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Abstract

Diagnosing and mitigating changes in model fairness under distribution shift is an
important component of the safe deployment of machine learning in healthcare
settings. Importantly, the success of any mitigation strategy strongly depends on
the structure of the shift. Despite this, there has been little discussion of how
to empirically assess the structure of a distribution shift that one is encountering
in practice. In this work, we adopt a causal framing to motivate conditional
independence tests as a key tool for characterizing distribution shifts. Using our
approach in two medical applications, we show that this knowledge can help
diagnose failures of fairness transfer, including cases where real-world shifts are
more complex than is often assumed in the literature. Based on these results, we
discuss potential remedies at each step of the machine learning pipeline.

1 Introduction

As progress is made to integrate machine learning (ML) systems in real-world applications, one
concern is how the ML model’s behaviour might be affected by changes in the data distribution.
While extensive work has investigated the effect of distribution shift on ML model performance
[see 40, 65, 17, 62, for reviews], recent work has also highlighted that fairness properties that are
satisfied on the data used to develop a model might not always hold if the data distribution changes
[28, 26]. In high-risk domains like healthcare, this can translate to ‘if a model satisfies fairness criteria
when trained in “Hospital A”, it may not satisfy them when tested in “Hospital B”’. Fueled by this
observation, a new field of research is emerging to understand the relationship between ML fairness
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and robustness to distribution shift [e.g. 50, 1, 60, 13, 72, 53] and to provide mitigation techniques
for obtaining robustly fair ML models [e.g. 52, 55, 54, 73, 12].

Importantly, the success of robustly fair machine learning depends strongly on the nature of the
distribution shifts that the system will encounter in practice. This point has been made elegantly
in existing work as a motivation to use causal structure to provide fairness guarantees for specified
distribution shifts [52, 55]. However, to the best of our knowledge, few methods can diagnose the
nature of the shift and guide towards an appropriate mitigation strategy [54].

In this work, we design statistical tests that can, based on a simplified causal graph of an application
and a small target dataset, assess the structure of the distribution shift encountered by the system
and identify aspects of the data that hinder the transfer of fairness properties. Using applications in
dermatology and Electronic Health Records (EHR), we show that this analysis is crucial for selecting
an appropriate mitigation strategy. Further, our work also reveals that clinically plausible shifts are
often more complex than can be handled by current mitigation techniques, highlighting the need for
additional research into a broader set of remedies across the entire ML pipeline.

2 Background

Notation We consider problems where we are given variables X , A, Y , where X is a set of features,
A is one or more sensitive attributes, and Y is an outcome or label to be predicted. Our goal is to
build a classification or regression model f(X ′), where, depending on the context, X ′ := (X,A)
or X ′ := X . We are concerned with the fairness properties of f , both on the training distribution
and in one or more deployed environments. Depending on the setting, we focus on several statistical
definitions of fairness [4]: gaps in subgroup accuracy, demographic parity, and equalized odds. See
the Supplement for their formulation.

Formally, we represent distribution shifts using the so-called Joint Causal Inference (JCI) framework
of Mooij et al. [35]. We represent causal relationships between elements of A, X , Y in a causal
Bayesian network (CBN, see the Supplement for an introduction). In a CBN, a node U i with an
arrow into U j is called a direct cause of U j . We call all direct causes of a node U i its causal parents,
and denote them pa(U i). To represent shifts, we augment the CBN with an environment variable
S, where the event S = 0 indicates data from the source environment and S = 1 denotes data
from the target environment, so that source data are distributed according to P (A,X, Y | S = 0)
and the target data to P (A,X, Y | S = 1). This is called the joint causal graph. In the joint
causal graph, arrows from S denote changes to statistical relationships that are induced by the shift.
Specifically, an arrow from S to some variable U indicates that the conditional distribution of that
variable given its causal parents could change between training and deployment environments, while
the absence of such an arrow would indicate that the conditional distribution remains the same, i.e.
P (U | pa(U), S = 0) = P (U | pa(U), S = 1).

Components of Distribution Shifts In JCI formalism, the components of a distribution shift are
represented by direct arrows from the shift variable S to variables A, Y , and X . Here, we briefly
summarize how these arrows can be interpreted. S → A arrows represent demographic shifts,
implying P (A | S = s) changes for different values of s. An example of such a shift is a difference
in the age distribution of patients in S = 0 versus S = 1. S → X arrows represent covariate shifts3,
where the conditional distribution of input features P (X | pa(X), S = s) changes for different
values of s. For example such a shift could result form using different cameras or views to acquire an
image in S = 0 and S = 1 (c.f., acquisition shift in Castro and Glocker [5]). Finally, S → Y arrows
represent label shifts4, where the conditional distribution of labels P (Y | pa(Y ), S = s) changes
for different values of s. A label shift can occur through different disease prevalences, or different
strategies for obtaining labels, across S = 0 and S = 1 (c.f., prevalence shift and annotation shift,
respectively, in Castro and Glocker [5]).

In real-world applications, distribution shifts often include multiple components, where there are
multiple arrows from S to {A,X, Y }. We call such shifts compound. Compound shifts often occur
when there is an unobserved variable that affects multiple variables whose distribution changes

3In the domain adaptation literature, “covariate shift” is often used to mean that only P (X) changes. We call
this “exclusive covariate shift”.

4As above, we refer to the case where only P (Y ) changes as “exclusive label shift”.
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Algorithm 1 (Conditional) independence testing assessing the nature of shift S on a single variable
U ∈ G. U represents the feature values or its summary if high-dimensional. � is the Hadamard
product.

Require: source dataset D, target dataset D′, a joint causal graph G
Split D into Dw, Dt; Split D′ into D′w, D′t
for 1:nbootstrap do

Sample V from Dn0×l
t and V ′ from D′n1×l

t
Set ws = 1ns for s ∈ {0, 1}.

if pa(U) not ∅ then . Compute balancing weights
Sample dataset Q = {pa(U)|S = 0} from Dw and Q′ = {pa(U)|S = 1} from D′w
Build predictor P (S|pa(U)) classifying Q from Q′
ws(pa(U)) ∝ P (pa(U) | S = s)−1 ∈ Rns for s ∈ {0, 1}.

end if
Compute t-statistic between [w0 � V(U);−w1 � V ′(U)] and 0

end for
Compute p-value from t-test of bootstrapped t-statistics against 0
return p-value . The p-value that U ⊥⊥ S | pa(U)

between source and target. An example is that of a new device on the market [19]. Such a device
could create qualitatively different images X , but it could also change the observed patient population
by being made more available to certain subsets of demographic groups that tend to be more or less
healthy. In this case, the shift induced by introducing the device simultaneously affects A,X and Y .

Shift Structure and Fairness Transfer The transfer of fairness depends on the causal structure of
the application and the structure of the shift [52, 53]. In particular, implications for fairness transfer
can be directly read off of conditional independences with respect to the shift S in the joint causal
graph. For example, for classifiers that take a set of variables {V} as input, the following metrics are
known to be invariant across the shift under the following conditional independence conditions:

• Classification error (P (Y 6= f(V) | V, S)) is invariant if Y ⊥⊥ S | {V} [32, 52].
• Demographic parity gap (maxa∈AE[f(V) | S,A = a]−mina∈AE[f(V) | S,A = a]) is

invariant if {V} ⊥⊥ S |A [52].
• Equality of odds gap (maxa,y∈AY [f(V) | S,A = a, Y = y]−mina,y∈AY [f(V) | S,A =
a, Y = y]) is invariant if {V} ⊥⊥ S |Y,A [52].

In JCI formalism, the above conditions imply that fairness transfer requires certain arrows from S to
{A,X, Y } to be missing. The nature of the shift also strongly influences which mitigation strategies
are applicable. We discuss implications for mitigation strategies in more detail in Sec.5.

3 Empirical tests for assessing shift structure

Given the central role of distribution shift structure in fairness transfer, our main methodological
proposal is to investigate the structure of shifts empirically when fairness fails to transfer. In this
section, we outline a general strategy for testing which components of a shift are present, given data
from source and target distributions, and a BCN for the application.

Approach. For each variable U in the graph (i.e. each A, X and Y ), we assess whether there is a
direct effect of the environment S on U . We test the null hypothesis H0: P (U | pa(U), S = 0) =
P (U | pa(U), S = 1). Rejecting this hypothesis implies an arrow S → U in the joint causal graph.
If the marginal distribution of U differs across source and target distributions, this comparison can be
challenging. To isolate the direct effect of S, we compute weights that balance the causal parents
pa(U) across environments [44, 23]. We then test the hypothesis that the reweighted distributions
of U match across the environments S. For simplicity, we test whether the reweighted means are
equal, and in cases where the dimensionality of U is high, we conduct this test on functions of U that
reduce the dimensionality, following strategies in Rabanser et al. [43]. 5 This procedure is described
in Algorithm 1 and detailed in the Supplement.

5A rejection of these simplified hypotheses implies that the original null hypothesis should also be rejected.
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(a) Dermatology

(b) EHR

Figure 1: Model performance across subgroups (age and sex) on the source (circles with plain line) and target
(diamonds with dashed line). Each marker represents one replicate of the model. (a) Top-3 accuracy (in %) in
the dermatology application. (b) Accuracy in EHR.

Validation. We conduct three validation experiments for our testing procedure using data from our
dermatology application in the Supplement. We first assess Type I error in an experiment where
we test random splits of the same data against each other. Our test displays a false positive rate
similar to our threshold of 5% for hypothesis testing. We however note that the variance of this result
increases with smaller numbers of samples. We then confirm non-trivial power in an experiment
where we introduce a shift by subsampling younger patients with a particular skin condition in the
source dataset (a shift on A and Y ). Our testing approach correctly identifies the dimensions of A
and Y that were affected by S due to the engineered shift. We replicate this test for a shift in Y only,
with the same result.

4 Distribution shifts in real-world healthcare applications

Here, we present two case studies from the healthcare domain in dermatology and in clinical risk
prediction using Electronic Health Records in which fairness does not transfer (Fig. 1). As per [27],
we consider the setting of ‘dataset shift’, whereby a model is developed on the source data and tested
on the target data6, which is a common setting in medical applications [66, 71, 27].

4.1 Predicting skin conditions in dermatology

In this task, we predict common skin conditions (26 conditions plus an additional ‘other’ category to
capture the long tail), based on one or multiple images of the pathology of interest and additional
metadata [31]. The data used as source is a subset of the data described in Liu et al. [31]. Briefly, it
consists of de-identified retrospective adult cases from a teledermatology service serving 17 sites
from 2 states in the United States. Each case contained 1-6 clinical photographs of the affected
skin areas as well as patient demographic information and medical history (see Table S1 of [31]).
We split the source data such that it comprises 12,024 cases for training, 1,925 for validation and
hyper-parameter tuning and 1,924 for testing.

We consider how the fairness properties of a model trained in this setting transfer to a target dataset,
unobserved at model development time, consisting of 1,843 labelled teledermatology cases from
Colombia. In the Supplement, we consider transfer to a second target from skin cancer clinics in
Australia, as well as the properties of a model jointly trained on the source and the second target, and
deployed on the first target data. The model we consider is a ResNet architecture, as in [31, 46].

6We discuss fine-tuning and joint training in Sec.5, but this is not the setup of our work
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(a) S
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Figure 2: A compound shift in dermatology. (a) Simplified causal structure of the application (see text for variable
description). Colored arrows represent statistical dependence as identified by Algorithm 1. (b) Distribution in
the source and in the target dataset of the sensitive attributes, computed in terms of percentage of pre-defined
subgroups. (c) Prevalence of each condition for female patients over 65 years of age. (d) Distribution of the
number of images in cases labelled as ‘SK/ISK’ in older females. Each case includes min. 1, max. 6 images
whose embeddings are then averaged. The distributions in the source data are presented on the left, and their
corresponding distributions in the target data on their immediate right with a hashed pattern.

We assess model performance and fairness across 10 replicates of the model on the source and on
the target (Fig. 1). On the source data, the model performs similarly across all subgroups and could
reasonably be assessed as ‘fair’. However, the maximum gap between age groups increases starkly
on the target (from 1.05% to 12.86%).

To understand the failure of fairness transfer in this context, we investigate the structure of the shift
by referring to Algorithm 1. We begin by drawing a simplified causal graph G of the dermatology
task at hand (Fig.2(a)). We consider this an anti-causal learning task [49], in which the skin condition
label Y is a cause of the input image X , and consider demographic information A to be a causal
parent of both X and Y . We omit variables that are unobserved in either the source or target data. 7

We now test whether the shift S has direct effects on A, Y , or X . Overall, we find that the shift is
compound, and affects all three aspects of the data distribution. We begin with A, which comprises
age and sex.8 Because A has no causal parents in our graph (besides, potentially, S) we directly assess
differences in age and sex across environments using classical tests. Age has a different distribution
across the two datasets (see Fig. 2(b)), with the population in the source data being typically younger
(median: 40 years old, 25% quantile: 27, 75% quantile: 54) than in the target data (median: 44 years
old, 25% quantile: 30, 75% quantile: 59). Sex distributions are well matched across the source and
target. These results suggest a direct effect of S on A, and we add this relationship to the causal
graph (Fig. 2(a), in purple).

We then assess whether S directly affects the labels Y . In our graph, A is a causal parent of Y , so
following our testing strategy in Algorithm 1, we test whether P (Y | A,S = 0) = P (Y | A,S = 1).
(Recall that conditioning on A isolates the direct effect of S on Y .) Using 27 univariate tests (one per
condition, [43]), we obtain significant differences between P (Y | A,S = 0) and P (Y | A,S = 1)
for 3 conditions (p < 0.05, Bonferroni corrected). Fig.2(c) illustrates the label shift in a specific age
and sex subgroup (here females aged 65+, 409 cases in the source, 128 in the target data). We see

7The metadata available in the source data includes co-morbidities/medical history and symptoms, but these
are absent in the target datasets.

8Sex is mainly recorded by clinicians in the source. Sex is self-reported in the target.
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that the source data includes more cases of ‘eczema’ and ‘psoriasis’ while conditions like ‘actinic
keratosis’ and ‘seborrheic dermatitis’ are more represented in the target. These results suggest that
the environment also directly affects the labels (orange link in Fig.2(a)).

Finally, we consider whether the features of the images themselves (designated by X) are directly
affected by S. Conditioning on causal parents of X , we test whether P (X | Y,A, S = 0) = P (X |
Y,A, S = 1). We summarize X by training a model f(X)→ Y on the source, a strategy proposed in
Rabanser et al. [43]. Our weighted tests suggest a significant difference between the two distributions
(p < 0.05 corrected on 1 dimension). Fig.2(d) illustrates this difference by computing the number of
images per case in the group of older females considered above with cases labelled as ‘SK/ISK’ (
source median: 3, n = 61, target median: 5, n = 18). This result suggests the existence of the direct
path S → X and we add this relationship to the graph (green link in Fig.2(a)).

Based on these results, we observe that all aspects of the data are affected by the environment. Thus,
none of the conditional independence conditions for fairness transfer hold in this setting. However,
we also see that some conditions might display invariance once controlled for demographics, which
suggests possible mitigations that we explore in Section 5. The Supplement includes experimental
details and further results on the second target and the joint training.

4.2 Clinical risk prediction from Electronic Health Records

In this application, we predict the clinical outcomes of patients based on EHRs. EHRs record the
time series of interactions between a patient and the clinical system (e.g. medication, labs, vitals, . . . ).
Distribution shift is a major concern for systems that consume EHR data, which can be heterogeneous
across centers [67, 53], and even within a single system [37]. As an example, over half of hospitals in
the US with intensive care units (ICUs) only have a single unit where all critically ill patients (medical,
surgical, cardiac, etc.) are admitted 9. Risk scores, such as the Acute Physiology and Chronic Health
Evaluation II (APACHE II) score are used to evaluate all critically ill patients, but do not perform
equally across clinical subgroups, e.g. underperforming on patients with cardiac disease [42]. It
would be desirable to avoid such issues with risk scores constructed through machine learning. We
use the open access, de-identified Medical Information Mart for Intensive Care III (MIMIC-III)
dataset [24], which consists of data from admissions to ICUs at the Beth Israel Deaconess Medical
Center between 2001 and 2012. This clinical system has the benefit of having separate specialized
ICUs and allows to assess the generalizability of risk scores estimated in one clinical population to
another. Based on clinical input, we consider the Medical ICU (MICU), Surgical ICU (SICU) and
Trauma Surgical ICU (TSICU) to be generalist ICUs (source data); whereas the Cardiac Surgery
Recovery Unit (CSRU) and Coronary Care Unit (CCU) are specialized ICUs (target data). This split
leads to 17,641 patients included in the source dataset and 10,442 patients in the target dataset, after
selecting adult patients with a length of stay of minimum one day and with a recorded care unit. Our
goal is to obtain a robustly fair model that predicts prolonged ICU stay (i.e. length of stay > 3 days,
as in [63, 41]) using data from the first 24 hours of first ICU admission and a recurrent architecture
[57, 58, 47]. The model is trained on 80% of the source data, tuned using a separate split of 10% and
tested on the remaining 10%. See the Supplement for further details. Noteworthy, the model does not
have access to the ‘reason for visit’.

Figure 1(b) shows that the fairness properties of this model, as measured by gaps in subgroup
performance, demographic parity (DP) and equalized odds (EO), do not transfer across ICU types.
The model displays unfairness w.r.t. age in both datasets (maximum gap ∼ 7%, similar DP and EO
scores). However, the pattern of unfairness is different in the two datasets, with e.g. the 45-64 years
old subgroup being under-served in the source but over-served in the target. The performance gap
between sex groups increases from 1% in the source (DP: 0.002±0.002) to 2.7% (DP: 0.016±0.003)
on the target.

To understand this failure of fairness transfer, we examine the structure of the shift. First, we draw
a causal graph for the variables in this problem, building on the work in Singh et al. [52]. Here,
we incorporate demographics A as age and self-reported sex, comorbidities M as previous medical
history defined by ICD-9 codes [7, 14, 22, 29], observed features X as all labs and vitals, and Y as
our prolonged length of stay label. As a more comprehensive feature set leads to better predictive

9Critical Care Statistics. https://www.sccm.org/Communications/Critical-Care-Statistics
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Figure 3: A compound shift in EHR. (a) Causal graph for this application (see text for variable description).
Colored arrows represent statistical dependence as identified by Algorithm 1. (b) Distribution of the sensitive
attributes, computed in terms of percentage of pre-defined subgroups. (c) Prevalence of comorbidities for
male patients over 65 years of age. (d) Prevalence of the label for male patients over 65 with a solid tumor
comorbidity and under vasopressors/inotropes. The distributions in the source are represented on the left, and
their corresponding distributions in the target on their immediate right with a hashed pattern.

performance [47], we use all 59,351 features at our disposal and add ‘treatments’ T (e.g. medications)
to the graph (Fig. 3(a)). In our graph, S represents the ICU unit type that a patient is admitted to.

We now test whether the shift S has direct effects on the variables in this problem using our proposed
approach. Beginning with A, which has no causal parents, we test whether P (A | S = 0) = P (A |
S = 1). We estimate the distribution of age and sex in each dataset (Fig. 3(b)). We observe that the
population in the source is typically younger than the population in the target (t-test: p < 0.0001). In
addition, the proportion of males in the source and target differ (source: 50%, target: 65%). Therefore,
S → A.

To assess the shift’s effect on comorbidities M , we refer to Elixhauser and Vanwalraven scores
[16, 59] computed on the source and target data [25]10. Figure 3(c) displays the distribution of the
30 comorbidities for older males (n = 3, 951 in source and n = 3, 588 in target). As expected,
even after adjusting for the causal parent A, patients in the target data have a higher prevalence of
comorbidities related to the peripheral vascular system than in the source data and M 6⊥⊥ S |A for 5
comorbidities (weighted tests: p < 0.05, Bonferroni corrected).

We repeat the analysis to assess the direct effect of S on the treatments (P (T |A,M,S =
0) = P (T |A,M,S = 1) : p < 0.05), on the labs and vitals (P (X |A,M, T, S = 0) =
P (X |A,M, T, S = 1) : p > 0.05) and on the label (P (Y |A,M, T, S = 0) = P (Y |A,M, T, S =
1) : p > 0.05) in the Supplement. Figure 3(d) displays the prevalence of prolonged length of stay for
older males with a solid tumor comorbidity and receiving vasopressors/inotropes (n = 55 in source
and n = 16 in target).

Our results suggest that the shift is compound, i.e. the ICU unit a patient is admitted to changes
the relationships between multiple variables in our causal graph. We note that this conclusion is
not surprising clinically, given that the environment S is correlated with the reason for their ICU
admission, and that this reason for admission (unobserved) is a main driver for all variables. As in
the dermatology case, the compound shift leads to multiple paths for S and A to affect the covariates
M and X and the label Y , explaining the failure of fairness transfer.

10Code publicly available at https://doi.org/10.5281/zenodo.821872
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Figure 4: EHR model accuracy across subgroups after post-processing of the predictions for equalized odds
based on age.

5 Mitigation and related work

A variety of fairness, robustness and robustly fair mitigation strategies have been proposed. We
contextualize a number of methods in terms of anti-causal and causal learning tasks [49] in the
Supplement, and highlight how understanding the nature of the distribution shift can guide mitigation.

Fairness mitigation. Pre-, in- and post-processing techniques for mitigating unfairness have been
proposed [see 4, 38, for overviews]. Fairness metrics and mitigation techniques currently used
in real-world applications are typically evaluated on a single learning task or data distribution [e.g.
74, 2, 64, 41, 9]. More similar to our settings, the work by Creager et al. [12] addresses fairness in
dynamical systems, although only for low-dimensionality variables. Based on our causal framing,
applying fairness mitigations in the source domain could potentially aid in fairness transfer by cutting
some edges in the underlying CBN [60]. However, fairness mitigation on the source only leads to
provable fairness transfer in specific settings, i.e. mostly when the shift is demographic (Supplement).

Based on this analysis, performing fairness mitigation in the presence of a compound shift would fail
to provide a fair result on the target. Considering the applications above, a reasonable option would
be to perform fairness mitigation for the EHR task based on age. We perform post-processing of the
predictions to enforce either demographic parity or equalized odds across age subgroup using the
method in Alabdulmohsin and Lučić [3]. This results in a decrease in demographic parity to value
10−5 in the source, but to (slightly) increase to value 0.078 ± 0.025 in the target data. Similarly,
equalized odds decrease to value 10−5 and the gap in model accuracy between groups is reduced from
7% to 0.8% (Fig. 4) in the source, but increases from 0.05± 0.008 to 0.16± 0.04 on the target data,
and the gap between age groups increases to 11.4%. We therefore observe that mitigating for either
demographic parity or equalized odds on the source leads to no improvement, or even worsening of
the fairness properties on the target, as predicted by our analysis.

Robustness mitigation: Relations between robustness guarantees and individual and group fairness
have been studied in [70, 36, 68, 69] and [60] respectively. [1, 13, 72] have investigated the relation-
ship between fairness and distribution shift experimentally by studying how robustness mitigation
strategies affect fairness metrics. These works do not provide provable robustly fair models.

Robustly fair mitigation. Work explicitly investigating fairness properties under distribution shift
can mostly be divided into methods that provide a priori guarantees or bounds [e.g. 50, 52, 55] and
methods that adapt to the new distribution [e.g. 11, 39, 54, 73, 26, 15, 56].

Recent work by Singh et al. [52] suggests a straightforward mitigation with guarantees, based on
selecting features that satisfy the fairness transfer criteria outlined in Section 2. However, this
approach is limited under compound shifts with complex data. Most notably, it cannot be used
in cases where there is a label shift (S → Y ). However, even when there is no label shift, under
compound shifts the criteria for feature selection can yield a trivial predictor where no observed
variables can be used. This is the case in our EHR example under the joint causal graph in Fig. 3(a).
We discuss the applicability of [52] across different causal scenarios in the Supplement. In addition,
feature selection approaches are more suited for semantic features and, while it is technically feasible,
would not lead to insightful results in non-semantic features such as pixels. In computer vision,
masking has been used previously as an approximation to feature selection to constrain the learning
towards specific areas of the image [45, 51]. While this technique has shown some promise with
chest x-rays [61], it is impractical due to the additional requirement of a mask for all training images.
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In addition, it increases the ratio of signal of interest compared to undesirable signal, but does not
exclude such signals and comes with no guarantee.

Another line of work considers adapting transfer learning and meta-learning algorithms to consider
fairness constraints and therefore ensure generalization to new tasks also in terms of fairness [11,
39, 54, 73]. Specifically, Coston et al. [11] modify the standard approach to transfer learning under
covariate shift by adding a constraint to the weight learning objective that enforces closeness between
all pairs of protected groups. Schumann et al. [50] provide bounds on fairness transfer by adding
adversarial heads on both the in-source attribute A and the environment S. When we cast this
work into our causal framework, we notice that it would provide a robustly fair model under an
exclusive covariate shift in an anti-causal learning task. Slack et al. [54] propose meta-learning with a
regularizer that imposes demographic parity or equalized odds to improve the transfer of fairness. The
method requires a small set of labelled target data (K-shot learning) and multiple tasks, and comes
with no guarantees. Work on fine-tuning and transfer learning [39, 73] leverages task similarity to
learn fair representations that provably generalize to unseen tasks, similarly requiring a small set of
labelled target data. Importantly, these methods generate one tuned model per environment, which is
not suitable for all real-world deployments of ML. It is also unclear whether these techniques could
handle more complex tasks, e.g. predictions from sparse multivariate timeseries as in the case of
EHR.

Shift detection. Many methods exist to detect covariate shift [e.g. 33, 6] or label shift [30, 20]. They
however often rely on the assumption that other variables are not affected by the shift. For instance,
Lipton et al. [30] relies on the assumption that X ⊥⊥ S |Y . On the other hand, Slack et al. [54]
introduce a technique to identify mean shifts that could lead to unfairness. While the method is an
interesting step towards ‘fairness transfer warnings’, this strategy does not allow to guide the selection
of mitigation. Recently, Singh et al. [53] investigate differences in source and target distributions
using squared maximum mean discrepancy [21], but do not take the causal structure into account.
To differentiate direct from indirect effects of S on variables U , they perform causal inference and
visually inspect the obtained graph. This method can only be applied to low-dimensionality datasets.

6 Discussion

In this work, we applied statistical tests within a joint causal framework [35] to better understand
failures of fairness transfer across distribution shift. Our approach tests for direct effects of the
environment on every random variable in a task. We use this technique to characterize distribution
shifts that result in two real world failures of fairness transfer in the healthcare domain. We show that
this knowledge can then guide the choice of an appropriate mitigation strategy, when applicable.

Our work highlights real-world challenges that prevent the development of robustly fair models. Given
that each task leads to different complexities in terms of causal graph, expected shifts, and fairness
requirements, these findings support looking beyond purely algorithmic solutions. Considering the
whole ML pipeline, we can re-interpret the remedies discussed in Chen et al. [8] for fairness transfer:

1. Problem selection. Consider focusing on tasks with lower anticipated harms or clini-
cal/policy safeguards against ML unfairness.

2. Data collection. Consider early data collection from anticipated deployment environments
in which distribution shifts are suspected. This would allow to perform (conditional)
independence tests to guide further mitigation.

3. Outcome definition. Consider intermediate outcomes for which unfairness under distribu-
tion shift might be less consequential (e.g. image segmentation compared to diagnosis).

4. Algorithm development. Based on (2), some strategies can be used if their assumptions are
satisfied. In addition, in the present work we used a causal framework. However, techniques
that are not easily cast into this framework exist. For instance, manual feature engineering
has been used to improve the robustness of EHR models to distribution shift [37]. While this
work has not evaluated the fairness of the model in the source and target distributions, we
believe that feature engineering might be a promising avenue to enforce specific inductive
biases during learning while reducing the risks of distribution shifts. We however note that
our work does not assess the impact of model architecture or different training strategies,
which might lead to compounded bias and/or poor generalization.

9



5. Post-deployment. Further safeguards may be envisaged to safely deploy ML systems, e.g.
with a prospective observational (non-interventional) integration [19]. Transfer learning
or retraining with site-specific updates might then be considered as necessary prior to
interventional deployment. Finally, those deployments may be accompanied with robust
post-market surveillance to continuously monitor fairness.

Limitations and future work. The power of our diagnosis method depends on the number and
quality of the samples. Therefore, it should be perceived as displaying potentially problematic aspects
of the data, rather than assessing invariant features. This is a common limitation in shift detection
[30] and mitigation [52]. Furthermore, the data at hand usually represents a set of proxies for the
underlying variables. Therefore, even if a shift seems to satisfy some invariance assumptions, there
are no sharp guarantees [18]. This is especially true for demographic factors: features such as
ethnicity, age or sex only approximate sensitive attributes. We are also limited by which factors are
observed across all environments and cannot assess changes in unobserved variables (e.g. social
determinants of health).

While our work covers different types of shift, future work should investigate further sources of shift
and biases, such as sampling biases or missingness [5, 72]. In addition, extending the testing strategy
to compare multiple (discrete or continuous) versions of the environment S would be valuable.

By specifying causal graphs for each problem, we make assumptions about the relationships between
variables. These assumptions might not represent the true underlying data generation process. In
addition, the effects of A could potentially be divided into ‘fair’ and ‘unfair’ effects, as proposed
in [10, 34]. For real-world applications, further assumptions were made, e.g. considering the silver
standard label in dermatology as a good approximation for the gold standard label (hence an anti-
causal task) [5]. The value of these graphs is purely illustrative and should not be considered for
medical applications without validation.

In terms of metrics, we have focused mostly on demographic parity and equalized odds, due to
their recent causal grounding [60]. Different metrics might, however, be affected differently, and it
is possible that some metrics are more or less ‘sensitive’ to distribution shift. Similarly, different
fairness mitigation strategies might be affected differently by distribution shift, although none provides
guarantees under distribution shift. We also note that ‘fairness’ in the healthcare domain is an active
discussion, and that equalized odds or demographic parity metrics do not consider factors such as
social determinants of health or health equity. As discussed in [41], considering human elicited
metrics might be an avenue forward. Similarly, ‘fairness’ might change depending on the context
[48] and different metrics might be relevant in different environments.
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