
A Appendix

A.1 Linear Gaussian Model
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Figure 5: 1D and 2D marginals of the LGM posteriors with one feature marginalized out as estimated
by NLE and FSLM compared to the ground truth, which can be analytically computed. a.-c. Posterior
distributions when x1, x2 and x3 are removed from the feature set, respectively. The (in)dependence
of θ and x of the LGM are reflected in the the 1D marginals assuming the uniform density of the
prior when xi are removed.

A.2 Excluding invalid simulations

The simulator for the HH model can produce voltage dynamics that do not exhibit any spiking. This
will lead to undefined values (NaN) in the spike related summary features that we use (see Tab. 3).
In direct posterior estimation methods [15, 16], the invalid training pairs can simply be ignored and
dropped from the dataset. However, this is not the case for methods learning the likelihood, as this
leads to likelihood estimates that are unaware of parameter regions which produce invalid simulations
and hence a biased estimate according to

ℓϕ(xo|θ) = ℓϕ(xo, y = valid|θ) ≈ p(xo|θ, y = valid) =
p(xo, y = valid|θ)
p(y = valid|θ)

, (9)

with ℓϕ being the biased likelihood estimate. To compensate for this mismatch we therefore employ
two techniques also employed by Lueckmann et al. [15] and Glöckler, Deistler, and Macke [34] (for
proofs see Glöckler, Deistler, and Macke [34] A.6; Theorem 1, Lemma 1 and Lemma 3).

First, we restrict the prior to reduce the fraction of invalid training examples that are produced in the
first place, by training a probabilistic classifier to only accept parameter samples that are predicted to
result in valid observations. The classifier we use is just a simple fully connected neural net with a
softmax output, which is trained with a negative log-likelihood loss. Hence the restricted prior comes
out to be

p̃(θ) = p(θ|y = valid) =
p(y = valid|θ)p(θ)

p(y = valid)
(10)

, where p(y) is the probability of θ producing valid observations and p(y|θ) is the binary probabilistic
classifier that predicts whether a set of parameters θ is likely to produce observations that include
non valid (NaN or inf) features. We only expend a small amount of simulation budget to do this.

Since, a small fraction of samples still contains non-sensical observations which have to be withheld
from training, we still have to adjust for the remaining bias of the likelihood ℓψ . This is achieved by
estimating cζ(θ) = p(y = valid|θ) on the entirety of the training data, such that:

ℓψ(xo|θ)p(θ)cζ(θ) ∝ p(xo|θ)p(θ) ∝ p(θ|xo) (11)
We implement cζ(θ) as a simple logistic regressor that predicts whether a set of parameters θ
produces valid observations features. Unlike Glöckler, Deistler, and Macke [34] however, we opt
to combine this calibration term with the prior, rather than the likelihood. This is mathematically
equivalent according to Eq. 11 and is easier to implement in practice.
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A.3 The Hodgkin Huxley Model

The gating dynamics of the HH model are expressed through Eq. 12, 13, where αz(Vt) and βz(Vt)
denote the rate constants for one of the gating variables z ∈ {m,n, h, q, r}. They model the different
voltage dependencies for each channel type and their parameterisation depends on the specific model
that is used. In this work we stick to the kinetics of αz(Vt, VT ), βz(Vt, VT ), p∞(Vt) and τp(Vt, τmax)
as modeled in Pospischil et al. [44].

dzt
dt

= (αz(Vt) (1− zt)− βz(Vt)zt)
kTadj

rSS
(12)

dpt
dt

= ((p∞(Vt)− pt)/τp(Vt)) kTadj
(13)

In our experiments we simulate response of the membrane voltage to the injection of a square wave
of depolarizing current of 200 pA. Since the system of equations is not solvable analytically, we
compute the membrane voltage Vt = V (t) iterating over the time axis in steps of dt = 0.04ms using
the exponential Euler method [54] as it provides a good trade-off between computational complexity
and accuracy. The initial voltage is chosen as V0 = 70mV the membrane voltage V (t) is simulated
for a time interval of 800 ms.

For the parameters we used the following values or prior ranges:

Parameter Lower bound Upper bound
C 0.4 µF/cm2 3 µF/cm2

gNa 0.5 mS 80 mS
gK 1 · 10−4 mS 30 mS
gM −3 · 10−5 mS 0.6 mS
gleak 1 · 10−4 mS 0.8 mS
gL −3 · 10−5 mS 0.6 mS

τmax 50 s 3000 s
VT -90 mV -40 mV

Eleak -110 mV -50 mV
rSS 0.1 3

Parameter Value
ENa 71.1 mV
EK -101.3 mV
ECa 131.1 mV
T1 36◦C
T2 34◦C
Q10 3
τ 11.97 ms

Rin 126.2 MΩ

Table 2: left. Prior ranges for the variable parameters of the HH model. right. Values for the fixed
model parameters.

where ASoma = τ
CRin

, C the membrane capacitance, Rin the input resistance. Furthermore, τ is
the membrane time constant, τmax the time constant of the slow K+ current and VT the threshold

voltage. We also include two additional constants, kTadj
= Q

T2−T1
10

10 and rSS , which adjust for the
ambient temperature and for different rate scaling respectively.

The output of the HH model is summarized in terms of summary features, which are explained in
Tab. 3.

A.4 The full posterior estimates for the HH model

Here we provide the 1D and 2D marginal plots for all parameters of the posterior estimates p̂(θ | x),
p̂(θ | x\APT ) and p̂(θ | x\APA) in Fig.3c,d.
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Figure 6: Posterior distributions for all parameters of Fig. 3c, d: a. The posterior was conditioned
on the full feature set (orange) and after the removal of the highly constraining feature APT (green)
all of the 1D and 2D marginals are much more uncertain compared to the full posterior (orange).
b. Shows the same comparison, but after removing the less informative feature APW (red). The
posterior distribution without APA (red) is very similarly constraint to the full posterior (orange).
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Feature Explanation
APT Threshold of 1st AP
APA Amplitude of 1st AP
APW Width of 1st AP
AHP Afterhyperpolarisation

of 1st AP
APAadapt Adaptation of AP amp.
latency Latency of 1st AP
APC Spike count
µ(Vm) Mean of Vm
V ar(Vm) Variance of Vm
µ(Vrest) Mean resting Vm

Feature Explanation
APT3 Threshold of 3rd AP
APA3 Amplitude of 3rd AP
APW3 Width of 3rd AP
AHP3 Afterhyperpolarisation

of 3rd AP
APC(T1/8) AP count of first 1/8
APC(T1/4) AP count of first 1/4
APC(T1/2) AP count of first 1/2
APC(T2/2) AP count of second 1/2
µ(APAadapt) Mean adaptation of AP amp.
CVAPA Coeff. of Variation of AP amp.
ISIadapt Inter-spike-interval adaptation
CVISI CV of ISI
σ(Vrest) Standard deviation of resting Vm

Table 3: Brief explanation of HH-model summary statistics. AP = action potential; amp = amplitude,
Vm = membrane potential. left. Statistics used for training of all HH posteriors. right. Additional set
of statistics, that was only used in the baseline posterior estimate, which we use to compare methods
in Tab. 1.
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