
Appendix for Bayesian Clustering of Neural Spiking
Activity Using a mixDPFA

A Appendix

A.1 MCMC updates

The posteriors are sampled by a Gibbs sampler. In each iteration, the sampling scheme has two main
stages: 1) to sample the model parameters assuming known labels and 2) to sample the cluster indices
given model parameters. Before moving into the second stage, the first stage is repeated several times.
The sampling in the first stage is conducted without considering constraints for µ(j)

t and x(j)
t at first,

and then we project the samples onto the constraint space for
∑T
t=1 µ

(j)
t = 0 and

∑T
t=1 x

(j)
t = 0 as

used in (Sen et al., 2018).

Update x(j)
t and µ(j)

t The priors for initial population baseline and latent factor are:

µ
(j)
1 ∼ N (0, 1),

x
(j)
1 ∼ N (0, Ip).

Assume there are nj = #{i : zi = j} neurons belong to the j-th cluster, and denote the spike
counts and firing rates of these neurons at time t as ỹ(j)

t = vec ({yit|zi = j}) ∈ Znj

≥0 and

λ̃
(j)
t = vec ({λit|zi = j}) ∈ Rnj , where Znj

≥0 denotes a nj-dimensional vector with each ele-
ment being non-negative integers. The corresponding loading and baseline for these nj neurons is
C(j) ∈ Rnj×p and ∆j = vec({δi|zi = j}) ∈ Rnj , such that log λ̃(j)

t = ∆j+µ
(j)
t 1nj +C

(j)x
(j)
t =

∆j +
(
1nj ,C

(j)
) (
µ
(j)
t ,x

′(j)
t

)′
. Denote C̃(j) =

(
1nj ,C

(j)
)
, x̃(j)

t =
(
µ
(j)
t ,x

′(j)
t

)′
, x̃(j) =(

x̃
′(j)
1 , . . . , x̃

′(j)
T

)′
, Ã(j) = diag(h(j),A(j)), b̃(j) =

(
g(j), b′(j)

)′
and Q̃(j) = diag(σ2(j),Q(j)).

The full conditional distribution P (x̃(j)| . . .) = P (x̃(j)|{ỹ(j)
t }Tt=1,∆j , C̃

(j), Ã(j), b̃(j), Q̃(j)) is
approximated by a global Laplace approximation, i.e.,

P (x̃(j)| . . .) ≈ N(p+1)T (x̃
(j)|µx̃(j) ,Σx̃(j)),

µx̃(j) = argmax
x̃(j)

P (x̃(j)| . . .),

Σx̃(j)) = −(∇∇ logP (x̃(j)| . . .)|x̃(j)=µ
x̃(j)

)−1.

Then, taking the logarithm of the full conditional distribution, i.e., ` = `(x̃(j)) = logP (x̃(j)| . . .),
we have

` = const +
T∑
t=1

(
ỹ
′(j)
t (∆j + C̃

(j)x̃
(j)
t)− 1′nj

λ̃t

)
− 1

2
(x̃

(j)
1 − x̃

′(j)
0)[Q̃

(j)
0]−1(x̃

(j)
1 − x̃

(j)
0)

−
T∑
t=2

1

2
(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃′(j))[Q̃(j)]−1(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃(j)).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Here, `(x̃(j)) is concave and unimodal. By the Markovian assumption for latent state vectors, the
Hessian matrix is tri-block diagonal. We can thus compute Newton updates to get µx̃(j) for the
Laplace approximation in O(T) (Paninski et al., 2010), similar to the E-step for the PLDS (Macke
et al., 2011).

The gradient∇` and the Hessian∇∇` are provided as follows. For t = 2, . . . , T − 1, the gradient of
`(x̃(j)) is:

∇` =

[(
∂`

∂x̃
(j)
1

)′
, . . . ,

(
∂`

∂x̃
(j)
T

)′]′
,

∂`

∂x̃
(j)
1

= C̃ ′(j)(ỹ
(j)
1 − λ̃1)− [Q̃

(j)
0]−1(x̃

(j)
1 − x̃

(j)
0) + Ã′(j)[Q̃(j)]−1(x̃

(j)
2 − Ã(j)x̃

(j)
1 − b̃(j)),

∂`

∂x̃
(j)
t

= C̃ ′(j)(ỹ
(j)
t − λ̃t)− [Q̃(j)]−1(x̃

(j)
t − Ã(j)x̃

(j)
t−1 − b̃(j))

+ Ã′(j)[Q̃(j)]−1(x̃
(j)
t+1 − Ã(j)x̃

(j)
t − b̃(j)),

∂`

∂x̃
(j)
T

= C̃ ′(j)(ỹ
(j)
t − λ̃T)− [Q̃(j)]−1(x̃

(j)
T − Ã

(j)x̃
(j)
T−1 − b̃

(j)).

And the Hessian matrix is:

∇∇` =

∂2`

∂x̃
(j)
1 ∂x̃

′(j)
1

Ã′(j)[Q̃(j)]−1 0 · · · 0

[Q̃(j)]−1Ã(j) ∂2`

∂x̃
(j)
2 ∂x̃

′(j)
2

Ã′(j)[Q̃(j)]−1 · · ·
...

0 [Q̃(j)]−1Ã(j) ∂2`

∂x̃
(j)
3 ∂x̃

′(j)
3

· · ·
...

...
...

...
. . .

...
0 · · · · · · · · · ∂2`

∂x̃
(j)
T ∂x̃

′(j)
T

,

∂2`

∂x̃
(j)
1 ∂x̃

′(j)
1

= −C̃ ′(j)diag(λ̃1)C̃
(j) − [Q̃

(j)
0]−1 − Ã′(j)[Q̃(j)]−1Ã(j),

∂2`

∂x̃
(j)
t ∂x̃

′(j)
t

= −C̃ ′(j)diag(λ̃t)C̃(j) − [Q̃(j)]−1 − Ã′(j)[Q̃(j)]−1Ã(j),

∂2`

∂x̃
(j)
T ∂x̃

′(j)
T

= −C̃ ′(j)diag(λ̃T)C̃(j) − [Q̃(j)]−1.

Although we can conduct the Newton update efficiently in O(T), bad initial values may slow down
the convergence. To facilitate convergence, we initialize the Newton update with a smoothing
estimate by local Gaussian approximation. The forward filtering for a dynamic Poisson model has
been previously described (Eden et al., 2004), and we use an additional backward pass to smooth
(Rauch et al., 1965).

Let x̃(j)
t|t−1 = E(x̃

(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t−1) and V (j)

t|t−1 = V ar(x̃
(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t−1) be the mean and

variance for the one-step prediction density, where x̃(j)
t|t−1 = Ã(j)x̃

(j)
t−1|t−1 + b̃(j) and V (j)

t|t−1 =

Ã(j)V
(j)
t−1|t−1Ã

′(j) + Q̃(j). Then, after we observe the data at time t, we can do a forward filtering

step for the mean x̃(j)
t|t = E(x̃

(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t) and the variance V (j)

t|t = V ar(x̃
(j)
t |ỹ

(j)
1 , . . . , ỹ

(j)
t),

which are given by

x̃
(j)
t|t = x̃

(j)
t|t−1 + V

(j)
t|t−1[C̃

′(j)(ỹ
(j)
t − λ̃t)]x̃(j)

t =x̃
(j)

t|t−1

,

[V
(j)
t|t]−1 = [V

(j)
t|t−1]

−1 + [C̃ ′(j)diag(λ̃t)C̃
(j) − [Q̃(j)]−1]

x̃
(j)
t =x̃

(j)

t|t−1

.

Derivation of the filtering estimates can be found in (Eden et al., 2004), and we can further get the
smoothing estimates directly by standard Rauch-Tung-Striebel smoother (Rauch et al., 1965).

2

The smoother estimates x̃(j)
t|T and V (j)

t|T are updated as follows:

x̃
(j)
t−1|T = x̃

(j)
t−1|t−1 + Jt−1(x̃

(j)
t|T − x̃

(j)
t|t−1),

V
(j)
t−1|T = V

(j)
t−1|t−1 + Jt−1(V

(j)
t|T − V

(j)
t|t−1)J

′
t−1,

where Jt−1 = V
(j)
t−1|t−1Ã

′(j)[V
(j)
t|t−1]

−1.

Update δi and ci We specify the prior for neuron-specific baseline δi as δi ∼ N (0, 1) and we have
assumed the loading ci ∼ N (0, Ip). Then, from the matrix representation of DPFA in Equation (1),
i.e., logλi = δi1T +µ(j) +X(j)ci, it is easy to see that given µ(j) andX(j) are known, the update
of δi and ci is just a regular Bayesian Poisson regression problem. Thus, we can sample the full
conditional distribution of δi and ci by a Hamiltonian Monte Carlo (HMC, Duane et al. 1987) within
the Gibbs sampler.

Update parameters of latent state The parameters for linear dynamics are h(j), g(j), σ2(j),A(j),
b(j) and Q(j). To make the model identifiable, we simply assume A(j) = diag(a

(j)
1 , . . . , a

(j)
p)

and Q(j) = diag(q
(j)
1 , . . . , q

(j)
p). Therefore, we can update A(j), b(j) and Q(j) for each diagonal

element separately, as the update in h(j), g(j) and σ2(j). Here, we update h(j), g(j) and σ2(j) as
follows.

First, we specify the priors for σ2(j) following IG
(
ν0/2, ν0σ

2
0/2
)

and
(
g(j), h(j)

)′ ∼
N (τ0, σ

2(j)Λ−10), with ν0 = 1, σ0 = 0.01, τ0 = (0, 1)′ and Λ0 = I2. Here, the "IG" denotes the
inverse-gamma distribution.

Denote µ
(j)
2:T =

(
µ
(j)
2 , . . . , µ

(j)
T

)′
and µ̃

(j)
1:(T−1) =

(
1T−1,µ

(j)
1:(T−1)

)
, with µ

(j)
1:(T−1) =(

µ
(j)
1 , . . . , µ

(j)
T−1

)′
. The full conditional distributions for σ2(j) and

(
g(j), h(j)

)′
are:

σ2(j)|{µ(j)
t }Tt=1 ∼ IG

(
ν0 + T − 1

2
,
ν0σ

2
0 + µ

′(j)
2:Tµ

(j)
2:T + τ ′0Λ0τ0 − τ ′nΛnτn

2

)
,(

g(j), h(j)
)′
|{µ(j)

t }Tt=1 ∼ N (τn, σ
2(j)Λ−1n),

with Λn = µ̃
′(j)
1:(T−1)µ̃

(j)
1:(T−1) + Λ0, and τn = Λ−1n

(
µ̃
′(j)
1:(T−1)µ

(j)
2:T + Λ0τ0

)
.

For completeness, we also provide the update of latent state parameters when using the more
parsimonious constraint, i.e. diagonal X ′(j)X(j). According to results from previous research
(Krzanowski and Marriott, 1994b,a; Fokoué and Titterington, 2003), this constraint is one of the most
parsimonious one, which only put constraints on p(p− 1)/2 parameters. The constraint can also be
implemented in MCMC by "unconstrained sampling-projection" procedure (Sen et al., 2018).

Without constraints, the sampling of h(j), g(j) and σ2(j) is the same as shown previously. The
update of A(j), b(j) and Q(j) is the standard multivariate Bayesian linear regression. Denote
X

(j)
2:T = (x

(j)
2 , . . . ,x

(j)
T)′ and X̃(j)

1:(T−1) = (1T−1,X
(j)
1:(T−1)), withX(j)

1:(T−1) = (x
(j)
1 , . . . ,x

(j)
T−1)

′.
Let us use the conjugate priors as following forQ(j), b(j) andA(j):

Q(j) ∼ W−1(Ψ0, γ0),

vec((b(j),A′(j))) ∼ N(vec(T0),Q
(j) ⊗ Γ−10).

Here, the W−1 denotes the inverse-Wishart distribution. We can set the priors as Ψ0 = 0.01Ip,
γ0 = p+2 and T0 = (0p, Ip)

′. Then, the full conditional distributions forQ(j) and vec((b(j),A(j))′)
are:

Q(j)|X(j) ∼ W−1(Ψn, γn),

vec((b(j),A(j))′)|X(j) ∼ N(vec(Tn),Q
(j) ⊗ Γ−1n),

3

with

Ψn = Ψ0 + (X
(j)
2:T − X̃

(j)
1:(T−1)Tn)

′(X
(j)
2:T − X̃

(j)
1:(T−1)Tn),

+ (Tn − T0)
′Γ0(Tn − T0),

γn = γ0 + T − 1,

Tn = Γ−1n (X̃
′(j)
1:(T−1)X

(j)
2:T + Γ0T0),

Γn = X̃
′(j)
1:(T−1)X̃

(j)
1:(T−1) + Γ0.

Before updating the cluster indices zi, the sampling of {x(j)
t , µ

(j)
t , δi, ci,θ

(j)} is repeated several
times (5 times in both simulation and application for this paper). To save time, we can further allow
the repetitions to be pre-stopped, when the training log-likelihood converges roughly.

Update zi To update the cluster assignments for each neuron i, we use a partition based algorithm
for MFM, similarly as described in Miller and Harrison 2018.

Let C denote a partition of neurons, and C\i denote the partition obtained by removing neuron i from
C.

1. Initialize C and {θ(c) : c ∈ C} (e.g. one cluster).
2. Repeat the following steps G times to obtain G samples. For i = 1, . . . , N : remove neuron
i from C and place it:
(a) in c ∈ C\i with probability ∝ (|c| + γ)Mθ(c)(yi), where γ is defined in the MFM

model in the main text (Equation 2) and Mθ(c)(yi) denotes the marginal likelihood of
neuron i in cluster c, when integrating the loading ci out (Equation (3)). The marginal
likelihood is approximated by using Poisson-Gamma conjugacy.

(b) in a new cluster c∗ with probability ∝ γ Vn(t+1)
Vn(t)

Mθ(c∗)(yi), where t is the number of

partitions obtained by removing the neuron i and Vn(t) =
∑∞
j=1

j(t)
(γj)(n) fk(j), with

x(m) = x(x + 1) · · · (x +m − 1), x(m) = x(x − 1) · · · (x −m + 1), x(0) = 1 and
x(0) = 1.

The update is an adaptation of partition-based algorithm for DPM (Neal, 2000), but with two
substitutions: 1) replace |ci| by |ci| + γ and 2) replace α by γVn(t + 1)/Vn(t). See more details
and discussions in (Miller and Harrison, 2018). When evaluating the likelihood, we marginalize the
cluster-independent loading ci out. This is necessary for the high dimensional situation, otherwise
the chain will stop moving.

One issue with incremental Gibbs samplers such as Algorithm 3 and 8 in Neal (2000), when applied
to DPM, is that mixing can be somewhat slow. To further improve the mixing, we may intersperse
the "split-merge" Metropolis-Hasting updates (Jain and Neal, 2007, 2004) between Gibbs sweeps, as
in (Miller and Harrison, 2018).

A.2 Sample Latent Vectors Using Pólya-Gamma Augmentation and Metropolis-Hastings
Algorithm

In this section, we provide details of sampling algorithms to draw the latent statesX(j) and population
baseline µ(j) from the exact posterior of the model. In order to explain the algorithm much clearer,
we just focus on a given cluster index, and thus in this section we suspend the superscript (j) as the
cluster index in our notations. We present the sampling idea with two major parts as described below.

Pólya-Gamma Augmentation Although the mixDPFA model does not directly follow the PG
augmentation scheme (Polson et al., 2013), we can approximate the Poisson distribution by a
negative binomial (NB) distribution, i.e., limr→∞ NB(r, σ(ψ − log r)) = Poisson(eψ), where
σ(ψ) = eψ/(1 + eψ) and NB(r, p) denotes the NB distribution with rp/(1− p) as its expectation.
We approximate the proposed DPFA model using a NB, then we can instead sample a mixture of NB
factor analyzers using the PG scheme (Windle et al., 2013). Further, we use the forward-filtering-
backward-sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) to update

4

the latent statesX and population baseline µ. These two steps are summarized in the step 1 and step
2 of Algorithm 1 for updating X̃ = (µ,X).

Metropolis-Hastings Step Next, we use the samples of X̃ yielded from FFBS algorithm as a
proposal, where we employ a Metropolis-Hastings (MH) step to reject or accept the proposal. In this
step, the dispersion parameter r in NB distribution becomes a tuning parameter, to balance acceptance
rate and autocorrelation in MH. When r is large, the approximation to Poisson observation is accurate
and the MH performs similar to the Gibbs sampler. Here, we allow neurons at different time points to
have unique tuning parameters rit. The MH step is summarized in step 3 of Algorithm 1.

We have further implemented Algorithm 1 to fit DPFA model for cluster 1 data in Fig. 2 and the
results have been presented in Fig. 1. We set the tuning parameters for each neuron at all time points
as rit = 10 , to tune the acceptance rate around 0.4. When implementing the PG-MH algorithm
in DPFA, the ωit (i.e., PG random variable) was sampled using pgdraw function in R package
pgdraw, which is called from our MATLAB code. Although we can program Algorithm 1 without
calling pgdraw function from R to save some time, to sample the PG random variable is often much
computationally expensive in comparison to sample from the Gaussian random variable. When fitting
the simulated data with N = 5, T = 1000 and p = 2 (cluster 1 data in Fig. 2) using a 3.40 GHz
processor with 16 GB of RAM, it takes 131.64s for PG-MH to draw 1000 posterior samples, while
the proposed approximation method in the main context of the paper takes 83.86s. Although the
proposed method takes the approximation to the full conditional of the latent stateX and population
baseline µ, the results are similar as to sample directly from the exact full conditional. Table 1 shows
the similarities, defined by cosine function, of fitted µ andX = (X∗1,X∗2) between the PG-MH
and the Gaussian approximation for full conditional, whereX∗l denotes the l-th latent vectors (i.e.
the l-th column ofX). Here, ξ̂PGMH denotes the average from iteration 5000 to 10,000 for chain 1 of
PG-MH (Fig. 1), ξ̂N denotes the average from iteration 5000 to 10,000 for the chain in Fig. 2 of
the Gaussian approximation, and ξtrue denotes the ground truth. In each column, ξ is replaced by µ,
X∗1 and X∗2 respectively. The posterior means for these two method are close to each other, i.e.
cos (ξ̂PGMH, ξ̂N) ≈ 1.

A.3 Supplementary Results for Neuropixels Application

This section shows supplementary results when applying the proposed model to the Neuropixels
dataset (4 Multi-region neural spike recordings). Here, we show 1) results sorted by maximum a
posteriori probability (MAP) estimates and 2) clustering results in another independent chain (Fig. 2).

5

Algorithm 1: Pólya-Gamma-Metropolis-Hastings Algorithm (PG-MH) for Poisson Dynamic
Model
Recall the DPFA model using the notations defined in A.1:

yit ∼ Poi(λit),
log λit = δi + c̃

′
ix̃t,

for i = 1, . . . , n and t = 1, . . . , T . Here, c̃i = (1, c′i)
′ and x̃t = (µt,x

′
t)
′. x̃t follows linear

dynamics x̃t+1|x̃t ∼ N (Ãx̃t + b̃, Q̃). Denote the prior as x̃1 ∼ N (m0,V0). Given the
sample from the (G− 1)-th iteration x̃(G−1)

t and U = {c̃i, δi, Ã, b̃, Q̃}.

1. sample ωit from PG distribution and calculate ŷit, which follows N (c̃′ix̃
(G−1)
t , ω−1it)

for t = 1, . . . , T do
for i = 1, . . . , n do

sample ωit ∼ PPG(rit + yit, δi + c̃
′
ix̃

(G−1)
t − log rit)

κit = (yit − rit)/2 + ωit(log rit − δi)
ŷit = ω−1it κit

end
end

2. Forward-filtering-backward-sampling (FFBS) for X̃
Denote ŷt = (ŷ1t, . . . , ŷNt)

′, Ωt = Diag([ω1t, . . . , ωNt]) and C̃ = (c̃1, . . . , c̃N)′

for t = 1, . . . , T do
mt|t−1 = Ãmt−1 + b̃

Vt|t−1 = ÃVt−1Ã
′ + Q̃

Kt = Vt|t−1C̃
′(C̃Vt|t−1C̃

′ + Ω−1t)−1

mt =mt|t−1 +Kt(ŷt − C̃mt|t−1)

Vt = (I −KtC̃)Vt|t−1
end
sample x̃∗T ∼ N (mT ,VT)
for t = T − 1, . . . , 1 do

Jt = VtÃ
′(ÃVtÃ

′ + Q̃)−1

m∗t =mt + Jt(x
∗
t+1 − Ãmt − b̃)

V ∗t = (I − JtÃ)Vt
sample x∗t ∼ N (m∗t ,V

∗
t)

end

3. Accept or reject the proposal X̃∗
compute the acceptance ratio

ζ =
π(X̃∗|{yi}ni=1,U)

π(X̃(G−1)|{yi}ni=1,U)

q(X̃(G−1)|X̃∗,U)

q(X̃∗|X̃(G−1),U)

=
P ({yi}ni=1|X̃∗)

P ({yi}ni=1|X̃(G−1))

NB({yi}ni=1|X̃(G−1),R)

NB({yi}ni=1|X̃∗,R)
,

whereR = {rit} is matrix for dispersion parameters for each neuron at all time points. P (·)
denotes the Poisson likelihood, and NB(·) denotes the negative binomial likelihood. Accept the
proposal X̃∗ with probability min(1, ζ).

6

Table 1: PG-MH vs. Gaussian approximation for µ andX

µ X∗1 X∗2

cos (ξ̂PGMH, ξtrue) 0.9724 0.7663 0.9728

cos (ξ̂N , ξtrue) 0.9680 0.7443 0.9699

cos (ξ̂PGMH, ξ̂N) 0.9435 0.9664 0.9959

Figure 1: PG-MH for DPFA Two independent chains (10,000 iterations) for cluster 1 data in Figure
2. The full conditional distributions of µ andX are sampled by PG-MH algorithm (Algorithm 1).A.
Traceplot of Frobenius norms of linear dynamics. The acceptance rates in subtitle are for sampling µ
andX (PG-MH step). B. The true (black) and fitted (colored) population baseline and latent factor.
Use samples from iteration 5000 to 10,000 in chain 1, the solid orange lines show averages and the
dashed lines show 95% HPD intervals.

7

Figure 2: Supplementary Results for Neuropixels Application A. The first row shows the spike
counts and fitted mean firing rate, sorted according to the MAP label estimates. The second row sort
the spikes further according the anatomical sites, which shows clustering structure within each region.
B. The posterior similarity matrix sorted by MAP estimates. C. The ARI of MAP estimates. The
diagonal is ARI between 2 chains, and the off-diagonal is mean ARI of MAP for 4 combinations. D.
Posterior similarity matrices for the second chains. Neurons are sorted as in the first panel of Fig. 4E

8

References
Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3):541–553.

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo. Physics Letters B,
195(2):216–222.

Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., and Brown, E. N. (2004). Dynamic Analysis of Neural Encoding
by Point Process Adaptive Filtering. Neural Computation, 16(5):971–998.

Fokoué, E. and Titterington, D. M. (2003). Mixtures of factor analysers. Bayesian estimation and inference by
stochastic simulation. Machine Learning, 50(1-2):73–94.

Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis,
15:183–202.

Jain, S. and Neal, R. M. (2004). A split-merge markov chain monte carlo procedure for the dirichlet process
mixture model. Journal of Computational and Graphical Statistics, 13(1):158–182.

Jain, S. and Neal, R. M. (2007). Splitting and merging components of a nonconjugate Dirichlet process mixture
model. Bayesian Analysis, 2(3):445–472.

Krzanowski, W. J. and Marriott, F. H. C. (1994a). Multivariate analysis. Part 2: Classification, covariance
structures and repeated measurements.

Krzanowski, W. J. and Marriott, F. H. C. (1994b). Multivariate analysis. Part I. Distributions, ordination and
inference.

Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2011). Empirical
models of spiking in neural populations. Advances in Neural Information Processing Systems, 24.

Miller, J. W. and Harrison, M. T. (2018). Mixture models with a prior on the number of components. Journal of
the American Statistical Association, 113(521):340.

Neal, R. M. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture Models. Journal of
Computational and Graphical Statistics, 9(2):249–265.

Paninski, L., Ahmadian, Y., Ferreira, D. G., Koyama, S., Rahnama Rad, K., Vidne, M., Vogelstein, J., and
Wu, W. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience,
29(1-2):107–126.

Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic models using pólya–gamma
latent variables. Journal of the American Statistical Association, 108(504):1339–1349.

Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems.
AIAA Journal, 3(8):1445–1450.

Sen, D., Patra, S., and Dunson, D. (2018). Constrained inference through posterior projections.

Windle, J., Carvalho, C. M., Scott, J. G., and Sun, L. (2013). Efficient Data Augmentation in Dynamic Models
for Binary and Count Data.

9

	Appendix
	MCMC updates
	Sample Latent Vectors Using Pólya-Gamma Augmentation and Metropolis-Hastings Algorithm
	Supplementary Results for Neuropixels Application

