
Communication Efficient Distributed Learning for
Kernelized Contextual Bandits

Chuanhao Li1 Huazheng Wang2 Mengdi Wang3 Hongning Wang1
1University of Virginia 2Oregon State University 3Princeton University

{cl5ev,hw5x}@virginia.edu
huazheng.wang@oregonstate.edu mengdiw@princeton.edu

Abstract

We tackle the communication efficiency challenge of learning kernelized contextual
bandits in a distributed setting. Despite the recent advances in communication-
efficient distributed bandit learning, existing solutions are restricted to simple
models like multi-armed bandits and linear bandits, which hamper their practical
utility. In this paper, instead of assuming the existence of a linear reward mapping
from the features to the expected rewards, we consider non-linear reward map-
pings, by letting agents collaboratively search in a reproducing kernel Hilbert space
(RKHS). This introduces significant challenges in communication efficiency as
distributed kernel learning requires the transfer of raw data, leading to a commu-
nication cost that grows linearly w.r.t. time horizon T . We address this issue by
equipping all agents to communicate via a common Nyström embedding that gets
updated adaptively as more data points are collected. We rigorously proved that
our algorithm can attain sub-linear rate in both regret and communication cost.

1 Introduction

Contextual bandit algorithms have been widely used for a variety of real-world applications, including
recommender systems [20], display advertisement [21] and clinical trials [11]. While most existing
bandit solutions assume a centralized setting (i.e., all the data reside in and all the actions are
taken by a central server), there is increasing research effort on distributed bandit learning lately
[30, 10, 24, 17, 19], where N clients, under the coordination of a central server, collaborate to
minimize the overall cumulative regret incurred over a finite time horizon T . In many distributed
application scenarios, communication is the main bottleneck, e.g., communication in a network of
mobile devices can be slower than local computation by several orders of magnitude [16]. Therefore,
it is vital for distributed bandit learning algorithms to attain sub-linear rate (w.r.t. time horizon T) in
both cumulative regret and communication cost.

However, prior works in this line of research are restricted to linear models [30], which could oversim-
plify the problem and thus leads to inferior performance in practice. In centralized setting, kernelized
bandit algorithms, e.g., KernelUCB [29] and IGP-UCB [6], are proposed to address this issue by
modeling the unknown reward mapping as a non-parametric function lying in a reproducing kernel
Hilbert space (RKHS), i.e., the expected reward is linear w.r.t. an action feature map of possibly
infinite dimensions. Despite the strong modeling capability of kernel method, collaborative explo-
ration in the RKHS gives rise to additional challenges in designing a communication efficient bandit
algorithm. Specifically, unlike distributed linear bandit where the clients can simply communicate
the d × d sufficient statistics [30], where d is the dimension of the input feature vector, the joint
kernelized estimation of the unknown reward function requires communicating either 1) the p× p
sufficient statistics in the RKHS, where p is the dimension of the RKHS that is possibly infinite, or 2)
the set of input feature vectors that grows linearly w.r.t. T . Neither of them is practical due to the
huge communication cost.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In this paper, we propose the first communication efficient algorithm for distributed kernel bandits,
which tackles the aforementioned challenge via a low-rank approximation of the empirical kernel
matrix. In particular, we extended the Nyström method [22] to distributed learning for kernelized
contextual bandits. In this solution, all clients first project their local data to a finite RKHS spanned
by a common dictionary, i.e., a small subset of the original dataset, and then they only need to
communicate the embedded statistics for collaborative exploration. To ensure effective regret
reduction after each communication round, as well as ensuring the dictionary remains representative
for the entire distributed dataset throughout the learning process, the frequency of dictionary update
and synchronization of embedded statistics is controlled by measuring the amount of new information
each client has gained since last communication. We rigorously prove that the proposed algorithm
incurs an O(N2γ3NT) communication cost, where γNT is the maximum information gain that is
known to be O

(
log(NT)

)
for kernels with exponentially decaying eigenvalues, which includes the

most commonly used Gaussian kernel, while attaining the optimal O(
√
NTγNT) cumulative regret.

2 Related Works

To balance exploration and exploitation in stochastic linear contextual bandits, LinUCB algorithm
[20, 1] is commonly used, which selects arm optimistically w.r.t. a constructed confidence set on
the unknown linear reward function. By using kernels and Gaussian processes, studies in [26, 29, 6]
further extend UCB algorithms to non-parametric reward functions in RKHS, i.e., the feature map
associated with each arm is possibly infinite.

Recent years have witnessed increasing research efforts in distributed bandit learning, i.e., multiple
agents collaborate in pure exploration [15, 27, 7], or regret minimization [24, 30, 19]. They mainly
differ in the relations of learning problems solved by the agents (i.e., homogeneous vs., heterogeneous)
and the type of communication network (i.e., peer-to-peer (P2P) vs., star-shaped). Most of these works
assume linear reward functions, and the clients communicate by transferring the O(d2) sufficient
statistics. Korda et al. [18] considered a peer-to-peer (P2P) communication network and assumed
that the clients form clusters, i.e., each cluster is associated with a unique bandit problem. Huang
et al. [17] considered a star-shaped communication network as in our paper, but their proposed
phase-based elimination algorithm only works in the fixed arm set setting. The closest works
to ours are [30, 10, 19], which proposed event-triggered communication protocols to obtain sub-
linear communication cost over time for distributed linear bandits with a time-varying arm set. In
comparison, distributed kernelized contextual bandits still remain under-explored. The only existing
work in this direction [9] considered heterogeneous agents, where each agent is associated with an
additional feature describing the task similarity between agents. However, they assumed a local
communication setting, where the agent immediately shares the new raw data point to its neighbors
after each interaction, and thus the communication cost is still linear over time.

Another closely related line of works is kernelized bandits with approximation, where Nyström
method is adopted to improve computation efficiency in a centralized setting. Calandriello et al. [3]
proposed an algorithm named BKB, which uses Ridge Leverage Score sampling (RLS) to re-sample
a new dictionary from the updated dataset after each interaction with the environment. A recent work
by Zenati et al. [31] further improved the computation efficiency of BKB by adopting an online
sampling method to update the dictionary. However, both of them updated the dictionary at each time
step to ensure the dictionary remains representative w.r.t. the growing dataset, and therefore are not
applicable to our problem. This is because the dataset is stored cross clients in a distributed manner,
and projecting the dataset to the space spanned by the new dictionary requires communication with
all clients, which is prohibitively expensive in terms of communication. Calandriello et al. [4] also
proposed a variant of BKB, named BBKB, for batched Gaussian process optimization. BBKB only
needs to update the dictionary occasionally according to an adaptive schedule, and thus partially
addresses the issue mentioned above. However, as BBKB works in a centralized setting, their adaptive
schedule can be computed based on the whole batch of data, while in our decentralized setting, each
client can only make the update decision according to the data that is locally available. Moreover,
in BBKB, all the interactions are based on a fixed model estimation over the whole batch, which is
mentioned in their Appendix A.4 as a result of an inherent technical difficulty. In comparison, our
proposed method effectively addresses this difficulty with improved analysis, and thus allows each
client to utilize newly collected data to update its model estimation on the fly.

2

3 Preliminaries

In this section, we first formulate the problem of distributed kernelized contextual bandits. Then,
as a starting point, we propose and analyze a naive UCB-type algorithm for distributed kernelized
contextual bandit problem, named DisKernelUCB. This demonstrates the challenges in designing a
communication efficient algorithm for this problem, and also lays down the foundation for further
improvement on communication efficiency in Section 4.

3.1 Distributed Kernelized Contextual Bandit Problem

Consider a learning system with 1) N clients that are responsible for taking actions and receiving
feedback from the environment, and 2) a central server that coordinates the communication among
the clients. The clients cannot directly communicate with each other, but only with the central server,
i.e., a star-shaped communication network. Following prior works [30, 10], we assume the N clients
interact with the environment in a round-robin manner for a total number of T rounds.

Specifically, at round l ∈ [T], each client i ∈ [N] chooses an arm xt from a candidate set At,
and then receives the corresponding reward feedback yt = f(xt) + ηt ∈ R, where the subscript
t := N(l−1)+i indicates this is the t-th interaction between the learning system and the environment,
and we refer to it as time step t 1. Note that At is a time-varying subset of A ⊆ Rd that is possibly
infinite, f denotes the unknown reward function shared by all the clients, and ηt denotes the noise.

Denote the sequence of indices corresponding to the interactions between client i and the environment
up to time t as Nt(i) = {1 ≤ s ≤ t : is = i} (if s mod N = 0, then is = N ; otherwise is =
s mod N) for t = 1, 2, . . . , NT . By definition, |NNl(i)| = l,∀l ∈ [T], i.e., the clients have equal
number of interactions at the end of each round l.

Kernelized Reward Function We consider an unknown reward function f that lies in a RKHS,
denoted as H, such that the reward can be equivalently written as

yt = θ⊤⋆ ϕ(xt) + ηt,

where θ⋆ ∈ H is an unknown parameter, and ϕ : Rd → H is a known feature map associated with
H. We assume ηt is zero-mean R-sub-Gaussian conditioned on σ

(
(xs, ηs)s∈Nt−1(it)

)
,∀t, which

denotes the σ-algebra generated by client it’s previously pulled arms and the corresponding noise. In
addition, there exists a positive definite kernel k(·, ·) associated with H, and we assume ∀x ∈ A that,
∥x∥k ≤ L and ∥f∥k ≤ S for some L, S > 0.

Regret and Communication Cost The goal of the learning system is to minimize the cumulative
(pseudo) regret for all N clients, i.e., RNT =

∑NT
t=1 rt, where rt = maxx∈At ϕ(x)

⊤θ⋆ − ϕ(xt)
⊤θ⋆.

Meanwhile, the learning system also wants to keep the communication cost CNT low, which is
measured by the total number of scalars being transferred across the system up to time step NT .

3.2 Distributed Kernel UCB

As a starting point to studying the communication efficient algorithm in Section 4 and demonstrate the
challenges in designing a communication efficient distributed kernelized contextual bandit algorithm,
here we first introduce and analyze a naive algorithm where the N clients collaborate on learning
the exact parameters of kernel bandit, i.e., the mean and variance of estimated reward. We name
this algorithm Distributed Kernel UCB, or DisKernelUCB for short, and its description is given in
Algorithm 1.

Arm Selection For each round l ∈ [T], when client i ∈ [N] interacts with the environment, i.e., the
t-th interaction between the learning system and the environment where t = N(l− 1) + i, it chooses
arm xt ∈ At based on the UCB of the mean estimator (line 5):

xt = argmax
x∈At

µ̂t−1,i(x) + αt−1,iσ̂t−1,i(x) (1)

1The meaning of index t is slightly different from prior works, e.g. DisLinUCB in [30], but this is only to
simplify the use of notation and does not affect the theoretical results

3

Algorithm 1 Distributed Kernel UCB (DisKernelUCB)
1: Input threshold D > 0
2: Initialize tlast = 0, D0(i) = ∆D0(i) = ∅,∀i ∈ [N]
3: for round l = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Client i chooses arm xt ∈ At according to Eq (1) and observes reward yt, where t =

N(l − 1) + i
6: Client i updates KDt(i),Dt(i),yDt(i), where Dt(i) = Dt−1(i) ∪ {t}; and its upload buffer

∆Dt(i) = ∆Dt−1(i) ∪ {t}
// Global Synchronization

7: if the event Ut(D) defined in Eq (2) is true then
8: Clients ∀j ∈ [N]: send {(xs, ys)}s∈∆Dt(j) to server, and reset ∆Dt(j) = ∅
9: Server: aggregates and sends back {(xs, ys)}s∈[t]; sets tlast = t

10: Clients ∀j ∈ [N]: update KDt(j),Dt(j),yDt(i), where Dt(j) = [t]

where µ̂t,i(x) and σ̂2
t,i(x) denote client i’s local estimated mean reward for arm x ∈ A and its

variance, and αt−1,i is a carefully chosen scaling factor to balance exploration and exploitation (see
Lemma 3.1 for proper choice).

To facilitate further discussion, for time step t ∈ [NT], we denote the sequence of time indices for
the data points that have been used to update client i’s local estimate as Dt(i), which include both
data points collected locally and those shared by the other clients. If the clients never communicate,
Dt(i) = Nt(i),∀t, i; otherwise, Nt(i) ⊂ Dt(i) ⊆ [t], with Dt(i) = [t] recovering the centralized
setting, i.e., each new data point collected from the environment immediately becomes available to
all the clients in the learning system. The design matrix and reward vector for client i at time step
t are denoted by XDt(i) = [xs]

⊤
s∈Dt(i)

∈ R|Dt(i)|×d,yt,i = [ys]
⊤
s∈Dt(i)

∈ R|Dt(i)|, respectively. By
applying the feature map ϕ(·) to each row of XDt(i), we obtain ΦDt(i) ∈ R|Dt(i)|×p, where p is
the dimension of H and is possibly infinite. Since the reward function is linear in H, client i can
construct the Ridge regression estimator θ̂t,i = (Φ⊤

Dt(i)
ΦDt(i) + λI)−1Φ⊤

Dt(i)
yt,i, where λ > 0

is the regularization coefficient. This gives us the estimated mean reward and variance in primal

form for any arm x ∈ A, i.e., µ̂t,i(x) = ϕ(x)⊤A−1
t,i bt,i and σ̂t,i(x) =

√
ϕ(x)⊤A−1

t,i ϕ(x), where

At,i = Φ⊤
Dt(i)

ΦDt(i) + λI and bt,i = Φ⊤
Dt(i)

yt,i. Then using the kernel trick, we can obtain their
equivalence in the dual form that only involves entries of the kernel matrix, and avoids directly
working on H which is possibly infinite:

µ̂t,i(x) = KDt(i)(x)
⊤(KDt(i),Dt(i) + λI

)−1
yDt(i)

σ̂t,i(x) = λ−1/2

√
k(x,x)−KDt(i)(x)

⊤
(
KDt(i),Dt(i) + λI

)−1
KDt(i)(x)

where KDt(i)(x) = ΦDt(i)ϕ(x) = [k(xs,x)]
⊤
s∈Dt(i)

∈ R|Dt(i)|, and KDt(i),Dt(i) =

Φ⊤
Dt(i)

ΦDt(i) = [k(xs,xs′)]s,s′∈Dt(i) ∈ R|Dt(i)|×|Dt(i)|.

Communication Protocol To reduce the regret in future interactions with the environment, the
N clients need to collaborate via communication, and a carefully designed communication pro-
tocol is essential in ensuring the communication efficiency. In prior works like DisLinUCB
[30], after each round of interaction with the environment, client i checks whether the event
{(|Dt(i)| − |Dtlast(i)|) log(

det(At,i)
det(Atlast,i)

) > D} is true, where tlast denotes the time step of last
global synchronization. If true, a new global synchronization is triggered, such that the server
will require all clients to upload their sufficient statistics since tlast, aggregate them to com-
pute {At,bt}, and then synchronize the aggregated sufficient statistics with all clients, i.e., set
{At,i,bt,i} = {At,bt},∀i ∈ [N].

Using kernel trick, we can obtain an equivalent event-trigger in terms of the kernel matrix,

Ut(D) =

{
(|Dt(it)| − |Dtlast(it)|) log

(
det(I+ λ−1KDt(it),Dt(it))

det(I+ λ−1KDt(it)\∆Dt(it),Dt(it)\∆Dt(it))

)
> D

}
.

(2)

4

where D > 0 denotes the predefined threshold value. If event Ut(D) is true (line 7), a global
synchronization is triggered (line 7-10), where the local datasets of all N clients are synchronized
to {(xs, ys)}s∈[t]. We should note that the transfer of raw data (xs, ys) is necessary for the update
of the kernel matrix and reward vector in line 6 and line 10, which will be used for arm selection at
line 5. This is an inherent disadvantage of kernelized estimation in distributed settings, which, as
we mentioned in Section 2, is also true for the existing distributed kernelized bandit algorithm [9].
Lemma 3.1 below shows that in order to obtain the optimal order of regret, DisKernelUCB incurs
a communication cost linear in T (proof given in the appendix), which is expensive for an online
learning problem.
Lemma 3.1 (Regret and Communication Cost of DisKernelUCB). With threshold D = T

NγNT
,

αt,i =
√
λ∥θ⋆∥+R

√
4 lnNT/δ + 2 ln det(I+KDt(i),Dt(i)/λ), we have

RNT = O
(√
NT (∥θ⋆∥

√
γNT + γNT)

)
,

with probability at least 1− δ, and

CNT = O(TN2d).

where γNT := maxD⊂A:|D|=NT
1
2 log det(KD,D/λ + I) is the maximum information gain after

NT interactions [6]. It is problem-dependent and can be bounded for specific arm set A and kernel
function k(·, ·). For example, γNT = O(d log(NT)) for linear kernel and γNT = O(log(NT)d+1)
for Gaussian kernel.

Remark 1. In the distributed linear bandit problem, to attainO(d
√
NT ln(NT)) regret, DisLinUCB

[30] requires a total number of O(N0.5d log(NT)) synchronizations, and DisKernelUCB matches
this result under linear kernel, as it requires O(N0.5γNT) synchronizations. We should note that the
communication cost for each synchronization in DisLinUCB is fixed, i.e., O(Nd2) to synchronize the
sufficient statistics with all the clients, so in total CNT = O(N1.5d3 ln(NT)). However, this is not
the case for DisKernelUCB that needs to send raw data, because the communication cost for each
synchronization in DisKernelUCB is not fixed, but depends on the number of unshared data points on
each client. Even if the total number of synchronizations is small, DisKernelUCB could still incur
CNT = O(TN2d) in the worse case. Consider the extreme case where synchronization only happens
once, but it happens near NT , then we still have CNT = O(TN2d). The time when synchronization
gets triggered depends on {At}t∈[NT], which is out of the control of the algorithm. Therefore, in the
following section, to improve the communication efficiency of DisKernelUCB, we propose to let each
client communicate embedded statistics in some small subspace during each global synchronization.

4 Approximated Distributed Kernel UCB

In this section, we propose and analyze a new algorithm that improves the communication efficiency
of DisKernelUCB using the Nyström approximation, such that the clients only communicate the
embedded statistics during event-triggered synchronizations. We name this algorithm Approximated
Distributed Kernel UCB, or Approx-DisKernelUCB for short. Its description is given in Algorithm 2.

4.1 Algorithm

Arm selection For each round l ∈ [T], when client i ∈ [N] interacts with the environment, i.e., the
t-th interaction between the learning system and the environment where t := N(l − 1) + i, instead
of using the UCB for the exact estimator in Eq (1), client i chooses arm xt ∈ At that maximizes the
UCB for the approximated estimator (line 5):

xt = argmax
x∈At,i

µ̃t−1,i(x) + αt−1,iσ̃t−1,i(x) (3)

where µ̃t−1,i(x) and σ̃t−1,i(x) are approximated using Nyeström method, and the statistics used
to compute these approximations are much more efficient to communicate as they scale with the
maximum information gain γNT instead of T .

Specifically, Nyström method works by projecting some original dataset D to the subspace defined
by a small representative subset S ⊆ D, which is called the dictionary. The orthogonal projection
matrix is defined as

PS = Φ⊤
S
(
ΦSΦ

⊤
S
)−1

ΦS = Φ⊤
SK

−1
S,SΦS ∈ Rp×p

5

Algorithm 2 Approximated Distributed Kernel UCB (Approx-DisKernelUCB)
1: Input: threshold D > 0, regularization parameter λ > 0, δ ∈ (0, 1) and kernel function k(·, ·).
2: Initialize µ̃0,i(x) = 0, σ̃0,i(x) =

√
k(x,x), N0(i) = D0(i) = ∅, ∀i ∈ [N]; S0 = ∅, tlast = 0

3: for round l = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: [Client i] selects arm xt ∈ At according to Eq (3) and observes reward yt, where t :=

N(l − 1) + i
6: [Client i] updates Z⊤

Dt(i);Stlast
ZDt(i);Stlast

and Z⊤
Dt(i);Stlast

yDt(i) using
(
z(xt;Stlast), yt

)
; sets

Nt(i) = Nt−1(i) ∪ {t}, and Dt(i) = Dt−1(i) ∪ {t}
// Global Synchronization

7: if the event Ut(D) defined in Eq (4) is true then
8: [Clients ∀i] sample St,i = RLS(Nt(i), q̄, σ̃

2
tlast,i

), and send {(xs, ys)}s∈St,i to server
9: [Server] aggregates and sends {(xs, ys)}s∈St

back to all clients, where St = ∪i∈[N]St,i

10: [Clients ∀i] compute and send {Z⊤
Nt(i);St

ZNt(i);St
,Z⊤

Nt(i);St
yNt(i)} to server

11: [Server] aggregates
∑N

i=1 Z
⊤
Nt(i);St

ZNt(i);St
,
∑N

i=1 Z
⊤
Nt(i);St

yNt(i) and sends it back
12: [Clients ∀i] updates Z⊤

Dt(i);St
ZDt(i);St

and Z⊤
Dt(i);St

yDt(i); sets Dt(i) = ∪N
i=1Nt(i) =

[t] and tlast = t

We then take eigen-decomposition of KS,S = UΛU⊤ to rewrite the orthogonal projection as
PS = Φ⊤

SUΛ−1/2Λ−1/2U⊤ΦS , and define the Nyström embedding function

z(x;S) = P
1/2
S ϕ(x) = Λ−1/2U⊤ΦSϕ(x) = K

−1/2
S,S KS(x)

which maps the data point x from Rd to R|S|.

Therefore, we can approximate the Ridge regression estimator in Section 3.2 as θ̃t,i = Ã−1
t,i b̃t,i,

where Ãt,i = PSΦ
⊤
Dt(i)

ΦDt(i)PS + λI, and b̃t,i = PSΦ
⊤
Dt(i)

yDt(i), and thus the approximated

mean reward and variance in Eq (3) can be expressed as µ̃t,i(x) = ϕ(x)⊤Ã−1
t,i b̃t,i and σ̃t,i(x) =√

ϕ(x)⊤Ã−1
t,i ϕ(x), and their kernelized representation are (see appendix for detailed derivation)

µ̃t,i(x) = z(x;S)⊤
(
Z⊤

Dt(i);SZDt(i);S + λI
)−1

Z⊤
Dt(i);SyDt(i)

σ̃t,i(x) = λ−1/2
√
k(x,x)− z(x;S)⊤Z⊤

Dt(i);SZDt(i);S [Z
⊤
Dt(i);SZDt(i);S + λI]−1z(x|S)

where ZDt(i);S ∈ R|Dt(i)|×|S| is obtained by applying z(·;S) to each row of XDt(i), i.e., ZDt(i);S =

ΦDt(i)P
1/2
S . We can see that the computation of µ̃t,i(x) and σ̃t,i(x) only requires the embedded

statistics: matrix Z⊤
Dt(i);SZDt(i);S ∈ R|S|×|S| and vector Z⊤

Dt(i);SyDt(i) ∈ R|S|, which, as we will
show later, makes joint kernelized estimation amongN clients much more efficient in communication.

After obtaining the new data point (xt, yt), client i immediately updates both µ̃t−1,i(x) and σ̃t−1,i(x)
using the newly collected data point (xt, yt), i.e., by projecting xt to the finite dimensional RKHS
spanned by ΦStlast

(line 6). Recall that, we use Nt(i) to denote the sequence of indices for data
collected by client i, and denote by Dt(i) the sequence of indices for data that has been used to update
client i’s model estimation µ̃t,i. Therefore, both of them need to be updated to include time step t.

Communication Protocol With the approximated estimator, the size of message being commu-
nicated across the learning system is reduced. However, a carefully designed event-trigger is still
required to minimize the total number of global synchronizations up to time NT . Since the clients
can no longer evaluate the exact kernel matrices in Eq (2), we instead use the event-trigger in Eq (4),
which can be computed using the approximated variance from last global synchronization as,

Ut(D) =

 ∑
s∈Dt(i)\Dtlast (i)

σ̃2
tlast,i(xs) > D

 (4)

6

Similar to Algorithm 1, if Eq (4) is true, global synchronization is triggered, where both the dictionary
and the embedded statistics get updated. During synchronization, each client first samples a subset
St(i) from Nt(i) (line 8) using Ridge Leverage Score sampling (RLS) [3, 4], which is given in
Algorithm 3, and then sends {(xs, ys)}s∈St(i) to the server. The server aggregates the received local
subsets to construct a new dictionary {(xs, ys)}s∈St

, where St = ∪N
i=1St(i), and then sends it back

to allN clients (line 9). Finally, theN clients use this updated dictionary to re-compute the embedded
statistics of their local data, and then synchronize it with all other clients via the server (line 10-12).

Algorithm 3 Ridge Leverage Score Sampling (RLS)
1: Input: dataset D, scaling factor q̄, (possibly delayed and approximated) variance function σ̃2(·)
2: Initialize new dictionary S = ∅
3: for s ∈ D do
4: Set p̃s = q̄σ̃2(xs)
5: Draw qs ∼ Bernoulli(p̃s)
6: If qs = 1, add s into S
7: Output: S

Intuitively, in Algorithm 2, the clients first agree upon a common dictionary St that serves as a
good representation of the whole dataset at the current time t, and then project their local data to
the subspace spanned by this dictionary before communication, in order to avoid directly sending
the raw data as in Algorithm 1. Then using the event-trigger, each client monitors the amount of
new knowledge it has gained through interactions with the environment from last synchronization.
When there is a sufficient amount of new knowledge, it will inform all the other clients to perform a
synchronization. As we will show in the following section, the size of St scales linearly w.r.t. the
maximum information gain γNT , and therefore it improves both the local computation efficiency on
each client, and the communication efficiency during the global synchronization.

4.2 Theoretical Analysis

Denote the sequence of time steps when global synchronization is performed, i.e., the event Ut(D)
in Eq (4) is true, as {tp}Bp=1, where B ∈ [NT] denotes the total number of global synchronizations.
Note that in Algorithm 2, the dictionary is only updated during global synchronization, e.g., at time
tp, the dictionary {(xs, ys)}s∈Stp

is sampled from the whole dataset {(xs, ys)}s∈[tp] in a distributed
manner, and remains fixed for all the interactions happened at t ∈ [tp + 1, tp+1]. Moreover, at time
tp, all the clients synchronize their embedded statistics, so that Dtp(i) = [tp],∀i ∈ [N].

Since Algorithm 2 enables local update on each client, for time step t ∈ [tp + 1, tp], new data points
are collected and added into Dt(i), such that Dt(i) ⊇ [tp]. This decreases the approximation accuracy
of Stp , as new data points may not be well approximated by Stp . For example, in extreme cases, the
new data could be orthogonal to the dictionary. To formally analyze the accuracy of the dictionary,
we adopt the definition of ϵ-accuracy from [5]. Denote by S̄t,i ∈ R|Dt(i)|×|Dt(i)| a diagonal matrix,
with its s-th diagonal entry equal to 1√

p̃s
if s ∈ Stp and 0 otherwise. Then if

(1− ϵt,i)(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) + λI ⪯ (1 + ϵt,i)(Φ

⊤
Dt(i)

ΦDt(i) + λI),

we say the dictionary {(xs, ys)}s∈Stp
is ϵt,i-accurate w.r.t. dataset {(xs, ys)}s∈Dt(i).

As shown below, the accuracy of the dictionary for Nyström approximation is essential as it affects the
width of the confidence ellipsoid, and thus affects the cumulative regret. Intuitively, in order to ensure
its accuracy throughout the learning process, we need to 1) make sure the RLS procedure in line 8 of
Algorithm 2 that happens at each global synchronization produces a representative set of data samples,
and 2) monitor the extent to which the dictionary obtained in previous global synchronization has
degraded over time, and when necessary, trigger a new global synchronization to update it. Compared
with prior work that freezes the model in-between consecutive communications [4], the analysis of
ϵ-accuracy for Approx-DisKernelUCB is unique to our paper and the result is presented below.
Lemma 4.1. With q̄ = 6 1+ϵ

1−ϵ log(4NT/δ)/ϵ
2, for some ϵ ∈ [0, 1), and threshold D > 0, Algorithm

2 guarantees that the dictionary is accurate with constant ϵt,i :=
(
ϵ + 1 − 1

1+ 1+ϵ
1−ϵD

)
, and its size

|St| = O(γNT) for all t ∈ [NT].

7

Based on Lemma 4.1, we can construct the following confidence ellipsoid for unknown parameter θ⋆.
Lemma 4.2 (Confidence Ellipsoid of Approximated Estimator). Under the condition that q̄ =
6 1+ϵ
1−ϵ log(4NT/δ)/ϵ

2, for some ϵ ∈ [0, 1), and threshold D > 0, with probability at least 1− δ, we
have ∀t, i that

∥θ̃t,i − θ⋆∥Ãt,i
≤

(1√
−ϵ+ 1/(1+ϵ

1−ϵ
D)

+ 1
)√

λ∥θ⋆∥+ 2R
√

lnNT/δ + γNT := αt,i.

Using Lemma 4.2, we obtain the regret and communication cost upper bound of Approx-
DisKernelUCB, which is given in Theorem 4.3 below.
Theorem 4.3 (Regret and Communication Cost of Approx-DisKernelUCB). Under the same condi-
tion as Lemma 4.2, and by setting D = 1

N , ϵ <
1
3 , we have

RNT = O
(√
NT (∥θ⋆∥

√
γNT + γNT)

)
with probability at least 1− δ, and

CNT = O
(
N2γ3NT

)
Here we provide a proof sketch for Theorem 4.3, and the complete proof can be found in appendix.

Proof Sketch. Similar to the analysis of DisKernelUCB in Section 3.2 and DisLinUCB from [30],
the cumulative regret incurred by Approx-DisKernelUCB can be decomposed in terms of ‘good’
and ‘bad’ epochs, and bounded separately. Here an epoch refers to the time period in-between two
consecutive global synchronizations, e.g., the p-th epoch refers to [tp−1 + 1, tp]. Now consider an
imaginary centralized agent that has immediate access to each data point in the learning system,
and denote by At =

∑t
s=1 ϕsϕ

⊤
s for t ∈ [NT] the matrix constructed by this centralized agent.

We call the p-th epoch a good epoch if ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≤ 1, otherwise it is a bad

epoch. Note that ln(det(I+λ−1K[t1],[t1])

det(I))+ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
)+· · ·+ln(

det(I+λ−1K[NT],[NT])

det(I+λ−1K[tB],[tB])
) =

ln(det(I+λ−1K[NT],[NT])) ≤ 2γNT , where the last equality is due to the matrix determinant lemma,
and the last inequality is by the definition of the maximum information gain γNT in Lemma 3.1.
Then based on the pigeonhole principle, there can be at most 2γNT bad epochs.

By combining Lemma E.1 and Lemma 4.2, we can bound the cumulative regret in-
curred during all good epochs, i.e., Rgood = O(

√
NTγNT), which matches the optimal

regret attained by the KernelUCB algorithm in centralized setting. Our analysis devi-
ates from that of DisKernelUCB in the bad epochs, because of the difference in the
event-trigger. Previously, the event-trigger of DisKernelUCB directly bounds the cumu-
lative regret each client incurs during a bad epoch, i.e.,

∑
t∈Dtp (i)\Dtp−1

(i) σ̂t−1,i(xt) ≤√
(|Dtp(i)| − |Dtp−1(i)|) log

(
det(I+ λ−1KDt(it),Dt(it))/ det(I+ λ−1KDt(it)\∆Dt(it),Dt(it)\∆Dt(it))

)
<

√
D. However, the event trigger of Approx-DisKernelUCB only bounds part of

it, i.e.,
∑

t∈Dtp (i)\Dtp−1
(i) σ̃t−1,i(xt) ≤

√
(|Dtp(i)| − |Dtp−1

(i)|)D, which leads to

Rbad = O(
√
TγNTN

√
D) that is slightly worse than that of DisKernelUCB, i.e., a

√
T

factor in place of the
√
γNT factor. By setting D = 1/N , we have RNT = O(

√
NTγNT). Note

that, to make sure ϵt,i =
(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵ

1
N

)
∈ [0, 1) is still well-defined, we can set ϵ < 1/3.

For communication cost analysis, we bound the total number of epochs B by upper bounding the
total number of summations like

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs), over the time horizon NT . Using Lemma

E.1, our event-trigger in Eq (4) provides a lower bound
∑tp

s=tp−1+1 σ̂
2
tp−1

(xs) ≥ 1−ϵ
1+ϵD. Then in

order to apply the pigeonhole principle, we continue to upper bound the summation over all epochs,∑B
p=1

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs) =
∑B

p=1

∑tp
s=tp−1+1 σ̂

2
s−1(xs)

σ̂2
tp−1

(xs)

σ̂2
s−1(xs)

by deriving a uniform bound

for the ratio
σ̂2
tp−1

(xs)

σ̂2
s−1(xs)

≤
σ̂2
tp−1

(xs)

σ̂2
tp

(xs)
≤ 1 +

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs) ≤ 1 + 1+ϵ
1−ϵ

∑tp
s=tp−1+1 σ̃

2
tp−1

(xs)

in terms of the communication threshold D on each client. This leads to the following upper bound
about the total number of epochs B ≤ 1+ϵ

1−ϵ [
1
D + 1+ϵ

1−ϵ (N + L2/(λD))]2γNT , and with D = 1/N ,
we have CNT ≤ B ·Nγ2NT = O(N2γ3NT), which completes the proof.

8

Remark 2. Compared with DisKernelUCB’sO(TN2d) communication cost, Approx-DisKernelUCB
removes the linear dependence on T , but introduces an additional γ3NT dependence due to the
communication of the embedded statistics. In situations where γNT ≪ T 1/3d1/3, DisKernelUCB
is preferable. As mentioned in Lemma 3.1, the value of γNT , which affects how much the data can
be compressed, depends on the specific arm set of the problem and the kernel function of the choice.
By Mercer’s Theorem, one can represent the kernel using its eigenvalues, and γNT characterizes
how fast its eigenvalues decay. Vakili et al. [28] showed that for kernels whose eigenvalues decay
exponentially, i.e., λm = O(exp(−mβe)), for some βe > 0, γNT = O(log1+

1
βe (NT)). In this

case, Approx-DisKernelUCB is far more efficient than DisKernelUCB. This includes Gaussian kernel,
which is widely used for GPs and SVMs. For kernels that have polynomially decaying eigenvalues,
i.e., λm = O(m−βp), for some βp > 1, γNT = O(T

1
βp log

1− 1
βp (NT)). Then as long as βp > 3,

Approx-DisKernelUCB still enjoys reduced communication cost.

5 Experiments

In order to evaluate Approx-DisKernelUCB’s effectiveness in reducing communication cost, we
performed extensive empirical evaluations on both synthetic and real-world datasets, and the results
(averaged over 3 runs) are reported in Figure 1, 2 and 3, respectively. We included DisKernelUCB,
DisLinUCB [30], OneKernelUCB, and NKernelUCB [6] as baselines, where One-KernelUCB learns
a shared bandit model across all clients’ aggregated data where data aggregation happens immediately
after each new data point becomes available, and N-KernelUCB learns a separated bandit model for
each client with no communication. For all the kernelized algorithms, we used the Gaussian kernel
k(x, y) = exp(−γ∥x − y∥2). We did a grid search of γ ∈ {0.1, 1, 4} for kernelized algorithms,
and set D = 20 for DisLinUCB and DisKernelUCB, D = 5 for Approx-DisKernelUCB. For all
algorithms, instead of using their theoretically derived exploration coefficient α, we followed the
convention [20, 32] to use grid search for α in {0.1, 1, 4}. Due to space limit, here we only present
the experiment results and discussions. Details about the experiment setup are presented in appendix.

When examining the experiment results presented in Figure 1, 2 and 3, we can first look at the
cumulative regret and communication cost of OneKernelUCB and NKernelUCB, which correspond
to the two extreme cases where the clients communicate in every time step to learn a shared model,
and each client learns its own model independently with no communication, respectively. OneKer-
nelUCB achieves the smallest cumulative regret in all experiments, while also incurring the highest
communication cost, i.e., O(TN2d). This demonstrates the need of efficient data aggregation across
clients for reducing regret. Second, we can observe that DisKernelUCB incurs the second highest
communication cost in all experiments due to the transfer of raw data, as we have discussed in Remark
1, which makes it prohibitively expensive for distributed setting. On the other extreme, we can see
that DisLinUCB incurs very small communication cost thanks to its closed-form solution, but fails to
capture the complicated reward mappings in most of these datasets, e.g. in Figure 1(a), 2(b) and 3(a),
it leads to even worse regret than NKernelUCB that learns a kernelized bandit model independently
for each client. In comparison, the proposed Approx-DisKernelUCB algorithm enjoys the best of
both worlds in most cases, i.e., it can take advantage of the superior modeling power of kernels to
reduce regret, while only requiring a relatively low communication cost for clients to collaborate.

(a) cos(3x⊤θ⋆) (b) (x⊤θ⋆)
3−3(x⊤θ⋆)

2−(x⊤θ⋆)+3

Figure 1: Experiment results on synthetic datasets with different reward function f(x).

9

(a) MagicTelescope (b) Mushroom (c) Shuttle

Figure 2: Experiment results on UCI datasets.

(a) MovieLens (b) Yelp

Figure 3: Experiment results on MovieLens & Yelp datasets.

On all the datasets, Approx-DisKernelUCB achieved comparable regret with DisKernelUCB that
maintains exact kernelized estimators, and sometimes even getting very close to OneKernelUCB, e.g.,
in Figure 1(b) and 2(a), but its communication cost is only slightly higher than that of DisLinUCB.

Conclusion

In this paper, we proposed the first communication efficient algorithm for distributed kernel bandits
using Nyström approximation. Clients in the learning system project their local data to a finite RKHS
spanned by a shared dictionary, and then communicate the embedded statistics for collaborative
exploration. To ensure communication efficiency, the frequency of dictionary update and synchro-
nization of embedded statistics are controlled by an event-trigger. The algorithm is proved to incur
O(N2γ3NT) communication cost, while attaining the optimal O(

√
NTγNT) cumulative regret.

We should note that the total number of synchronizations required by Approx-DisKernelUCB is
NγNT , which is

√
N worse than DisKernelUCB. An important future direction of this work is to

investigate whether this part can be further improved. The lower bound analysis for the communication
cost of distributed contextual bandits still remains an open problem, and is an important future
direction. To the best of our knowledge, the only applicable lower bound states that, in order to have
smaller regret than the trivial O(N

√
T) result, i.e., run N instances of optimal bandit algorithm with

no communication, Ω(N) communications is necessary [14]. In comparison, it is more interesting to
know what the communication lower bound is in order to attain the optimal O(

√
NT) regret. It is

also interesting to extend our algorithm to P2P setting, i.e., no central server to coordinate the update
of the shared dictionary and the exchange of embedded statistics, which may require utilizing local
structures in the network of clients, to approximate each block of the kernel matrix separately [25].

Acknowledgement

This work is supported by NSF grants IIS-2213700, IIS-2128019, IIS-1838615, IIS-2107304, CMMI-
1653435, DMS-1953686, and ONR grant 1006977.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

[2] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration
neural networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

[3] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco.
Gaussian process optimization with adaptive sketching: Scalable and no regret. In Conference
on Learning Theory, pages 533–557. PMLR, 2019.

[4] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco.
Near-linear time gaussian process optimization with adaptive batching and resparsification. In
International Conference on Machine Learning, pages 1295–1305. PMLR, 2020.

[5] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel online convex
optimization with adaptive sketching. In International Conference on Machine Learning, pages
645–653. PMLR, 2017.

[6] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853. PMLR, 2017.

[7] Yihan Du, Wei Chen, Yuko Yuroki, and Longbo Huang. Collaborative pure exploration in
kernel bandit. arXiv preprint arXiv:2110.15771, 2021.

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[9] Abhimanyu Dubey et al. Kernel methods for cooperative multi-agent contextual bandits. In
International Conference on Machine Learning, pages 2740–2750. PMLR, 2020.

[10] Abhimanyu Dubey and AlexSandy’ Pentland. Differentially-private federated linear bandits.
Advances in Neural Information Processing Systems, 33, 2020.

[11] Audrey Durand, Charis Achilleos, Demetris Iacovides, Katerina Strati, Georgios D Mitsis,
and Joelle Pineau. Contextual bandits for adapting treatment in a mouse model of de novo
carcinogenesis. In Machine learning for healthcare conference, pages 67–82. PMLR, 2018.

[12] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. In NIPS, volume 23, pages 586–594, 2010.

[13] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[14] Jiafan He, Tianhao Wang, Yifei Min, and Quanquan Gu. A simple and provably efficient algo-
rithm for asynchronous federated contextual linear bandits. arXiv preprint arXiv:2207.03106,
2022.

[15] Eshcar Hillel, Zohar S Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. Advances in Neural Information Processing Systems, 26,
2013.

[16] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z Morley Mao, Subhabrata
Sen, and Oliver Spatscheck. An in-depth study of lte: Effect of network protocol and application
behavior on performance. ACM SIGCOMM Computer Communication Review, 43(4):363–374,
2013.

[17] Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in Neural Information Processing Systems, 34, 2021.

[18] Nathan Korda, Balazs Szorenyi, and Shuai Li. Distributed clustering of linear bandits in peer to
peer networks. In International conference on machine learning, pages 1301–1309. PMLR,
2016.

11

[19] Chuanhao Li and Hongning Wang. Asynchronous upper confidence bound algorithms for
federated linear bandits. In International Conference on Artificial Intelligence and Statistics,
pages 6529–6553. PMLR, 2022.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[21] Wei Li, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin. Exploitation
and exploration in a performance based contextual advertising system. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
27–36, 2010.

[22] Evert J Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen auf
randwertaufgaben. Acta Mathematica, 54:185–204, 1930.

[23] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy
gaussian process bandit optimization. In Conference on Learning Theory, pages 1723–1742.
PMLR, 2017.

[24] Chengshuai Shi and Cong Shen. Federated multi-armed bandits. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI), 2021.

[25] Si Si, Cho-Jui Hsieh, and Inderjit Dhillon. Memory efficient kernel approximation. In Interna-
tional Conference on Machine Learning, pages 701–709. PMLR, 2014.

[26] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[27] Chao Tao, Qin Zhang, and Yuan Zhou. Collaborative learning with limited interaction: Tight
bounds for distributed exploration in multi-armed bandits. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 126–146. IEEE, 2019.

[28] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in
gaussian process bandits. In International Conference on Artificial Intelligence and Statistics,
pages 82–90. PMLR, 2021.

[29] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[30] Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning:
Near-optimal regret with efficient communication. In International Conference on Learning
Representations, 2019.

[31] Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien Mairal, Matthieu Martin, and Pierre
Gaillard. Efficient kernel ucb for contextual bandits. arXiv preprint arXiv:2202.05638, 2022.

[32] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] , see Remark 2
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

12

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] , in Section 3.1
(b) Did you include complete proofs of all theoretical results? [Yes] , the complete proof

is given in appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

