
A Further elements on Riemannian geometry1

A d-dimensional Riemannian manifoldM can be defined as a d-dimensional differentiable manifold2

equipped with is a smooth inner product g : z → ⟨·|·⟩z defined on each tangent space TzM of the3

manifold with z ∈M. A chart (or coordinate system) (U, ϕ) is a homeomorphism mapping an open4

set U of the manifold to an open set V of an Euclidean space. Given z ∈ U , a chart ϕ : (z1, . . . , zd)5

induces a basis
(

∂
∂z1 , . . . ,

∂
∂zd

)
z

on the tangent space TzM. Hence, the metric of a Riemannian6

manifold can be locally represented in the chart ϕ as a positive definite matrix as mentionned in7

Sec. 4.1.8

G(z) = (gi,j)z,0≤i,j≤d =
(〈 ∂

∂zi
| ∂
∂zj

〉
z

)
0≤i,j≤d

, (1)

for each point z of the manifold. That is for v, w ∈ TzM and z ∈ M, the inner product writes9

⟨u|w⟩z = u⊤G(z)w. Assuming that the manifold is also connected, for any z1, z2 ∈M, two points10

of the manifold, we can consider a curve γ traveling inM and parametrized by t ∈ [a, b] such that11

γ(a) = z1 and γ(b) = z2. Then, the length of γ is given by12

L(γ) =

b∫
a

∥γ̇(t)∥γ(t)dt =
b∫

a

√
⟨γ̇(t)|γ̇(t)⟩γ(t)dt

Curves γ that minimize L and are parameterized proportionally to the arc length are called geodesic13

curves. A distance distG on the manifoldM can then be derived and writes14

distG(z1, z2) = inf
γ

L(γ) s.t. γ(a) = z1, γ(b) = z2 (2)

The manifoldM is said to be geodesically complete if all geodesic curves can be extended to R.15

Given the Riemannian manifold M endowed with the Riemannian metric G and a chart z, an16

infinitesimal volume element may also be defined on each tangent space Tz of the manifoldM as17

follows18

dMz =
√

detG(z)dz , (3)
with dz being the Lebesgue measure. This defines a canonical measure on the manifold and allows to19

extend the notion of probability distributions to Riemannian manifolds. In particular, such a property20

allows to refer to random variables with a density defined with respect to the measure on the manifold.21

We recall such definition from [16] below22

Definition A.1. Let B(M) be the Borel σ-algebra ofM. The random point z has a probability23

density function ρz if:24

∀Z ∈ B(M), P(z ∈ Z) =
∫
Z

ρ(z)dM(z) and
∫
M

ρ(z)dM(z) = 1

Finally, given a chart ϕ defined on the whole manifoldM and a random point z onM, the point25

p = ϕ(z) is a random point whose density ρ′p may be written with respect to the Lebesgue measure26

as such [16]:27

ρ′p(p) = ρz(ϕ
−1(p))

√
det g(ϕ−1(p)) (4)
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B The generation process algorithm - Implementation details28

In this appendix, we provide pseudo-code algorithms explaining how to build the metric from a29

trained VAE and how to use the proposed sampling process. Noteworthy is the fact that we do not30

amend the training process of the vanilla VAE which remains pretty simple and stable.31

B.1 Building the metric32

In this section, we explain how to build the proposed Riemannian metric. For the sake of clarity, we33

recall the expression of the metric below34

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id , (5)

where35

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
= exp

(
− (z − µ(xi))

⊤Σ−1(xi)(z − µ(xi))

ρ2

)
,

Algorithm 1 Building the metric from a trained model

Input: A trained VAE model m, the training dataset X , λ, τ ▷ In practice τ ≈ 0
for xi ∈ X do

µi,Σi = m(xi) ▷ Retrieve training embeddings and covariance matrices
end for
Select k centroids ci in the µi ▷ e.g. with k-medoids
Get corresponding covariance matrices Σi

ρ← max
i

min
j ̸=i
∥ci − cj∥2 ▷ Set ρ to the max distance between two closest neighbors

Build the metric using Eq. (5)

G(z) =

N∑
i=1

Σ−1
i · ωi(z) + λ · e−τ∥z∥2

2 · Id

Return G ▷ Return G as a function

As is standard in VAE implementations, we assume that the covariance matrices Σi given by the36

VAE are diagonal and that the encoder outputs a mean vector and the log of the diagonal coefficients.37

In the implementation, the exponential is then applied to recover the Σi so that no singular matrix38

arises.39

B.2 Sampling process40

Further to the description performed in the paper, we provide here a detailed algorithm stating the41

main steps of the generation process.42

B.2.1 The HMC sampler43

In the sampling process we propose to rely on the Hamiltonian Monte Carlo sampler to sample44

from the Riemanian uniform distribution. In a nutshell, the HMC sampler aims at sampling from a45

target distribution ptarget(z) with z ∈ Rd using Hamiltonian dynamics. The main idea behind such a46

sampler is to introduce an auxiliary random variable v ∼ N (0, Id) independent from z and mimic47

the behavior of a particle having z (resp. v) as location (resp. velocity). The Hamiltonian of the48

particle then writes49

H(z, v) = U(z) +K(v) ,

where U(z) is the potential energy and K(v) is its kinetic energy both given by50

U(z) = − log ptarget(z), K(v) =
1

2
v⊤v
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The following Hamilton’s equations govern the evolution in time of the particle.51 {
∂H(z,v)

∂v = v ,
∂H(z,v)

∂z = −∇z log ptarget(z) .
(6)

In order to integrate these equations, recourse to the leapfrog integrator is needed and consists in52

applying nlf times the following equations.53  v(t+ εlf
2 ) = v(t) + εlf

2 · ∇z log ptarget(z(t)) ,
z(t+ εlf) = z(t) + εlf · v(t+ εlf

2 ) ,
v(t+ εlf) = v(t+ εlf

2 ) + εlf
2 · ∇z log ptarget(z(t+ εlf)) ,

(7)

where εlf is called the leapfrog step size. This algorithm produces a proposal (z̃, ṽ) that is accepted54

with probability α where55

α = min
(
1, exp

(
H(z, v)−H(z̃, ṽ)

))
.

This procedure is then repeated to create an ergodic Markov chain (zn) converging to the distribution56

ptarget [6, 12, 15, 8].57

B.3 The proposed algorithm58

In our setting the target density is given by the density of the Riemannian uniform distribution which59

writes with respect to Lebesgue measure as follows60

p(z) = URiem(z) =
1

C

√
detG(z) C =

∫
Rd

√
detG(z)dz . (8)

Note that thanks to the shape of the metric, this distribution is well defined since C < +∞. The log61

density follows62

log p(z) =
1

2
log detG(z)− logC ,

Hence, the Hamiltonian writes63

H(z, v) = − log p(z) +
1

2
v⊤v ,

and Hamilton’s equations become64 {
∂H(z,v)

∂v = v ,
∂H(z,v)

∂zi
= −∂ log p(z)

∂zi
= − 1

2 tr
(
G−1(z)∂G(z)

∂zi

)
Since the covariance matrices are supposed to be diagonal as is standard in VAE implementations,65

the computation of the inverse metric is straightforward. Moreover, since G(z) is smooth and has66

a closed form, it can be differentiated with respect to z pretty easily. Now, the leapfrog integrator67

given in Eq. (7) can be used and the acceptance ratio α is easy to compute. Noteworthy is the fact68

that the normalizing constant C is never needed since it vanishes in the gradient computation and69

simplifies in the acceptance ratio α. We provide a pseudo-code of the proposed sampling procedure70

in Alg. 2. A typical choice in the sampler’s hyper-parameters used in the paper is N = 100, nlf = 1071

and εlf = 0.01. The initialization of the chain can be done either randomly or on points that belong72

to the manifold (i.e. the centroids ci or µ(xi)).73
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Algorithm 2 Proposed sampling process

Input: The metric function G, hyper-parameters of the HMC sampler (chain length N , number of
leapfrog steps nlf , leapfrog step size εlf )
Initialization: z ▷ Initialize the chain
for i = 1→ N do

v ∼ N (0, Id) ▷ Draw a velocity
H0 ← H(z, v) ▷ Compute the starting Hamiltonian
z0 ← z
for k = 1← nlf do

v̄ ← v − εlf
2 · ∇zH(z, v)

z̃ ← z + εlf · v̄ ▷ Leapfrog step Eq. (7)
ṽ ← v̄ − εlf

2 · ∇zH(z̃, v̄)
v ← ṽ
z ← z̃

end for
H ← H(z̃, ṽ) ▷ Compute the ending Hamiltonian
Accept z̃ with probability α = min

(
1, exp(H0 −H)

)
if Accepted then

z ← z̃
else

z ← z0
end if

end for
Return z
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C Other generation results74

C.1 Some further samples on CELEBA and MNIST75

In this section, we provide some further generated samples using the proposed method. Figure 1 and76

Figure 2 again support the fact that the method is able to generate sharp and diverse samples. We also77

add the other variants of the RAE model in Figure 3.78

Figure 1: 100 samples with the proposed method on MNIST dataset.

Figure 2: 100 samples with the proposed method on CELEBA dataset.
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AE - N

MNIST CELEBA

VAE - N

WAE

VAMP

HVAE

RHVAE

AE - GMM

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 3: Generated samples with different models and generation processes.
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C.2 CIFAR and SVHN79

In this appendix, we gather the resulting samplings from the different models considered for SVHN80

and CIFAR 10.81

AE - N

SVHN CIFAR 10

VAE - N

WAE

VAMP

HVAE

RHVAE

AE - GMM

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 4: Generated samples with different models and generation processes.

Gen. Near. Gen. Near. Gen. Near. Gen. Near. Gen. Near.

Figure 5: Closest element in the training set (Near.) to the generated one (Gen.) with the proposed
method.
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C.3 Generation with complex data82

Finally, we also propose to stress the proposed generation procedure in a day-to-day scenario where83

the limited data regime is more than common. To stress the model in such condition, we consider84

the publicly available OASIS database [14] composed of 416 MRI of patients, 100 of whom were85

diagnosed with Alzheimer disease (AD). Since both FID and PRD scores are not reliable when86

no large test set is available, we propose to assess quantitatively the generation quality with a data87

augmentation task. Hence, we split the dataset into a train (70%), a validation (10%) and a test set88

(20%). Each model is trained on each label of the train set and used to generate 2k samples per89

class. Then a CNN classifier is trained on i) the original train set and ii) the 4k generated samples90

from the generative models and tested on the test set. Table 1 shows classification results averaged91

across 20 runs for each considered model. The line raw (resampled) corresponds to a case where92

the train set is obtained by balancing the classes with simple repetitions of the samples from the93

under-represented class. These metrics provide a way to assess i) if the model can generate data94

adding relevant information for classification and ii) allows to quantify the amount of overfitting.95

The proposed method is the only one allowing to achieve higher balanced accuracy and F1 scores96

for both labels than on the original (unbalanced) data meaning that the samples are relevant to the97

classifier and this is also sign of a good generalization. Moreover, we provide generated samples98

using each generation procedure in Figure 6. Again, the proposed method appears to produce visually99

the sharpest samples. However, such augmentation method for medical data requires caution and100

needs further assessment on the possibly induced biases before being used on a real-life application101

case.102

Table 1: Classification results averaged on 20 independent runs. For the VAEs, the classifier is trained
on 2K generated samples per class.

Generation method Balanced F1 Precision Recall
Accuracy AD CN AD CN

Original* 66.2 ± 7.6 47.6 ± 15.8 87.3 ± 2.0 74.7 ± 8.4 80.3 ± 4.0 35.7 ± 16.3 95.7 ± 1.5
Original (resampled) 81.8 ± 2.6 72.1 ± 3.6 88.0 ± 2.3 67.0 ± 5.3 91.4 ± 1.8 78.5 ± 5.2 85.1 ± 4.2

AE - N 50.0 ± 0.0 0.0 ± 0.0 84.1 ± 0.0 0.0 ± 0.0 72.6 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
WAE 57.4 ± 9.7 21.0± 24.5 84.4 ± 2.3 48.5± 42.8 76.7 ± 6.1 19.3 ± 27.5 95.4 ± 9.3
VAE - N 51.8 ± 3.8 6.1 ± 11.8 84.6 ± 1.1 38.0 ± 47.3 73.4 ± 1.7 3.7 ± 7.8 99.8 ± 0.7
VAMP 83.1 ± 2.6 70.4 ± 3.6 82.2 ± 4.7 56.3 ± 5.2 97.5 ± 2.1 94.8 ± 4.7 71.5 ± 7.4
HVAE 56.3 ± 7.9 19.6 ± 21.7 85.4 ± 1.7 48.7 ± 41.7 75.5 ± 3.8 13.9 ± 17.6 98.6 ±2.2
RHVAE 68.0 ± 10.9 47.0 ± 24.2 85.1 ± 3.3 56.1 ± 25.3 83.0 ± 7.5 46.7 ± 30.2 89.2 ± 10.6

AE - GMM 82.4 ± 2.3 69.5 ± 3.1 82.0 ± 3.6 55.8 ± 4.9 96.8 ± 2.4 93.3 ± 5.6 71.5 ± 6.2
RAE (GP) 63.9 ± 9.8 46.5 ± 15.9 70.6 ± 19.6 45.3 ± 18.5 84.2 ± 8.6 60.9 ± 28.6 67.0 ± 24.9
RAE (L2) 74.1 ± 6.0 60.6 ± 9.5 82.1 ± 5.9 57.8 ± 10.1 88.3 ± 5.2 70.0 ± 18.7 78.3 ± 11.7
RAE (SN) 62.3 ± 8.9 37.8 ± 22.6 80.1 ± 7.9 43.1 ± 24.9 80.6 ± 6.6 41.7 ± 30.1 82.9 ± 16.4
RAE 69.3 ± 8.1 53.8 ± 12.9 80.0 ± 10.7 56.2 ± 13.5 85.2 ± 6.2 60.0 ± 24.0 78.5 ± 17.5
VAE - GMM 83.0 ± 3.6 71.4 ± 4.3 85.3 ± 3.0 60.7 ± 5.4 94.9 ± 3.7 88.0 ± 9.5 77.9 ± 5.9

VAE - Ours 85.4 ± 2.5 74.7 ± 3.5 87.3 ± 2.7 64.0 ± 5.3 95.8 ± 2.2 90.4 ± 5.6 80.3 ± 5.1

*unbalanced

C.4 Wider hyper-parameter search103

As stated in the paper, for the experiments, we used the official implementation and hyper-parameters104

provided by the authors when available. However, we also propose to perform a hyper-parameter105

search for the models considered in the benchmark i.e. WAE, VAMP-VAE, RAE-GP and RAE-L2 [3]106

on MNIST and CELEBA. Since both HVAE and RHVAE models have a very time consuming training,107

we propose to replace these approaches with models having the same objective (i.e. enriching the108

posterior distribution). Do to so we consider a VAE with inverse autoregressive flows [10] (VAE-IAF)109

and a VAE with normalizing flows with radial/planar invertible transformations [17] (VAE-NF).110

We train these models with 10 different hyper-parameter configurations on MNIST and CELEBA.111

For the WAE, we vary the kernel bandwidth in {0.01, 0.1, 0.5, 1, 2, 5} and change the regularization112

factor weighting the reconstruction and regularization in {0.01, 0.1, 1, 10, 100}. For the RAEs,113

we vary the L2 latent code regularization factor and the factor before the explicit regularization in114

{1e−6, 1e−4, 1e−3, 0.01, 0.1, 1}. For the VAMP we vary the number of pseudo-inputs in {10, 20, 30,115

50, 100, 150, 200, 250, 300,189 500}. Finally, for the flow-based VAEs we vary the complexity of116
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the flows with different number of IAF blocks (VAE-IAF) or different flow lengths (VAE-NF). To117

assess the influence of the neural architecture, the experiment is performed twice each time with a118

different neural network architecture (CNN in Table. 3 or a simpler ResNet). In Table. 2, we show119

the generation vs. test FID of the model achieving the lowest FID on the validation set.120

Table 2: FID (lower is better) for different models and datasets. For the mixture of Gaussian (GMM),
we fit a 10-component mixture of Gaussian in the latent space.

MODELS MNIST CELEBA

NETS CNN RESNET CNN RESNET

AE - N(0,1) 46.4 221.8 64.6 275.0
WAE 18.9 20.3 54.6 67.1
VAE - N(0,1) 40.7 47.8 64.1 69.5
VAMP 34.0 34.5 56.0 67.2
VAE-NF 29.3 32.5 55.4 67.1
VAE-IAF 27.5 30.6 56.5 66.2

AE - GMM 9.6 11.0 56.1 57.4
RAE-GP 9.4 11.4 52.5 59.0
RAE-L2 9.1 11.5 54.5 58.3
VAE - GMM 13.1 12.4 55.5 59.9

OURS 8.5 10.7 48.7 53.2
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Train

OASIS

VAE - N

WAE

VAMP

HVAE

RHVAE

VAE - GMM

RAE (GP)

RAE (L2)

RAE (SN)

RAE

VAE - Ours

Figure 6: Generated samples with different models and generation processes.
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D Experimental set-up121

We compare the proposed sampling method to several VAE variants such as a Wasserstein Autoen-122

coder (WAE) [18], Regularized Autoencoders [7] with either L2 decoder’s parameters regularization123

(RAE-L2), gradient penalty (RAE-GP), spectral normalization (RAE-SN) or simple L2 latent code124

regularization (RAE), a vamp-prior VAE (VAMP) [19], a Hamiltonian VAE (HVAE) [2], a geometry-125

aware VAE (RHVAE) [3] and an Autoencoder (AE). The RAEs, VAEs and AEs are trained for 100126

epochs for SVHN, MNIST1 and CELEBA and 200 on CIFAR10. Each time we use the official train127

and test split of the data. For MNIST and SVHN, 10k samples out of the train set are reserved for128

validation and 40k for CIFAR10. As to CELEBA, we use the official validation set for validation. The129

model that is kept at the end of training is the one achieving the best validation loss. All the models130

are trained with a batch size of 100 and starting learning rate of 1e−3 (but CIFAR where the learning131

rate is set to 5e−4) with an Adam optimizer [9]. We also use a scheduler decreasing the learning132

rate by half if the validation loss stops increasing for 5 epochs. For the experiments on the sensitivity133

to the training set size, we keep the same set-up. For each dataset we ensure that the validation set134

is 1/5th the size of the train set but for CIFAR where we select the best model on the train set. The135

neural networks architectures can be found in Table 3 and are inspired by [7]. The metrics (FID and136

PRD scores) are computed with 10000 samples against the test set (for CELEBA we selected only the137

10000 first samples of the official test set). The factor ρ is set to ρ = max
i

min
j ̸=i
∥ci − cj∥2 to ensure138

some smoothness of the manifold. For models coming from peers, we use the parameters and code139

provided by the authors when available and allowed by licenses.140

For the data augmentation task, the generative models are trained on each class for 1000 epochs with141

a batch size of 100 and a starting learning rate of 1e−4. Again a scheduler is used and the learning142

rate is cut by half if the loss does not improve for 20 epochs. All the models have the autoencoding143

architecture described in Table 3. As to the classifier, it is trained with a batch size of 200 for 50144

epochs with a starting learning rate of 1e−4 and Adam optimizer. A scheduler reducing the learning145

rate by half every 5 epochs if the validation loss does not improve is again used. The best kept model146

is the one achieving the best balanced accuracy on the validation set. Its neural network architecture147

may be found in Table 4. MRIs are only pre-processed such that the maximum value of a voxel is 1148

and the minimum 0 for each data point.149

1MNIST images are re-scaled to 32x32 images with a 0 padding.
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Table 3: Neural networks used for the encoder and decoders of VAEs in the benchmarks

MNIST [CIFAR10] SVHN CELEBA OASIS

ENCODER (1[3], 32, 32) (3, 32, 32) (3, 64, 64) (1, 208, 176)

LAYER 1
CONV(128, (4, 4), STRIDE=2) LINEAR(1000) CONV(128, (5, 5), STRIDE=2) CONV(64, (5, 5), STRIDE=2)

BATCH NORMALIZATION RELU BATCH NORMALIZATION RELU
RELU RELU

LAYER 2
CONV(256, (4, 4), STRIDE=2) LINEAR(500) CONV(256, (5, 5), STRIDE=2) CONV(128, (5, 5), STRIDE=2)

BATCH NORMALIZATION RELU BATCH NORMALIZATION RELU
RELU RELU

LAYER 3
CONV(512, (4, 4), STRIDE=2)

LINEAR(500, 16)
CONV(512, (5, 5), STRIDE=2) CONV(256, (5, 5), STRIDE=2)

BATCH NORMALIZATION BATCH NORMALIZATION RELU
RELU RELU

LAYER 4
CONV(1024, (4, 4), STRIDE=2)

-
CONV(1024, (5, 5), STRIDE=2) CONV(512, (5, 5), STRIDE=2)

BATCH NORMALIZATION BATCH NORMALIZATION RELU
RELU RELU

LAYER 5 LINEAR(4096, 16) - LINEAR(16384, 64) CONV(1024, (5, 5), STRIDE=2)
RELU

LAYER 6 - - - LINEAR(4096, 16)

DECODER (16 [32]) (16) (64) (16)

LAYER 1 LINEAR(65536) LINEAR(500) LINEAR(65536) LINEAR(65536)
RESHAPE(1024, 8, 8) RELU RESHAPE(1024, 8, 8) RESHAPE(1024, 8, 8)

LAYER 2
CONVT(512, (4, 4), STRIDE=2) LINEAR (1000) CONVT(512, (5, 5), STRIDE=2) CONVT(512, (5, 5), STRIDE=(3, 2))

BATCH NORMALIZATION RELU BATCH NORMALIZATION RELU
RELU RELU

LAYER 3
CONVT(256, (4, 4), STRIDE=2) LINEAR(3072) CONVT(256, (5, 5), STRIDE=2) CONVT(256, (5, 5), STRIDE=2)

BATCH NORMALIZATION RESHAPE(3, 32, 32) BATCH NORMALIZATION RELU
RELU SIGMOID RELU

LAYER 4
CONVT(3, (4, 4), STRIDE=1)

-
CONVT(128, (5, 5), STRIDE=2) CONVT(128, (5, 5), STRIDE=2)

BATCH NORMALIZATION BATCH NORMALIZATION RELU
SIGMOID RELU

LAYER 5 - -
CONVT(3, (5, 5), STRIDE=1) CONVT(64, (5, 5), STRIDE=2)

BATCH NORMALIZATION RELU
SIGMOID

LAYER 6 - - - CONVT(1, (5, 5), STRIDE=1)
RELU

Table 4: Neural Network used for the classifier in Sec. C.3

OASIS CLASSIFIER

INPUT SHAPE (1, 208, 176)

LAYER 1

CONV(8, (3, 3), STRIDE=1)
BATCH NORMALIZATION

LEAKYRELU
MAXPOOL(2, STRIDE=2)

LAYER 2

CONV(16, (3, 3), STRIDE=1)
BATCH NORMALIZATION

LEAKYRELU
MAXPOOL(2, STRIDE=2)

LAYER 3

CONV(32, (3, 3), STRIDE=2)
BATCH NORMALIZATION

LEAKYRELU
MAXPOOL(2, STRIDE=2)

LAYER 4

CONV(64, (3, 3), STRIDE=2)
BATCH NORMALIZATION

LEAKYRELU
MAXPOOL(2, STRIDE=2)

LAYER 5 LINEAR(256, 100)
RELU

LAYER 6 LINEAR(100, 2)
SOFTMAX
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E Dataset size sensibility on SVHN150

In Figure 7, we show the same plot for SVHN as in Sec. 5.2. Again the proposed method appears to151

be part of the most robust generation procedures to dataset size changes.152

SVHN

0.1 0.5 1.0 5.0
×104

100

150

200

300
WAE - N (0, 1)
RAE-GP - N (0, 1)
RAE-L2 - N (0, 1)
RAE-SN - N (0, 1)
VAE - N (0, 1)
WAE - GMM
RAE-GP - GMM
RAE-L2 - GMM
RAE-SN - GMM
VAE - GMM
VAE - Ours

Figure 7: FID score evolution according to the number of training samples.

13



F Ablation study153

F.1 Influence of the number of centroids in the metric154

In order to assess the influence of the number of centroids and their choice in the metric in Eq. (??),155

we show in Figure 8 the evolution of the FID according to the number of centroids in the metric (left)156

and the variation of FID according to the choice in the centroids (right). As expected, choosing a157

small number of centroids will increase the value of the FID since it reduces the variability of the158

generated samples that will remain close to the centroids. Nonetheless, as soon as the number of159

centroids is higher than 1000 the FID score is either competitive or better than peers and continues160

decreasing as the number of centroids increases.161

2 10 100 1000 10000
Number of centroids in the metric

10
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40
50
60
70
80
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1 2 3 4 5
Centroids choice
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70

80
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Figure 8: Left: FID score evolution according to the number of centroids in the metric (Eq. (??)).
Right: The FID variation with respect to the choice in centroids. We generate 10000 samples by
selecting each time different centroids (k = 1000).

To assess the variability of the generated samples, we propose to analyze some generated samples162

when only 2 centroids are considered. In Figure 9, we display on the left the decoded centroids along163

with the closest image to these decoded centroids in the train set. On the right are presented some164

generated samples. We place these samples in the top row if they are closer to the first decoded165

centroid and in the bottom row otherwise. Interestingly, even with a small number of centroids the166

proposed sampling scheme is able to access to a relatively good diversity of samples. These samples167

are not simply resampled train images or a simple interpolation between selected centroids as some168

of the generated samples have attributes such as glasses that are not present in the images of the169

decoded centroids.170

Decoded centroid Nearest train image Generated samples

Figure 9: Variability of the generated samples when only two centroids are considered in the metric.
Left: The image obtained by decoding the centroids. Middle: The nearest image in the train set to the
decoded centroids. Right: Some generated samples. Each generated sample is assigned to the closest
decoded centroid (top row for the first centroid and bottom row for the second one).
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F.2 Influence of λ in the metric171

In this section, we also assess the influence of the regularization factor λ in Eq. (??) on the resulting172

sampling. To do so, we generate 10k samples using the proposed method on both MNIST and173

CELEBA datasets for values of λ ∈ [1e−6, 1e−4, 1e−2, 1e−1, 1]. Then, we compute the FID against174

the test set. Each time, we consider k = 1000 centroids in the metric. As shown in Figure 10, the175

influence of λ remains limited. In the implementation, a typical choice for λ is 1e−2.176
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Figure 10: FID score evolution according to the value of λ in the metric (Eq. (??)).

F.3 The choice of ρ177

In the experiments presented, the smoothing factor ρ in Eq. (??) is set to the value of the maximum178

distance between two closest centroids ρ = max
i

min
j ̸=i
∥cj − ci∥2. This choice is motivated by the179

fact that we wanted to build a smooth metric and so ensure some smoothness of the manifold while180

trying to interpolate faithfully between the metric tensors Gi = Σ(xi)
−1. In particular, a too small181

value of ρ would have allowed disconnected regions and the sampling may have not prospected well182

the learned manifold and would have only become a resampling of the centroids. On the other hand,183

setting a high value for ρ would have biased the interpolation and the value of the metric at a µ(xi).184

As a result, G(µ(xi)) might have been very different from the one observed Σ(xi)
−1 since the other185

µ(xj) would have had a strong influence on its value. The proposed value for ρ appeared to work186

well in practice.187
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G Can the method benefit more recent models ?188

Our method proposes to build a Riemannian metric using the covariances in the posterior distributions.189

Thus, it can be easily plugged into more recent models provided that they have a Gaussian posterior190

distribution. In order to assess how it would benefit to more recent VAE models, we train a VAMP-191

VAE [19], a VAEGAN [11], an Adversarial AE [13] and an IWAE [1] and compare the generation192

FID obtained 1) with the prior or 2) when plugging our method. For this experiment, we conduct a193

hyper-parameter search consisting in training each model with 10 different configurations. For the194

VAMP we vary the number of pseudo-inputs in {10, 20, 30, 50, 100, 150, 200, 250, 300, 500}. For the195

VAEGAN, we use a discriminator similar to the encoder described in Table. 3 and vary the layer depth196

considered for the reconstruction loss in {2, 3, 4} and the factor balancing reconstruction/generation197

for the decoder’s loss in {0.3, 0.5, 0.7, 0.8, 0.9, 0.99, 0.999}. For the AAE, we change the factor198

balancing the reconstruction loss and the regularization in {0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95,199

0.99, 0.999}. Finally, for the IWAE, we vary the number of importance samples in {2, 3, 4, 5, 6, 7, 8,200

9, 10, 12}. For each model and generation scheme, we report the results of the model achieving the201

lowest FID on the validation set. According to Table. 5, the proposed generation method seems to202

benefit these models in almost all cases since the FID decreases when compared to the prior-based203

generation.204

Table 5: FID (lower is better) vs. the test set using either the prior (classic approach) or by plugging
our generation method.

MODEL GENERATION MNIST CELEBA

VAMP PRIOR 34.5 67.2
OURS 32.7 60.9

IWAE PRIOR 32.4 67.6
OURS 33.8 60.3

AAE PRIOR 19.1 64.8
OURS 11.7 51.4

VAEGAN PRIOR 8.7 39.7
OURS 6.1 31.4

Another approach that is interesting to compare to is the 2-stage VAE model proposed in [5]. Our205

method can indeed be seen as part of the methods trying to counterbalance the poor expressiveness206

of the prior distribution. In [5], the authors argue that the actual distribution of the latent codes (i.e.207

the aggregated posterior) is "likely not close to a standard Gaussian distribution" [5] leading to a208

distribution mismatch degrading the generation capability of the model. To address this issue, they209

propose to use a second VAE to estimate the learned distribution of the latent variables. Our approach210

starts with the same observation that the latent codes have no reason to follow the prior. However,211

it differs since we propose to adopt a fully geometric perspective and propose instead a sampling212

scheme using the intrinsic uniform distribution defined on the learned Riemannian manifold.213

We nonetheless compare our method with models obtained with the official implementation provided214

by the authors of [5] on MNIST and CELEBA. To allow a fair comparison, we simply plug our215

method to the obtained trained models and build the metric using the posteriors coming from the 1st216

stage VAE. In Table. 6, we compare the FID obtained 1) with the first stage VAE (i.e. prior), 2) with217

the second stage VAE [5] and 3) with our method. Again, our proposed generation method allows to218

achieve lower FID results.219

Table 6: FID (lower is better) vs. the test set using the 2-stage VAE implementation [5] for either the
reconstructed samples (recon.), using the prior (1st stage), using the 2-stage approach (2nd stage) or
by plugging our generation method.

DATASET NETS RECON. 1st STAGE 2nd STAGE OURS

MNIST SIMILAR TO [4] 14.8 20.0 12.9 9.9
CELEBA SIMILAR TO [4] 44.9 67.8 53.3 49.6
CELEBA SIMILAR TO [18] 34.3 70.8 40.7 37.9
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