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Abstract

Black-box attacks can generate adversarial examples without accessing the param-
eters of deep neural networks (DNNs), largely exacerbating the threats of deployed
models. However, previous works state that black-box attacks fail to mislead
DNNs when their training data and outputs are inaccessible. In this work, we
argue that black-box attacks can pose practical attacks in this highly restrictive
scenario where only several test samples are available. Specifically, we find that
attacking the shallow layers of DNNs trained on a few test samples can generate
powerful adversarial examples. As only a few samples are required, we refer to
these attacks as lightweight black-box attacks. The main challenge to promoting
lightweight attacks is to mitigate the adverse impact caused by the approximation
error of shallow layers. As it is hard to mitigate the approximation error with few
available samples, we propose Error TransFormer (ETF) for lightweight attacks.
Namely, ETF transforms the approximation error in the parameter space into a
perturbation in the feature space and alleviates the error by disturbing features. In
our experiments, lightweight black-box attacks with the proposed ETF achieve
surprising results. For example, even if only 1 sample per category is available,
the attack success rate achieved by lightweight black-box attacks is only about 3%
lower than that of the black-box attacks using complete training data 1.

1 Introduction

Black-box attack methods [12, 56, 60] can mount successful attacks without accessing the parameters
of deep neural networks (DNNs), posing great challenges to deep learning in safety-critical situations.
Existing black-box attack methods implicitly assume that the training data and/or the outputs of
target models are available to adversaries. For scenarios where training data are available, adversarial
examples can be generated by attacking surrogate models constructed for approximate target models.
Using the target models’ outputs for estimating gradients is another practical approach to crafting
adversarial examples. In general, due to the low dependency on target model information, the
black-box attacks raise realistic threats to real-world deep learning systems, including semantic
segmentation [2, 36], object detection [18, 45, 44], and automatic driving [54].

However, these assumptions can be violated in many practical scenarios [3, 46], where both the
training data and the outputs of target models are inaccessible. This realistic attack scenario is
introduced in [3], generally termed as the no-box setting. Under such a restrictive setting, Li et
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al. [34] stated that existing black-box attacks fail to mislead target models because it is now forbidden
to access previously essential information in mounting black-box attacks. Therein, the failure of
existing black-box attacks is not surprising. The reason is that constructing reliable surrogate models
typically relies on accessing the complete training data of target models, which is forbidden in such a
restrictive setting with only a few test samples available.

In this work, we aim to reveal the potential threats of black-box attacks in the no-box setting, as
mounting black-box attacks with highly limited accessible information leaves many models exposed
to attack. Specifically, we challenge the previous believes by raising the following question: Can
black-box attacks success in the no-box setting? The doubts about the potential threats of the black-
box attack are not groundless. Specifically, the potential threats of black-box attacks stem from
two facts: a) adversarial examples can be generated by perturbing representations at shallow layers
of DNNs [28, 27, 48]; b) regarding the representation of shallow layers, there do not exist critical
differences between those models learned from a few data and that of the whole training data. [1]

Building upon the above facts, it is actually possible that an adversary can successfully mount attacks
using limited samples, as powerful adversarial examples can be generated by attacking the shallow
layers of DNNs trained on few samples. Concretely, the adversary can leverage available samples to
construct a surrogate model to approximate the shallow layers of target models within acceptable
errors. Consequently, adversarial examples can be generated by perturbing the features obtained
from the shallow layers of the constructed surrogate model. As merely a few samples are required
for attacking, we refer to black-box attacks in the no-box setting as lightweight black-box attacks.
Intuitively, the closer the surrogate model is to the target model, the higher the attack success rate the
crafted adversarial examples have [31]. If the approximation error of shallow layers is alleviated, the
lightweight black-box attack can be as powerful as black-box attacks with complete training data.
Hence, the main challenge to mounting a lightweight attack is to mitigate the adverse impact caused
by the approximation error of shallow layers.

However, it is challenging to mitigate the approximation error, especially when the number of
available samples is limited. Fortunately, it is straightforward to identify which kind of perturbations
are preferred: if perturbations applied to a feature contribute to fooling the surrogate model, the
perturbation is preferred. Therefore, bridging the connection between the parameter space and the
feature space is the key to mitigating the approximation error. Accordingly, we propose transforming
the approximation error in the parameter space as the perturbation in the feature space, dubbed Error
TransFormer (ETF). Namely, ETF transforms the worst-case approximation error to the worst-case
feature perturbation, leading to a min-max scheme that generates adversarial examples under the
worst feature perturbations. We verify the attack success rate of lightweight black-box attacks using 7
models trained on the ImageNet dataset [47] and find that existing attack methods are much more
potent than previously claimed. Moreover, the performance of lightweight black-box attacks can
be further promoted by the proposed ETF, i.e., the attack success rate is only 3% lower than that
achieved by black-box attacks having complete training data of target models.

2 Related works

2.1 Adversarial attack

According to the amount of accessible information, existing adversarial attacks can be roughly divided
into two categories: white-box attacks and black-box attacks. White-box attacks [19, 41, 15, 16]
assume that the target model is transparent to adversaries, i.e., adversaries can access all information
about the target model. Nevertheless, the assumption of transparent target models can be violated
in many practical scenarios [11]. Hence, black-box attacks [14, 37, 64, 7] are proposed and applied
to the scenario where relatively limited information about the target model is accessible, i.e., only a
certain number of model queries or the training data of target tasks are available.

Among these black-box attacks, intermediate-level attacks [48, 28, 24] are widely explored to improve
the adversarial transferability. The core idea of these attacks is based on the empirical observation
that well-trained models’ intermediate features are transferable [58]. This is consistent with the
recent works showing that adversarial examples comprise spurious features having the transferable
property [63, 6]. Hence, Inkawhich et al. [28] propose to perturb the feature space of neural networks
to create more transferable adversarial examples. These methods provide an interesting empirical
conclusion that disturbing the shallow layers of DNNs can also generate adversarial examples.
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Existing black-box attacks assume that the large-scale training data of target models and the feedback
from querying target models are accessible, but these assumptions can be violated in many scenarios,
e.g., the no-box setting [3]. Li et al. [34] stated that existing black-box attacks cannot be successfully
mounted because existing DNNs require large-scale training data for generalization. Given only small-
size data available, obtaining a surrogate model with strong generalization is challenging. Hence, Li
et al. propose replacing black-box attacks with their proposed no-box attack [34], where they train
a classical auto-encoder model instead of the supervised classification model due to the constraint
of a small-scale dataset. Concretely, they train 20 auto-encoders for each category and generate
adversarial examples by attacking these auto-encoders, which is time- and computational-consuming.

Different from existing black-box attacks, lightweight black-box attacks aim to reveal the potential
risk of black-box attacks under the no-box setting. Because one main challenge to perform lightweight
black-box attack is to mitigate the adverse impact caused by the approximation error, we propose
error transformer that is a min-max strategy transforming the approximation error in the weight space
to the feature space. The min-max strategy is different from that introduced in [55], where min-max
strategy is proposed to flatten the loss landscape in the weight space, see Appendix F.

2.2 Approximation of Shallow Networks

A recent study [58] confirms the intuition that shallow layers in DNNs can be seen as low-level
feature extractors, provided that strong data augmentation is used [1]. Motivated by this observation,
Asano et al. [1] design a method to explore the information in every layer of DNNs. Asano et al. [1]
train a supervision model on ImageNet LSVRC-12, and a self-supervision model on a small-scale
dataset. Then, they apply linear probes [61] to all intermediate layers of networks, where a linear
classifier is trained on the top of pre-trained and fixed feature representations. In this way, they
evaluate the quality of the representation learned at different depths of the networks. The results show
that, given heavily synthetic transformations, the shallow layers of DNNs learned from a few images
can approximate that of DNNs trained on millions of images. According to the intriguing empirical
observation, it is possible to construct a surrogate model with limited samples, where its shallow
layers are similar to that of the target models. Besides, it is known that the neural networks prefer to
make the decision through the spurious feature [63] on which are focused by models to correlate to
the true label. Since shallow layers based on the small-scale or large-scale data set can acquire the
similar spurious feature [1], it is an effective way to leverage the shallow model to mount an attack in
the spurious features when the number of the data is limited.

3 Preliminaries

3.1 No-Box Threat Model

The no-box setting [3] denotes a threat model where available information about the target model
is extremely limited, making it challenging to generate adversarial examples. According to the
description in [3], the no-box threat model can be defined as follows.

Definition 1 (No-Box Threat Model) A threat model is called the no-box threat model if the adver-
sary in this scenario is not allowed to access the target model’s training data and outputs, so it only
has some samples that can be correctly predicted with high probability by the target model.

The definition is consistent with the no-box setting introduced in [3], where the target model’s
training data and outputs are inaccessible to the adversary. Moreover, the available samples used
for generating adversarial examples are expected to be limited. This is because if the number of
samples is similar to or even larger than the number of samples used for training target models, the
adversary can leverage these samples to construct a surrogate model similar to target models, making
the condition of inaccessible training data meaningless. It is intuitive that target models can correctly
predict the labels of these available samples with high probability. For example, it is meaningless to
perform attacks using samples misclassified by the target model.

3.2 Lightweight Black-Box Attack

Definition 2 (Lightweight Black-Box Attack) An attack is called the lightweight black-box attack
if an adversary aims to perform an attack in the context of a no-box threat model.
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The definition of the lightweight black-box attack shows that lightweight attack is a special kind of
black-box attacks. The extremely limited accessible information distinguishes it from other black-
box attacks. For example, query-efficient black-box attacks require the feedback information of
target models [25, 26], while lightweight attacks do not. To our best knowledge, how to perform a
lightweight black-box attack is still lacking in the literature. For example, Li et al. [34] claim that
black-box attacks fail to fool target models when their training data and outputs are inaccessible.

4 Approach

This section gives a detailed description of how to perform lightweight black-box attacks and the
proposed Error TransFormer (ETF) to alleviate to adverse impact caused by approximation error.

4.1 Lightweight Surrogate Model

Surrogate models are widely used in black-box attacks since adversarial examples are usually
generated by attacking surrogate models when querying target models is forbidden. Since the
lightweight black-box attack is a special kind of black-box attack, performing the attack also requires
constructing surrogate models. We call surrogate models employed in lightweight black-box attacks
the lightweight surrogate model, building upon the fact that the number of available samples in the
no-box threat model is typically limited.

Similar to existing black-box attacks, we assume that the label information of samples used for
generating adversarial examples are accessible. In this scenario, the lightweight surrogate model
is trained for a classification task. Specifically, the lightweight model is realized by training a
classification DNN equipped via conventional supervised learning, using cross-entropy loss ℓ(·, ·):

min
w

E(x,y)∼D̂ ℓ(f(x;w), y), (1)

where w stands for the parameters of the surrogate model f , and (x, y) denotes the sample label pair
of random variables sampled from the distribution of natural data D̂.

In black-box attacks, adversary only leverages the shallow layers of DNNs, leading to a straightfor-
ward approach to constructing lightweight surrogate models. Specifically, we can train the lightweight
surrogate model in a contrastive manner, where the supervised information is no longer necessary:

min
w

1

|D̂|

∑
x∈D̂

− log
σ(f(x;w), f(T (x);w))∑

x′∼D̂\x σ(f(x;w), f(T (x′);w))/(|D̂\x| − 1)
, (2)

where σ is a specific similarity metric, e.g., cosine similarity, T denotes the data transformation
operation, and D̂\x means that x is removed from the dataset D̂. The contrastive strategy in Eq. 2
makes it possible to perform attacks when the label information is unavailable. Unless otherwise
specified, we mainly uses Eq. 1 to train the surrogate models.

4.2 Feature Space Perturbation

Built upon the empirical observation [58], using limited samples can approximate the shallow layers
of DNNs within acceptable errors. This suggests that deep layers other than shallow layers can
cause large approximation error. Accordingly, merely the shallow layers of the learned lightweight
surrogate models are used for generating adversarial examples, which is similar to the feature space
attacks [48]. For brevity, we define the shallow layers as φ and denote the feature as φ(x;w).

In feature space attacks, guide images are usually required for generating adversarial examples [48].
A natural image used for generating adversarial example is usually called source image. Given a
source image xs, we generate an adversarial example xadv by perturbing xs such that its feature is
similar to that of a guide image xg, where the labels of these two images are different. Specifically,
the adversarial examples are generated as follows:

xadv = arg min
∥x′−x∥p≤ϵ

d(φ(xg;w), φ(x
′;w)), (3)

where d stands for a specific distance, ϵ controls the strength of adversarial perturbation, and x′

denotes the perturbed version of the source image.
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4.3 Error Transformer

Although applying feature space attacks to lightweight surrogate models can generate transferable
adversarial examples, the approximation error will cause adverse impact to mounting attacks. The
reason is that large dissimilarity between the surrogate models and the target models reduces the
attack success rate. Therefore, the main challenge to mounting lightweight attacks is to mitigate the
adverse impact caused by the approximation error. However, available samples are usually limited in
the no-box threat model, making it hard to alleviate the approximation error.

To address the challenge, we propose transforming the parameter space’s approximation error as
the feature space’s perturbation. Specifically, we seldom know which perturbations can point (from
the surrogate model) to the target model, making it challenging to alleviate the approximation error
in the weight space. In contrast, we have the prior that samples with different labels should have
distinguishable representations. Thus, we can leverage such prior knowledge to select preferred
perturbations in the feature space, i.e., we prefer perturbations that can make representations of
samples with different labels indistinguishable. Similarly, it is also straightforward to define the “bad”
perturbations, leading to the design of the min-max optimization to identify the “worst” model. Thus,
connecting the parameter space and feature space makes it possible to mitigate the adverse impact
caused by approximation error. To bridge the connection, we introduce the following key identity,
which is also used in [43]:
φ(x;

{
w1 + w1A

}
∪
{
w\w1}) = g((w1+w1A)x;w\w1) = g(w1(x+Ax);w\w1) = φ(x+Ax;w), (4)

where w1 stands for the first layer parameters of model φ, A is a transformation matrix used for
perturbing w1,

{
w1 + w1A

}
∪
{
w\w1

}
means that the first layer’s parameters are perturbed, the

other layers’ parameters keep unchanged, and g is the function parameterized with w\w1 used
for processing the first layer’s outputs. According to Eq. 4, we can transform a perturbation in
the parameter space as the perturbation in the data space, i.e., φ(x;

{
w1 + w1A

}
∪
{
w\w1

}
) =

φ(x + Ax;w). Similarly, we can apply the transformation operation to the hidden layers, see
Appendix A for more details.

Built upon the connection in Eq. 4, we can transform the first layer parameters’ discrepancy between
the target model and the surrogate model. Taking the first layer as an example, let wt be the parameters
of the target model and w1

t be its first layer parameters, where the other parameters are the same as
the surrogate model. Assume 2 that there exists a transformation matrix A applied to the first layer
parameters of the surrogate model such that w1

t = w1 + w1A, we have:

φ(x;w1
t ∪

{
wt\w1

t

}
) = φ(x;

{
w1 + w1A

}
∪
{
wt\w1

t

}
) = φ(x+Ax;

{
w1}∪{

wt\w1
t

}
) = φ(x+Ax;w).

(5)
The identity in Eq. 5 shows that we can find a perturbation in the data space to alleviate the difference
in the first layer parameters between these two models. Built upon the transformation, we can
transform the worst approximation error to the worst perturbation in the data space. Therefore, we can
employ a min-max strategy to mitigate the adverse impact of approximation error through generating
adversarial examples under the worst perturbation. Thus, lightweight black-box attacks with ETF
generate adversarial examples as follows:

xadv = arg min
∥x′−x∥p≤ϵ

max
∥∆s∥p≤τ, ∥∆g∥p≤τ

d(φ(xg +∆g;w), φ(x
′ +∆s;w)), (6)

where ∥·∥p is the ℓp-norm, ϵ and τ control the strength of perturbations, ∆g and ∆s are the data space
perturbations for mitigating the approximation error in parameter space, and x′ denotes the perturbed
version of source image. In this way, we reduce the error in parameter space to approximate the target
model. We solve the inner maximization problem by generating perturbations in the feature space,
given a perturbed adversarial example. This step aims to mitigate the approximation error. The outer
minimization problem is solved by finding adversarial perturbations in the input space, the same as
the adversarial example generation. After iterative generation of perturbations, adversarial examples
are generated by attacking a model with a reduced approximation error.

5 Experiments

In this section, we conduct extensive experiments to verify the power of lightweight black-box attacks
augmenting with ETF.

2Discussion about the assumption can be found in Appendix E.
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Table 1: Performance of the different lightweight black-box and black-box adversarial attacks

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99
Autoattack[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deep-PGD 49.01±0.23 52.26±0.25 60.71±0.74 57.92±0.37 27.94±0.18 60.18±0.64 44.20±0.63 50.31±0.52
Deep-MI 38.92±0.43 42.37±0.37 49.53±0.49 49.06±0.89 19.44±0.75 49.11±0.82 33.46±0.80 40.69±0.96
Deep-DI 43.34±0.40 43.13±0.52 53.78±0.38 55.41±0.53 23.53±0.52 51.77±0.48 38.14±0.74 44.15±0.60
Deep-TI 49.46±0.52 49.64±0.27 58.89±0.71 58.75±0.30 26.19±0.16 56.31±0.58 44.02±0.46 49.03±0.51
Shallow-PGD 22.93±0.33 31.07±0.58 34.71±0.67 36.20±0.87 13.08±0.36 32.16±0.66 16.65±0.54 26.69±0.49
Shallow-MI 22.62±0.25 30.83±0.48 34.05±0.27 35.74±0.76 12.31±0.41 29.98±0.65 17.72±0.31 26.17±0.56
Shallow-DI 22.14±0.39 29.78±0.17 35.51±0.33 35.79±0.61 8.99±0.42 30.61±0.88 16.88±0.47 25.67±0.55
Shallow-TI 21.82±0.45 28.54±0.34 34.78±0.15 34.71±0.39 7.96±0.48 30.14±0.85 15.77±0.51 24.81±0.37
ETF-PGD 14.11±0.24 20.22±0.29 24.20±0.34 24.74±0.37 6.96±0.44 20.73±0.28 10.66±0.31 17.37±0.35
ETF-MI 15.32±0.52 19.97±0.28 26.25±0.14 28.10±0.65 7.02±0.43 22.21±0.66 12.23±0.32 18.72±0.45
ETF-DI 14.77±0.35 20.63±0.32 23.71±0.83 25.70±0.51 7.23±0.37 20.22±0.64 11.53±0.50 17.68±0.47
ETF-TI 15.45±0.37 18.03±0.34 22.63±0.45 24.20±0.68 6.94±0.41 21.53±0.25 12.88±0.34 17.38±0.71

Deep*-PGD 12.43±0.51 28.15±0.43 16.54±0.49 12.61±0.22 7.09±0.32 13.33±0.54 9.64±0.28 14.25±0.37
Deep*-MI 11.77±0.75 25.14±0.56 18.10±0.64 13.72±0.34 4.26±0.35 14.61±0.37 8.30±0.37 13.70±0.68
Deep*-DI 7.61±0.41 18.17±0.45 8.23±0.33 9.90±0.57 6.66±0.34 9.72±0.42 7.91±0.46 9.74±0.55
Deep*-TI 9.55±0.48 23.48±0.86 13.51±0.46 10.63±0.64 6.46±0.26 10.92±0.61 9.55±0.35 12.01±0.43

Deep* refers to the attacks mounted in the model trained on the large-scale training data.

5.1 Experimental Setup

Models Architectures. All surrogate models are based on the ResNet-18 [21]. In the ordinary
settings of the black-box attack, the general surrogate models are trained through the whole training
set of ImageNet [47]. On the contrary, the lightweight surrogate models adopt only 1, 000 images
randomly sampled from the validation set of ImageNet, considering that images in the training
set are probably inaccessible in practice [34]. Results evaluated on the CIFAR10 dataset can be
found in Appendix D. Please refer to Table 5 in the Appendix B for the detailed information on the
lightweight surrogate model and the general surrogate model. Regarding the target models, various
model architectures are selected for full comparison, including, VGG-19 [51], Inception v3 [53],
ResNet-152 [21], DenseNet [23], SENet [22], wide ResNet (WRN) [59] and MobileNet v2 [49]. All
these target models are well-trained on ImageNet.

Implement Details. The lightweight surrogate models are randomly initialized. The batch size
is 128, the epoch is 500, and the initial learning rate is 0.4, linearly decreasing to 0.008. To better
approximate the low-level feature of shallow layers, we refer to the self-supervision work [5] and
apply various random augmentations to the data in each epoch for training. To mount attacks, the
classic methods, e.g., PGD [40], MI [11], DI [56], and TI [12], are applied to all the surrogate models.
Unless otherwise specified, our attack is mounted on the first layer of ResNet-18 for lightweight
surrogate models. Following previous works on intermediate-level attacks, the metric d in Eq. 3 of
Shallow- in Table 1 is instantiated as the ℓ2-norm. Meanwhile, to maximize the potential of ETFs,
we apply contrastive loss to ETF-(·) in Table 1. The Top-1 prediction accuracy is adopted as the
evaluation metric, i.e., lower the classification accuracy means better attack success rate. All the
experiments are run for 5 individual trials with different random seeds. In our experiments, target
models are evaluated using ℓ∞-norm adversarial examples with maximum distortion ϵ = 0.1, results
evaluated under mores settings, e.g., more strict constraints ϵ = 0.05, ℓ2-norm adversarial examples,
and more test images 5,000 images, can be found in Appendix B.4.

5.2 Main Results

Results on normally trained models. The results of classification accuracy are shown in Table 1,
which exhibits the evaluations for both lightweight and general surrogate models. The last four rows
show the ordinary results where the general surrogate models are trained through all data in the
training set. The black-box attacks are mounted based on the whole model, termed ”Deep/Deep∗”.
As the size of the training data is reduced to 1, 000, this conventional method obviously loses its
aggressiveness. Specifically, the averaged accuracies of 3-6 rows are among 40-50%, revealing
limited attacking capability compared to 66.99% of the clean accuracy. It demonstrates the necessity
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Table 2: The accuracy (%) of 7 normally trained target models evaluated on 1000 adversarial
examples generated by no-box attacks and lightweight black-box attacks with different intermediate-
level attacks. The best results are in bold. (The lower, the better)

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

No-box[34] 18.74 33.68 34.72 26.06 42.36 33.16 16.34 29.29

ILA[24] 20.13 28.01 35.72 35.14 9.16 29.97 14.31 24.63
AA[28] 22.76 31.21 36.67 37.94 7.72 33.16 18.17 26.81
ETF 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37

of large amount of data for classic black-box attacks. In rows 7-10, shallow layers without ETF are
used to generate adversarial examples. The averaged accuracies of around 25% illustrates the less
dependence of shallow networks on the amount of data. In rows 11-14, attacks on shallow layers are
further enhanced by ETF, decreasing the averaged accuracies to about 17%. The narrow gap between
the proposed ETF and the general surrogate model indicates the potential capability of the black-box
attack in the no-box settings.

Results on Adversarially Trained Models. Here, we consider the models that are trained through
adversarial training [40], which is more persuasive to evaluate the effectiveness of attacking methods.
Following [40], the target models are trained on the whole training set of ImageNet. During adversarial
training, the adversarial examples are generated under ϵ = 0, 4/255, 8/255, where ϵ means the ℓ∞-
norm constraint. Table 3 exhibits the attacking results mounted by ETF, black-box attacks (general
surrogate models with all training data avaliable), and no-box attacks. For simplicity, only the results
of PGD attacks are reported. As analysed above, the black-box attacks shows the best attacking
results, while ETF only has a narrow gap with it. However, when ϵ = 4/255 or 8/255, ETF exceeds
the black-box attacks (29.13%/26.14% vs. 48.11%/38.24%). It is interesting that black-box attacks
are even worse than lightweight attacks. We believe that exploiting the phenomenon can bring
something new, but we leave it as our future work due to the limited space.

5.3 Further Analysis and Ablation Study

Table 3: The performance of different attacks on the adversarial
trained ResNet-50 [13]. Therein, ϵ refers to the constraint ℓ∞ in
adversarial examples for adversarial training. The accuracy (%)
is evaluated on 1000 adversarial examples. ϵ = 0.1 (the lower
the better). White-box refers to Auto-Attack [9].

Adv model Clean ETF Black-box No-box White-box
ours [40] [34] [9]

ϵ = 0/255 69.43 16.97 8.20 24.53 0.00
ϵ = 4/255 55.62 29.13 48.11 39.62 0.00
ϵ = 8/255 41.68 26.14 38.24 35.87 0.48

Intermediate-Level Perturba-
tions. Since the lightweight
black-box attacks are imple-
mented mainly on intermedi-
ate features, two classic attacks
mounted on intermediate features,
i.e. ILA [24] and AA [28], are
selected for experiments. Com-
paring the ILA and AA in Ta-
ble 2 and Shallow-MI/DI/TI/PGD
in Table 1, the difference be-
tween their average accuracies
is marginal. It indicates those
intermediate-level feature pertur-
bation has limited benefit to lightweight black-box attacks. The reason is that the intermediate-level
attacks highly rely on the low-level features extracted by the lightweight model to generate adversarial
examples and it can weaken the role of high-level information when attacking. The proposed ETF
achieves better performance. On one hand, ETF does not rely on the features from high-level layers.
On the other hand, ETF introduces a min-max scheme to mitigate the adverse impact induced by the
approximation error from the shallow layers.

Comparison with No-box Attacks. No-box attack is the first work to explore how to mount attacks
in the no-box setting. Since Li et. al [34] stated that black-box attacks do not work in this setting,
surrogate models are instantiated as auto-encoders rather than models for approximating target models.
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Figure 1: (a) How the lightweight attack performance of our approach varies with the number of
images used for training the surrogate model. (b) The influence of low-level feature extraction at
different layers of ResNet-18 on lightweight black-box attack performance. (The lower, the better)

Table 4: Model accuracy (%) under lightweight black-box attacks under challenging scenarios, where
supervision information or the in-distribution data are unavailable, named Unsupervised and OOD.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

Supervised 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37
Unsupervised 15.54 19.16 26.27 23.75 7.66 22.79 11.43 18.08
OOD 6.13 21.72 25.44 21.89 5.02 24.33 7.16 15.96

Namely, they design the pretext task to train 20 auto-encoders per category to generate adversarial
examples. However, the difference between the pretext tasks and the target tasks may significantly
reduce the transferability of adversarial examples. In contrast, our method trains the lightweight
surrogate model for tasks similar to or same as the task of target models. Hence, though only one
sample per category is available, we achieve better performance than no-box attacks, as shown in
Table 2.

Number of Training Samples. One key difference between the lightweight black-box attack and
existing black-box attacks mainly lies in the number of samples n used for training surrogate models.
Therefore, we further explore how lightweight attack performance varies with different number of
samples, i.e., n. We conduct experiments on randomly selected n images from the validation set
of ImageNet. The experimental results are shown in Figure 1. The average accuracy decreases as
more samples are available, thus achieving better attacking results. More data makes it possible
for the lightweight black-box attack to approximate the shallow layers of the target model more
accurately. Especially the lightweight black-box attacks with 10, 000 test images can achieve the same
performance as general black-box attacks which train the surrogate model on 1, 200, 000 training
images. Also, our method can still mount attacks even when only 2 or 10 images are available.

Surrogate Model. As analyzed above, we utilize the first few layers of the lightweight surrogate
model to approximate the shallow layers of the target model to mount attacks. Hence, it would be
interesting to study how the layers selection for lightweight models impacts the attack performance.
We adopt different layers of ResNet-18 to generate adversarial examples utilizing ETF and attack the
different target models. The results are summarized in Fig. 1. It can be seen that low-level information
in the first block of the model is sufficient for achieving promising attack performance. With more
block information on the model, the performance of the attack does not improve. In particular, the
transferability of adversarial examples significantly decreases when we attack the fully-connected
layer, verifying our analysis that the high-level layer of the lightweight model cannot approximate
the target model well. More results for architecture selection can be found in Appendix B.4.

Adversarial Example Visualization. To verify that adversarial examples are truly imperceptible,
we provide visualization in Figure 2, where Deep*-PGD attack (using training images), Deep-PGD
attack (using test images), and lightweight black-box attack are considered.
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(a) ETF (b) Deep (c) Deep*

Figure 2: Adversarial examples crafted by: a) ETF, b) Deep, and c) Deep* attacks.

6 Discussion
Though the no-box threat model provides a weak assumption, many realistic scenarios may be more
complex. For example, adversaries have access to only data without supervision information due to
security [35] or privacy [46] issues. In more extreme cases, e.g., autonomous vehicle [54], adversaries
even have no access to the test samples from the distribution over which the model is trained. Instead,
the adversaries have access to samples from a similar (but not exact) distribution (because the
adversary knows the deployment environment). Hence, we consider two more challenging scenarios
in which we provide solutions to mount lightweight black-box attacks.

Insufficient supervision information. We design an experiment for mounting attacks using 1, 000
unlabeled samples randomly selected from the ImageNet validation set to explore the power of
ETF under this challenging setting with unlabeled data. Thanks to the framework of lightweight
attack, it is feasible to train the unsupervised model on unlabeled data for attacks using Eq. 2.
Specifically, we adopt contrastive learning [5] to train a lightweight surrogate model on the small-
scale unlabeled dataset and generate adversarial examples by attacking the trained lightweight
surrogate model. The performance is shown in Table 4, where ETF still achieves similar performance
without supervision information as that of the results under supervision. Intuitively, we can also
employ other self-supervised learning method, e.g., rotation prediction, to train shallow layers, see
details of experimental settings and results in Appendix G.

Consideration of Out-of-distribution. We further study the possibility for mounting attacks under a
more strict scenario, where only OOD (out-of-distribution, OOD) data are available. Specifically, we
utilize the model pre-trained on OOD samples to mount lightweight black-box attacks. The rationality
lies in that only low-level information is required to mount lightweight black-box attacks and the
acquisition of low-level information. We load pre-trained ResNet-50 on STL-10 [38] dataset as the
surrogate model. Without further fine-tuning, we experiment with two test in-distribution samples,
and the results are recorded in Table 4, named OOD. As we can see, the lightweight black-box attack
with models trained on OOD data can achieve a surprising attack success rate, showing that black-box
attacks enhanced with ETF can pose practical threats to deployed models.

7 Conclusion
In this paper, we propose the conception of the lightweight black-box attack to reveal the potential
risk of black-box attacks under the no-box threat model. To mount effective lightweight attacks, we
find it crucial to leverage DNNs‘ shallow layers because they can learn similar features regardless of
the number of samples. This is based on the empirical observations that the model trained with limited
samples can approximate the shallow layers of the target models within acceptable errors, which can
be used for crafting adversarial examples. Therefore, to further enhance the performance, we propose
Error TransFormer (EFT) to decrease the approximation error by transforming the approximation
error in the parameter space into the feature space. The experiments show that the proposed method
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achieves a surprising attack success rate under the no-box threat model using only one image per
category, i.e., only 3% lower than black-box attacks with complete training data of the target model.
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