3

where the parameter θ⋆ is uniformly sampled from a ℓ2 unit ball.
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UCI Datasets To evaluate Approx-DisKernelUCB’s performance in a more challenging and prac-
tical scenario, we performed experiments using real-world datasets: MagicTelescope, Mushroom
and Shuttle from the UCI Machine Learning Repository [8]. To convert them to contextual bandit
problems, we pre-processed these datasets following the steps in [12]. In particular, we partitioned
the dataset in to 20 clusters using k-means, and used the centroid of each cluster as the context vector
for the arm and the averaged response variable as mean reward (the response variable is binarized by
associating one class as 1, and all the others as 0). Then we simulated the distributed bandit learning
problem in Section 3.1 with |At| = 20, T = 100 and N = 100 (NT = 104 interactions in total).

MovieLens and Yelp dataset Yelp dataset, which is released by the Yelp dataset challenge, consists
of 4.7 million rating entries for 157 thousand restaurants by 1.18 million users. MovieLens is a
dataset consisting of 25 million ratings between 160 thousand users and 60 thousand movies [13].
Following the pre-processing steps in [2], we built the rating matrix by choosing the top 2000
users and top 10000 restaurants/movies and used singular-value decomposition (SVD) to extract a
10-dimension feature vector for each user and restaurant/movie. We treated rating greater than 2 as
positive. We simulated the distributed bandit learning problem in Section 3.1 with T = 100 and
N = 100 (NT = 104 interactions in total). In each time step, the candidate set At (with |At| = 20)
is constructed by sampling an arm with reward 1 and nineteen arms with reward 0 from the arm pool,
and the concatenation of user and restaurant/movie feature vector is used as the context vector for the
arm (thus d = 20).

I Lower Bound for Distributed Kernelized Contextual Bandits

First, we need the following two lemmas

Lemma I.1 (Theorem 1 of [29]). There exists a constant C > 0, such that for any instance of
kernelized bandit with L = S = R = 1, the expected cumulative regret for KernelUCB algorithm is
upper bounded by E[RT ] ≤ C

√
TγT , where the maximum information gain γT = O

(
(ln(T ))d+1

)
for Squared Exponential kernels.

Lemma I.2 (Theorem 2 of [23]). There always exists a set of hard-to-learn instances of kernelized
bandit with L = S = R = 1, such that for any algorithm, for a uniformly random instance in the
set, the expected cumulative regret E[RT ] ≥ c

√
T (ln(T ))d/2 for Squared Exponential kernels, with

some constant c.

Then we follow a similar procedure as the proof for Theorem 2 of [30] and Theorem 5.3 of [14], to
prove the following lower bound results for distributed kernelized bandit with Squared Exponential
kernels.

Theorem I.3. For any distributed kernelized bandit algorithm with expected communication cost
less than O( N

(ln(T ))0.25d+0.5 ), there exists a kernelized bandit instance with Squared Exponential
kernel, and L = S = R = 1, such that the expected cumulative regret for this algorithm is at least
Ω(N

√
T (ln(T ))d/2).

Proof of Theorem I.3. Here we consider kernelized bandit with Squared Exponential kernels. The
proof relies on the construction of a auxiliary algorithm, denoted by AuxAlg, based on the original
distributed kernelized bandit algorithm, denoted by DisKernelAlg, as shown below. For each agent
i ∈ [N ], AuxAlg performs DisKernelAlg, until any communication happens between client i and the
server, in which case, AuxAlg switches to the single-agent optimal algorithm, i.e., the KernelUCB
algorithm that attains the rate in Lemma I.1. Therefore, AuxAlg is a single-agent bandit algorithm,
and the lower bound in Lemma I.2 applies: the cumulative regret that AuxAlg incurs for some agent
i ∈ [N ] is lower bounded by

E[RAuxAlg,i] ≥ c
√
T (ln(T ))d/2,

and by summing over all N clients, we have

E[RAuxAlg] =

N∑
i=1

E[RAuxAlg,i] ≥ cN
√
T (ln(T ))d/2.
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For each client i ∈ [N ], denote the probability that client i will communicate with the server as pi,
and p :=

∑N
i=1 pi. Note that before the communication, the cumulative regret incurred by AuxAlg is

the same as DisKernelAlg, and after the communication happens, the regret incurred by AuxAlg is
the same as KernelUCB, whose upper bound is given in Lemma I.1. Therefore, the cumulative regret
that AuxAlg incurs for client i can be upper bounded by

E[RAuxAlg,i] ≤ E[RDisKernelAlg,i] + piC
√
T (ln(T ))d+1,

and by summing over N clients, we have

E[RAuxAlg] =

N∑
i=1

E[RAuxAlg,i]

≤
N∑
i=1

E[RDisKernelAlg,i] + (

N∑
i=1

pi)C
√
T (ln(T ))d+1

= E[RDisKernelAlg] + pC
√
T (ln(T ))d+1.

Combining the upper and lower bounds for E[RAuxAlg], we have

E[RDisKernelAlg] ≥ cN
√
T (ln(T ))d/2 − pC

√
T (ln(T ))d+1.

Therefore, for any DisKernelAlg with number of communications p ≤ N c
2C(ln(T ))0.25d+0.5 =

O( N
(ln(T ))0.25d+0.5 ), we have

E[RDisKernelAlg] ≥
c

2
N
√
T (ln(T ))d/2 = Ω(N

√
T (ln(T ))d/2).
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