A Experimental Details and Additional Results

A.1 Experimental Details

A.1.1 Non-IID Settings.

s e e °n | L | " 9@ e .
s @ Y Y 8 @ [. . [] 8 e ° Y e MNIST
e e e 7 @ 7 e 4 o . SVHN
6 ® ° ° . MNIST 6 ® . . . ® # of samples 6 ® ° . ‘ z\fn'::
ﬁs] ° ° . SVHN §5 L4 . 1 L4 T ® 60 ﬁs ¢ Y L4 MNIST-M
C4 @ ° Y * USPS 04 L] [] . 3 e 120 04 @ L] . # of samples
3 @ ° ° Synth 3 e . ° . . e 180 3 . . ° .
> @ ° ° MNIST-M 2 e ° . ° ° ® 240 > e . ° e 50
1@ ° ° # of samples 1@ . . . [® 300 1 e . [] e 100
ce e e @ 210 0@ e« e e . oe e e o 150
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ® 200
Client ID Client ID Client ID ® 250
(a) Feature shift non-1ID (b) Label shift non-IID (¢) Feature & label shift non-IID

Figure 4: Illustration of three non-IID settings on Digit-5 dataset. Each dot represents a set of samples within
a certain class allocated to a client. The feature shift non-IID is indicated by dot colors while the label shift
non-IID (o = 1) is indicated by dot sizes.

To mimic non-IID scenarios in a more general way, we investigate three different non-IID settings as
follows and visualize them in Figure 4]

e Feature shift non-I1ID: The datasets owned by clients have the same label distribution but different
feature distributions. The number of classes and the number of samples per class are the same
across clients.

* Label shift non-1ID: The datasets owned by clients have the same feature distribution but
different label distributions. Similar to existing works [69] [78]], we use Dirichlet distribution
with parameter « to allocate examples for this kind of non-IID setting.

 Feature & Label shift non-1ID: The datasets owned by clients are different in both label distribu-
tion and feature distribution, which is more common but challenging in real-world scenarios.

heq ice., i
bike keyboard mouse mug projector 4phoye Crean, Uer Whale “ebry
o

o2 3 4 s
MNIST “ Amazon @}@ _ ' M Q Clipart @ v Eiﬁf“
SVHN 1]B.. 5‘ Infograph ;‘,:E ==
= — Caltech 5y @y O ;. @ Painting ﬁ g m ~ §\%&
usrs llﬂ@ugi‘ 5 7 Quickdraw [1(\7‘ ’\/) 5;?;? AZ/E um
Syn I..55 e ﬁ.ﬁ. w @R
RS —amag® — 70N

(a) Digit-5 (b) Office-10 (c) DomainNet

Figure 5: Examples of raw instances from three datasets: Digit-5 (left), Office-10 (middle), and DomainNet
(right). We present five classes for each dataset to show the feature shift across their sub-datasets.

A.1.2 Visualizatin of Raw Samples.

Some examples of raw instances can be found in Figure 5]

A.1.3 Model Architecture.

For the single backbone cases, we use ResNet18 pre-trained on Quickdraw as the backbone. For the
multiple backbone cases, we use three pre-trained ResNet18 as the backbones. They are pre-trained
on Quick Draw [79], Aircraft [80], and CU-Birds [19] public dataset, respectively. The model
architecture following the backbone module is shown in Table[7}

14

Table 7: The model architecture with learnable parameters for each client. FC refers to fully connected layer and
BN refers to the BatchNormalization layer. K refers to the number of available pre-trained backbones, which is
3 in our experiments.

Layer | Details
1 ‘ FC(512x K, 256), ReLU, BN(256)
2 ‘ FC(256, 10)

A.1.4 Training Details.

We provide the detailed settings for the experiments conducted in Section[5.2]

For data splitting, we use a portion of data as training samples (~ 10%) and the rest as test samples.
We first take out a 20% subset of the training set for validation and return the validation set back to
the training set and retrain the model after selecting the optimal hyperparameters.

Table 8] [9] [I0] show the data partitioning details in feature shift non-IID, label shift non-IID, and
feature & label shift non-IID, respectively. We run each algorithm till the convergence of its loss.

Table 8: Detailed statistics for three benchmark datasets in feature shift non-IID, label IID setting (Table .

Datasets | MNIST SVHN USPS SynthDigits MNIST-M
of clients 1 1 1 1 1
of classes per client 10 10 10 10 10
of samples per class 10 10 10 10 10

Table 9: Detailed statistics for three benchmark datasets in label shift non-1ID, feature IID setting (Table .

Datasets \ MNIST-M \ Caltech \ Real

of clients 5 5 5
of samples per client | [152,92,112,72,70] | [76,79,111,70,112] | [153,95,111,55,84]

Table 10: Detailed statistics for three benchmark datasets in feature & label shift non-IID setting (Table .

Datasets \ Digit-5 | Office-10 | DomainNet

of clients 5 4 6
of samples per client | [100,75,112,120,65] | [89,108,58,120] | [137,230,270,204,175,152]

For hyperparameter tuning, we use grid search to find the optimal hyperparameters including learning
rate, weight decay, and the output dimension of each backbone. Concretely, the grid search is carried
out in the following search space:

* learning rate: {0.1,0.01,0.001, 0.0001}
* weight decay: {le-3, 5e-4, le-4, 5e-5, le-5}
* output dimension of each backbone: {128, 256,512,1024}

A.2 Additional Experiments
A.2.1 Performance under Three Non-IID Settings.
Table[TT]shows the performance of FedPCL and baseline methods under label shift non-IID scenarios.

A.2.2 Fairness across Clients.

Following the metrics in [81], we verify the advantage of FedPCL in fairness and report the results
over 40 and 80 clients in Table [12|and Table respectively. We list the average, the worst 10%,

15

Table 11: Test accuracy under the (1) label shift non-IID setting, (2) feature & label shift non-IID setting. For
the former (feature IID, label non-IID), we use MNIST-M, Caltech, and Real as the datasets of all clients,
respectively. For the latter (feature non-I1ID, label non-1ID), we use Digit-5, Office-10, and DomainNet as the
datasets, respectively.

Single backbone Multi-backbone
Digit-5 Office-10 Domainnet\ Digit-5 Office-10 DomainNet

FedAvg 30.42(5.34) 28.84(1.01) 25.78(1.48)| 31.97(3.48) 23.60(1.72) 28.09(2.91)
pFedMe 28.14(1.26) 22.53(5.28) 29.43(1.30)| 32.82(1.74) 25.73(3.26) 32.65(0.72)
Per-FedAvg 27.22(7.11) 36.74(3.96) 31.37(3.35)| 30.95(2.94) 25.10(0.55) 34.64(0.54)

1D FedRep 34.14(7.37) 36.35(0.53) 41.95(3.35)| 39.27(1.35) 37.95(0.91) 48.82(0.55)
FedProto 38.02(3.89) 39.04(0.13) 34.41(0.74)| 42.17(3.23) 40.78(0.93) 44.48(0.58)

Solo 36.40(3.71) 37.82(1.79) 39.06(3.27)| 41.33(2.22) 39.59(2.49) 46.70(0.75)
Ours 40.88(2.09) 40.76(0.21) 39.63(3.31)| 45.35(1.58) 42.13(0.77) 52.92(3.47)

FedAvg 31.03(4.29) 25.67(1.79) 16.40(1.25)| 32.98(3.44) 33.84(4.59) 19.25(2.03)
pFedMe 25.13(8.31) 22.65(1.10) 16.56(2.37)| 28.10(8.80) 30.00(1.41) 18.46(2.04)
Per-FedAvg 28.94(0.60) 25.87(0.19) 18.68(1.47)| 31.95(1.81) 26.04(1.46) 20.96(1.83)
FedRep 34.16(3.40) 32.50(2.86) 19.64(1.53)| 39.28(2.44) 37.24(1.54) 30.28(1.01)
FedProto 41.49(2.75) 37.47(1.27) 19.37(0.14)| 43.94(3.02) 34.54(2.65) 29.45(0.39)

Solo 35.56(3.16) 35.54(1.05) 17.84(0.87)| 38.35(2.55) 36.38(0.54) 27.15(0.52)
Ours 42.87(1.47) 37.64(1.99) 24.90(1.61)| 45.22(3.65) 41.40(1.19) 35.23(0.29)

Feature Method

Non-
1D

the worst 20%, the worst 40%, the best 10% of test accuracy over all clients across three runs in
Digit-5 dataset. We also report the variance of the accuracy distribution across clients (the smaller,
the fairer) [81]. The results demonstrate that in such a multi-backbone scenario, it is easier to obtain
a fair solution using prototype-based communication rather than model parameter/gradient-based
communication, because the information conveyed by prototypes is more local data distribution-
independent while the information conveyed by model parameters tends to be affected by local data
distribution. Detailed experimental results on fairness can be found in Table [I2]and [I3]

Table 12: The average, the worst, the best, and the variance of the test accuracy of 40 clients on Digit-5.

Method Average Worst 10% Worst 20% Worst40% Best 10% Variance

FedAvg 32.20(2.17) 16.73(1.73) 20.31(2.21) 25.01(0.71) 54.60(3.33) 11.16(0.35)
Ours 48.39(0.25) 35.35(2.63) 37.58(3.07) 40.82(3.16) 62.72(1.33) 8.45(0.06)

Table 13: The average, the worst, the best, and the variance of the test accuracy of 80 clients on Digit-5.
Method Average Worst 10% Worst 20% Worst 40% Best 10% Variance

FedAvg 33.44(3.34) 12.34(2.67) 15.53(2.90) 19.53(2.40) 56.87(2.74) 13.20(1.35)
Ours 49.46(0.34) 30.39(4.57) 34.37(3.40) 39.52(2.66) 66.46(2.38) 10.60(0.25)

A.2.3 Effect of the Number of Backbones.

The number of pre-trained backbones can be adjusted for a specific task correspondingly. To study its
effect, we compare the performance and parameter size when different numbers of fixed backbones are
used. The results in Table[T4]indicate that more pre-trained backbones can lead to better performance
but consume more computing resources and memory space.

A.2.4 Privacy Protection.

We incorporate FedPCL with privacy-preserving techniques to observe its variation in performance.
Concretely, we add random noise of various distributions into the communicated prototypes and the
original images, respectively. Table [T5]shows that the performance of FedPCL remains high after
injecting noise to the prototypes. Figure [6] visualizes an original image of a bike from Office-10
dataset and what it looks like after the noise injection operation. It is hard to tell the objects in the
right column of Figure but the accuracy only drops about 2%, compared to vanilla FedPCL.

16

Table 14: Effect of the number of pre-trained backbones. Experiments are conducted on Digit-5 dataset under
the feature & label shift non-IID setting where the Dirichlet parameter « is 1, and the number of clients is 5.

of Backbones # of Training Params. # of Fixed Params. Acc
1 133,632 11IM 42.87(1.47)
2 264,704 22M 44.49(1.75)
3 395,776 33M 45.22(3.65)

In conclusion, FedPCL has the potential to combine with privacy-preserving techniques without an
obvious decrease in performance.

Table 15: The performance of FedPCL on Office-10 dataset after incorporating privacy-preserving techniques.
Here, we consider using multiple backbones under the label shift non-IID setting with « = 1 and m = 5. s
represents the scale parameter for the noise distribution generation and p € (0, 1) represents the perturbation
coefficient of the noise.

Methods | Add Noise to | Noise Type | Acc(Std)
FedRep | / | / | 37.95(0.91)
FedPCL ‘ / ‘ / ‘ 42.13(0.77)

Laplace (s = 0.05,p = 0.1) 39.93(3.48)
Prototype Gaussian (s = 0.05,p = 0.1) | 40.04(2.09)

Laplace (s = 0.05,p = 0.2) | 40.24(3.01)
Gaussian (s = 0.05,p = 0.2) | 41.83(3.57)

Laplace (s = 0.2,p = 0.1) 38.29(2.87)
Tmage Gaussian (s = 0.2,p = 0.1) 41.10(0.57)

Laplace (s = 0.2,p = 0.2) 36.93(2.33)
Gaussian (s = 0.2,p = 0.2) | 40.14(0.78)

FedPCL

Gaussian
Gaussian

Laplace
Laplace

(a) Original (b)p=0.1 ©)p=20.2

Figure 6: Visualization of (a) an original image of a bike from Office-10 dataset; (b-c) applying noise injection
privacy-preserving techniques to the original image. Specifically, given an original image x and a perturbation
coefficient p € (0,1), 7 = (1 — p)x + e is the image used for training. Here, we provide the results of two
kinds of random noise, Gaussian (upper row) and Laplace noise (lower row). The value of p in Figure[6(b)and
Figure[6(c)]is 0.1 and 0.2, respectively.

B Discussion

B.1 Applying FedPCL to a Wider Range of Scenarios

Since there are many off-the-shelf foundation models available nowadays and there is a trend to use
them in CV and NLP communities, it is a promising research direction to integrate those pre-trained
foundation models into an FL framework. Compared with training from scratch, using pre-trained
models can save more computation and communication resources. Also, it is an interesting direction

17

to apply FedPCL to some noisy-label federated learning cases to prevent model degradation caused
by incorrect labels when training from scratch [82 183 [84]].

Our proposed framework is limited to the cases where pre-trained models are available. This is
mainly due to the fact that most types of data, e.g., image, text, graph, have corresponding pre-trained
models nowadays. For the cases without pre-trained models, using multiple fixed encoders can be an
alternative solution, which is another interesting problem and can be explored in the future.

We do think incorporating pre-trained models into existing learning frameworks is a promising trend
in deep learning, especially when models are becoming larger and larger in scale and hard to train
from scratch. So far, the idea to utilize pre-trained foundation models has been proposed for CV and
NLP tasks and achieved certain improvement [|52} 851 |86]].

B.2 Comparison to Related Works

This paper has provided novel contributions in terms of (1) integrating pre-trained models into
federated learning, (2) proposing a novel algorithm FedPCL which allows clients to share knowledge
via prototype-based local contrastive learning.

Although prototypical learning and contrastive learning exist in prior work, they are still based on the
learnable parameter aggregation scheme [43] 44} 51]] or just use prototypes/contrastive learning to
regularize the original local training [[24]. Instead of synchronizing learnable parameters, our method
allows each client to keep their own local parameters while extracting shared knowledge only by
contrastive learning. Prototype is used as the information carrier to achieve that.

Some state-of-the-art PFL. methods do not work well under our proposed lightweight framework.
Their performance is mainly due to the following two reasons.

* Most of these baselines are designed based on the training-from-scratch framework where
there are a large number of learnable parameters. The proposed new setting where most
parameters are fixed is not friendly to some PFL methods.

* When there are feature/label shift non-IID across clients, the local performance might be
further deteriorated after parameter aggregation. The deterioration can be more significant
when only a small number of parameters are locally trained. Since most PFL methods are
still based on the parameter aggregation scheme, their performances are inevitably affected.

Performance might be enhanced by decreasing the number of shared parameters, optimizing local
training schemes, and introducing fine-tuning procedures during local training, etc.

There is also a branch of FL studying fine-tuning techniques for FL [87,I88]]. These works mainly focus
on how to adjust the local/global model to improve its representation ability on biased/generic data
distribution, while our work utilizes fixed pre-trained foundation models and focuses on improving
the fusing ability.

C Proof of Generalization Bound

Theorem C.1. (Generalization Bound of Alg. [1). Consider an FL system with m clients. Let
D1,Ds, -+, Dy, be the true data distribution and D1, ﬁg, ceey 13,” be the empirical data distribution.
Denote the projector head h as the hypothesis from H and d be the VC-dimension of H. The total
number of samples over all clients is N. Then, with probability at least 1 — §:

- |D7,| . m 7 G ‘D’L| N . m
N (m+1)|C| \/d eN
<) Xog A I L [8 S
= \/2 R A

Proof. We start from the McDiarmid’s inequality that

2 2
Plg (X1, ..., Xn) —Elg (X1, X)) = o] < oxp (—Zf) 13)
1=1"1

18

when

sup g (x1,22,...,2n) — g (z1,2T2,...,2,)] < . (14)
Llgenny Tn
Eq.[T3]equals to
2¢2
Plo)~Els (] <> 1-exp (— s) (15)
Zi:l C’L2
which means that with probability at least 1 — exp (—%),
i=1 "1
g()—E[g() <e (16)
Let § = exp (Z"f >) the above can be rewritten as with probability at least 1 — 6,
o2 1
90)~Elp()] < /=5 T log L a7

For prototype, by substituting ¢ (-) with

" | Dy "\ |D
§ Lp, (0;;- —§ LA
(Glaer‘?axem) < ’DZ() i—1 N

,,,,,

(9L§')>) (18)

we can obtain that with probability at least 1 — 9, the following holds for a specific prototype,

ID\ Dl
(01, 92 9177)(LD (917) Z N LDi (9“)

,,,,,

_ o Dl
e, ,,L)(0= 3 Rlis, 059

=1 i=1

19)

Considering there are (m + 1)|C| prototypes in total, by using Boole’s inequality, with probability at
least 1 — 4, the following holds,

oo, (Z | Di |L’D (Qz,C {Cp}e) i
Ui, (240,07,) - i Ls, (a;c,{cp}?_l))] 20

Lﬁ (Hi; C, {Cp};n—1)>

| il |
(Gl’glaxem) <Z (HZ,C {Cp}) — ;

,,,,,

Pilrs, (ei;c,{cp};"_l)ﬂ

05C ey) ~ L, (ei;c,{cp};"_l))]

2n

19

where H is the hypothesis set of projector head h, d is the VC-dimension of H, IV is the total number
of samples over all clients. (a) follows from the definition of Rademacher complexity

~ 1 &
Rs(G) = Ig Elelg po. ; 09 (zi)] (22)

where m is the number of samples, o; refers to independent uniform random variable taking value in
{—1,+41}, and (b) follows from Jensen’s inequality.

So,
N, (m+1)C| \/d eN
<4/ = log ~— =1 = log —.
< \/2 log 5 + Nlog]
O]

20

	Introduction
	Related Work
	Problem Formulation
	Federated Prototype-wise Contrastive Learning (FedPCL)
	Experiments
	Experimental Setup
	Performance Comparison
	Integrating Backbones with Various Architectures
	Ablation Study
	Visualizing the Fusing Results of FedPCL
	Incorporating with Privacy-Preserving Techniques

	Conclusion
	Experimental Details and Additional Results
	Experimental Details
	Non-IID Settings.
	Visualizatin of Raw Samples.
	Model Architecture.
	Training Details.

	Additional Experiments
	Performance under Three Non-IID Settings.
	Fairness across Clients.
	Effect of the Number of Backbones.
	Privacy Protection.

	Discussion
	Applying FedPCL to a Wider Range of Scenarios
	Comparison to Related Works

	Proof of Generalization Bound

