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Abstract

Simulation-based Bayesian inference (SBI) can be used to estimate the parameters
of complex mechanistic models given observed model outputs without requiring
access to explicit likelihood evaluations. A prime example for the application of
SBI in neuroscience involves estimating the parameters governing the response
dynamics of Hodgkin-Huxley (HH) models from electrophysiological measure-
ments, by inferring a posterior over the parameters that is consistent with a set of
observations. To this end, many SBI methods employ a set of summary statistics or
scientifically interpretable features to estimate a surrogate likelihood or posterior.
However, currently, there is no way to identify how much each summary statistic
or feature contributes to reducing posterior uncertainty. To address this challenge,
one could simply compare the posteriors with and without a given feature included
in the inference process. However, for large or nested feature sets, this would
necessitate repeatedly estimating the posterior, which is computationally expensive
or even prohibitive. Here, we provide a more efficient approach based on the SBI
method neural likelihood estimation (NLE): We show that one can marginalize
the trained surrogate likelihood post-hoc before inferring the posterior to assess
the contribution of a feature. We demonstrate the usefulness of our method by
identifying the most important features for inferring parameters of an example HH
neuron model. Beyond neuroscience, our method is generally applicable to SBI
workflows that rely on data features for inference used in other scientific fields.

1 Introduction

Mechanistic models are an elegant way to encode scientific knowledge about the world in the form of
numerical simulations. They include models such as Kepler’s laws of planetary motion [1], the SEIR
model [2] for describing the spread of infectious diseases or the Hodgkin-Huxley (HH) model for the
dynamics of action potentials in neurons [3]. Efficiently constraining the parameters of such models by
measurements is a key problem in many disciplines [4–7]. Since these models give rise to intractable
likelihood functions, however, classical likelihood-based Bayesian methods such as variational
inference [8] or Markov Chain Monte Carlo [9] cannot be used directly. There are algorithms,
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Figure 1: Feature Selection Through Likelihood Marginalization (FSLM) is a method to identify
informative features in simulation-based inference (SBI). It builds on Neural Likelihood Estimation
(NLE) with mixture density networks (MDN). This requires a prior over the parameter space, a
mechanistic model to simulate data and an observed data point. 1. Parameters are sampled from
the prior and used to simulate a synthetic dataset. 2. A MDN learns the probabilistic relationship
between data (or data features) and underlying parameters, in the form of a tractable surrogate
likelihood. 3. After the MDN has learned to approximate the likelihood, it can be conditioned on the
observation to yield a likelihood estimate that is parameterised as a mixture of Gaussians. 4. This
surrogate likelihood is then combined with the prior distribution to obtain the posterior distribution,
i.e. the space of parameters consistent with both prior knowledge and data. Consistent parameters are
assigned a high, inconsistent parameters a low probability. The naive approach for identifying the
importance of features would be to repeat 2. for different sets of data features (grey). With FSLM,
the likelihood estimate can be marginalized post-hoc and a single estimate is therefore sufficient to
obtain multiple posterior distributions (black).

such as ABC-MCMC [10] or pseudo-marginal methods [11] that deal with this problem, however,
they have potentially slow convergence rates and are computationally expensive. To overcome this
problem, several techniques collectively known as simulation-based inference (SBI) have recently
been developed [12]. Leveraging the ability to simulate the model, these techniques obtain estimates
of the likelihood or posterior from simulated data. The most recent of these algorithms such as neural
likelihood estimation (NLE) [13] or neural posterior estimation (NPE) [14–16] employ state-of-the-art
neural density estimators to learn tractable surrogates of these functions to be evaluated instead of the
real quantities. To this end, summary statistics or features capturing essential aspects of the model’s
dynamics are defined by the scientist to reduce the high dimensional model output to manageable
scale, in turn decreasing the problem complexity and computation costs. This is often done by hand to
emphasize specific aspects of the data or to aid scientific interpretation [12], but can also be automated
[17–23].

In neuroscience, many different approaches have been developed in order to find suitable parameters
of models of neural activity [4, 5, 24–29]. SBI approaches have been used to infer parameters
in biophysical neuron models from measurements of neural activity in a Bayesian way [15, 30,
31]. For inference of HH models from electrophysiological data, features such as action potential
threshold or width and resting membrane potential or spike count can be used, reflecting measures
that electrophysiologists use to characterize recorded neurons.

For scientific interpretation of SBI results, it is often of interest which features, or combinations of
features, have the biggest impact on the posterior and which parameters they affect specifically. To
this end, one could compare the posterior uncertainty estimated with and without including a specific
feature in the SBI method — the increase in uncertainty resulting from not relying on that feature
can be used as a measure of its importance and on average is equivalent to its mutual information.
Of course, this approach can also be applied to whole subsets of features. To evaluate an entire set
of features exhaustively would require re-estimating the posterior many times (Fig. 1, grey), which
would scale prohibitively with the number of features. To address this issue, we here introduce a
method called Feature Selection Through Likelihood Marginalization (FSLM) to compute posteriors
for arbitrary subsets of features, without the need for repeated training (Fig. 1, black). To achieve
this, we here use NLE [32] and exploit the marignalization properties of mixture density networks
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(MDNs) [33], which can be used with NLE as a density estimator: instead of re-estimating the
surrogate likelihood from scratch, we marginalize it analytically with respect to a given (set of)
features before applying Bayes rule to obtain the posterior estimate. This way, we can efficiently
compare the posterior uncertainty with and without including a certain feature.

For a simple linear Gaussian model and non-linear HH models, we show that the obtained posterior
estimates are as accurate and robust as when repeatedly retraining density estimators from scratch,
despite being much faster to compute. We then apply our algorithm to study which features are the
most useful for constraining posteriors over parameters of the HH model. Our tool allows us also to
study which model parameter is affected by which summary feature. Finally, we suggest a greedy
feature selection strategy to select useful features from a predefined set.

2 Methods

2.1 Neural Likelihood Estimation (NLE)

Neural Likelihood Estimation [32] is a SBI method which approximates the likelihood p(x | θ) of
the data x given the model parameters θ by training a conditional neural density estimator on data
generated from simulations of a mechanistic model. Using Bayes rule, the approximate likelihood
can then be used to obtain an estimate of the posterior (Fig. 1). Unlike NPE [15, 16], NLE requires
an additional sampling or inference step [34] to obtain the posterior distribution. However, it allows
access to the intermediate likelihood approximation, a property we will later exploit to develop our
efficient feature selection algorithm (see Sec. 2.3).

First, a set of N parameters are sampled from the prior distribution θn ∼ p(θ), n ∈ {1, . . . , N}.
With these parameters, the simulator is run to implicitly sample from the model’s likelihood function
according to xn ∼ p(x|θn). Here, xn = (x1, . . . , xNf

) are feature vectors that are usually taken
to be a function of the simulator output s with the individual features xi = fi(s), where i ∈
{1, . . . , Nf}, rather than the output directly. For mechanistic models whose output are time series, f
also reduces the dimensionality of the data to a set of lower dimensional data features. The resulting
training data {xn,θn}1:N ∼ p(x,θ) can then be used to train a conditional density estimator
qϕ(x | θ), parameterized by ϕ, to approximate the likelihood function. Here, we use a Mixture
Density Network for this task [33], the output density of which is parameterised by a mixture of
Gaussians, which can be marginalized analytically. Thus, p̂(x | θ) =

∑
k πkN (µk,Σk) with the

parameters (µk,Σk,π) being non-linear functions of the inputs θ and the network parameters ϕ.
The parameters ϕ are optimized by maximizing the log-likelihood L(x,θ) = 1

N

∑
n log qϕ(x | θ)

over the training data with respect to ϕ. As the number of training samples goes to infinity, this
is equivalent to maximizing the negative Kullback-Leibler (KL) divergence between the true and
approximate posterior for every x ∈ supp(x) [32]:

Ep(θ,x) [log qϕ(x|θ)] = −Ep(θ) [DKL(p(x|θ)|| qϕ(x|θ))] + const. (1)

After obtaining such a tractable likelihood surrogate, Bayes rule can be used to obtain an estimate
of the posterior conditioned on an observation xo (see Eq. 2) for instance via Markov Chain Monte
Carlo (MCMC):

p̂(θ | xo) ∝ qϕ(xo | θ)p(θ) (2)

2.2 A naive algorithm for quantifying feature importance

Given this posterior estimate, we would now like to answer the following question: for which feature
xi from a vector of features x does the uncertainty of the posterior estimate p̂(θ | x) increase the
most, when it is ignored? For a single feature, a naive and costly algorithm does the following: iterate
over x to obtain x\i = (x1, . . . xi−1, xi+1, . . . , xN ), train a total of N+1 density estimators to obtain
the likelihoods p̂(x\i|θ) and p̂(x|θ), sample their associated posteriors and compare p̂(θ|x\i) to the
reference posterior p̂(θ | x) with every feature present. The same procedure can also be applied to
quantify the contribution of any arbitrary subset of features. As this procedure requires estimating the
likelihood based on the reduced feature set from scratch for each feature (set) (Fig. 1, grey arrows),
it is computationally costly. To quantify the contribution of different features more efficiently, we
would thus need a way to avoid re-estimating the posterior with each feature left out.
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Figure 2: FSLM can accurately compute posteriors with one feature marginalized out for a linear
model described in Eq. 3: a. 1D and 2D marginals of the full posterior estimated by NLE and the
ground truth, which can be analytically computed. b. Posterior distribution when x0 is removed from
the feature set. FSLM is as accurate as re-estimating NLE on the reduced feature set. c. Increase in
the uncertainty of the marginal posterior distributions measured using the IQR ratio (as defined in
Sec. 2.4) for each feature, for the analytical posteriors and those computed using FSLM. The joint
influence of x1 and x2 on θ2, as per our model, is clearly visible.

2.3 Efficient quantification of feature importance through post-hoc likelihood marginalization

To more efficiently estimate posteriors for any subset of features, we propose to marginalize the
likelihood estimate obtained via NLE post-hoc, as opposed to training a separate density estimator
for every new set of features to obtain the marginal estimates (Sec. 2.2, Fig. 1). We refer to this
algorithm as efficient Feature Selection through Likelihood Marginalization (FSLM).

Suppose we want to evaluate the joint increase in posterior uncertainty for a subset of features. We
partition our feature vector x = [x1,x2], such that x2 contains the features to be removed from the
inference. To avoid the need for training the surrogate likelihood qϕ for such a feature subset, we can
rewrite the posterior with respect to x1 as

p̂(θ | x1) ∝ qϕ(x1 | θ)p(θ) =
∫

qϕ(x1,x2 | θ)dx2 p(θ) (3)

Since we parameterize the approximate likelihood qϕ as an MDN, we can perform this marginalization
analytically: For a K-component MDN, the parameters of each mixture component can be similarly
partitioned to x [35, Chapter 2.3.2]:

µk = [µk,1,µk,2], Σk =

[
Σk,11 Σk,12

Σk,21 Σk,22

]
, k ∈ {1, ...,K}. (4)

Then the marginalization with respect to x2 results in the following posterior distribution

p̂(θ | x1) ∝ qϕ(x1 | θ)p(θ) =
K∑
k=1

πkNk(x1 | µk,1,Σk,11) p(θ), (5)

where π = π(θ), µ = µ(θ) and Σ = Σ(θ). FSLM can thus sample from the posterior given
arbitrary feature subsets without estimating the surrogate likelihood qϕ from scratch.

We implement FSLM using python 3.8, building on top of the public sbi library [36]. All the code
is available at github.com/berenslab/fslm_repo. All computations were done on an internal cluster
running Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz.

2.4 Measures of posterior uncertainty

Assuming the NLE procedure converges and the density estimator is sufficiently flexible, differences
in posterior uncertainty can be ascribed to differences in information content of features or noise in the
data. Given that that noise in the data remains constant, relative differences in posterior uncertainty
can be used to assess the contributions of individual summary features. Hence, we can identify
informative summary statistics by quantifying the change in uncertainty of p̂(θ|x\i) with respect to
p̂(θ | x). For this we use two metrics:
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Model Method Training time Sampling time Total time KL

LGM
[min]

NLE + MDN 3.57 ± 0.79 0.33 ± 0.04 3.89 ± 0.80 0.06 ± 0.10
NLE + MAF 11.40 ± 2.22 0.57 ± 0.28 11.98 ± 2.30 0.05 ± 0.12

FSLM 0.64 ± 0.21 0.66 ± 0.10 1.30 ± 0.26 0.07 ± 0.16

HH
[h]

NLE + MDN 84.20 ± 9.28 10.34 ± 0.54 94.53 ± 9.24 29.04 ± 8.13
NLE + MAF 130.54 ± 29.18 19.58 ± 4.64 150.12 ± 30.86 27.96 ± 10.15

FSLM 7.21 ± 1.49 13.27 ± 1.04 20.48 ± 2.08 28.27 ± 7.40
Table 1: Performance of FSLM (mean ± standard deviation across 10 runs), compared to repeated
runs of NLE employing a MDN or MAF. For the LGM example, all times are minutes [min] and
rejection sampling was used to sample the posterior. For the HH model, all times are hours [h] and
MCMC was used. The last column (KL) measures the KL divergence (as defined in Sec. 2.4). For
the LGM KL is measured between the posterior and the analytic ground truth. Since no ground
truth data is available for the HH model, we use a NLE+MDN estimate of the posterior trained
on a substantially larger set of summary statistics (see Appendix, Tab. 3). The mean and standard
deviation were obtained across all 10 runs and for all subsets that exclude one feature. The timings
are single threaded.

Ratio of IQR of the marginals: We use the ratio of inter quantile ranges (IQR) of the 1D-marginals
of p̂(θ | x1) and p̂(θ | x). This lets us deduce if specific features xi reduce the uncertainty of some
parameters θj more than others. We use IQRs as a measure of spread as it is much less susceptible to
outliers compared to the standard deviation. The resulting visualization allows to precisely pin down
which parameter is affected by which summary feature.

Non-parametric estimate of KL divergence: As a second metric, we use a non-parametric
estimate of the KL divergence between p̂(θ | x1) and p̂(θ | x). Since a posterior estimate, on
average, cannot become more constrained if features are removed, increases in the KL estimate
indicate an increase in uncertainty overall. To estimate the KL-divergence between p̂(θ | x1) and
p̂(θ | x), we employ a purely sample based estimator [37, 38]. This is necessary because NLE only
allows to evaluate unnormalized posteriors which circumvents having to evaluate them explicitly.
The estimator makes use of 1-nearest neighbor search and is implemented using k-d trees [39], to
reduce the 2N comparison operations to a manageable number. With samples X = {Xi}Ni=1 and
Y = {Yi}Mi=1 from p̂(θ | x1) and p̂(θ | x) respectively, the KL-divergence KL(p̂(θ | x1)||p̂(θ | x))
is estimated as

DKL =
d

N

N∑
i=1

log
minj ||Xi − Yj ||
min
j ̸=i

j ||Xi −Xj ||
+ log

M

N − 1
, (6)

where d is the dimensionality of the samples, and || · || denotes the ℓ2-norm. We note that the Maxi-
mum Mean Discrepancy (MMD) [40, 41] could be used as an alternative measure, but preliminary
experiments indicated that the KL estimate was more consistent.

3 Results

3.1 Example 1: Linear Gaussian model

We illustrate our algorithm in a simple toy problem, where by construction, we know which features
should have which effect. We used a Linear Gaussian Model (LGM) with a three dimensional
parameter space θ = [θ0, θ1, θ2] and four dimensional feature space x = [x0, x1, x2, x3]. θ is
drawn from a uniform prior θi ∼ U(−5, 5), i ∈ {0, 1, 2}, with the features x being noisy linear
transformations of the parameter vector θ. The mean µ(θ) and covariance Σ are defined by

µ(θ) = µ0 +Lθ, Σ = σ21, L =

1 0 0
0 1 0
0 1 1
0 0 0

 . (7)

With scale σ and shift µ0. We construct L such that we can easily verify that the posterior reacts to
and interacts with marginalized features as expected. In our example, we let feature x0 solely depend
on θ0, x1 on both θ1 and θ2, x2 on θ2, and x3 without influence on any model parameter.
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Figure 3: Removal of individual features affects posterior uncertainty and samples in a HH model: a.
The ratio of IQRs for the marginal posterior distributions (as defined in Sec. 2.4), when individual
features are left out. Values are large (dark) when the feature has a large effect on the marginal
posterior for the specified model parameter, and small otherwise (light). b. Simulations from the HH
model with the original true parameters (θo, blue), parameters drawn from the full posterior (θfull,
orange) and two posterior distributions when leaving out the features APT and APA (θ\APT , green
and red, θ\APA, respectively). c. Posterior distribution with the full feature set (orange) and after
removal of the highly constraining feature APT (green) shows the effect on some of the 1D and 2D
marginals (see Fig.6 for complete posteriors) compared to the full posterior (orange). d. As in c.
for the less informative feature APW. e. The effect of the removal of informative vs. uninformative
features from the posterior estimate on the feature values of the simulated parameter samples.
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The resulting posterior is well concentrated on θo and the NLE+MDN estimate matches the ana-
lytically computed posterior well (Fig. 2a). To show that FSLM can correctly identify individual
feature importance, while being more efficient than re-running NLE for each subset, we compared
samples from the FSLM-derived posterior estimates for every three feature subset to those obtained
using the analytical marginal likelihood p(x\i | θ), i ∈ {0, 1, 2, 3} and brute-force NLE estimates
using separate qϕ(x\i|θ) for each subset (Fig. 2b, Appendix Fig.5 a-c). The brute-force baseline
was computed with both a MDN and a Masked Autoregressive Flow (MAF) [42]. The MDNs had
three hidden layers and 10 mixture components. The MAF consisted of five 3 layer deep MADEs
[43]. Training was done on 10,000 samples, then 500 samples were drawn from each posterior, for a
total of 10 different initializations. Training was terminated when the log-likelihoods had stopped
improving on a validation set that was split from the training set at 10% over 20 epochs.

The posterior estimates obtained from FSLM matched those from the analytic ground truth very
accurately (Fig. 2b-e, Appendix Fig. 5a-c and Tab. 1), while being several times faster to compute
than both NLE alternatives (see Tab. 1). As expected from the construction of our model, we
observed that p̂(θ | x\0) was not only less constrained compared to p(θ | x) (Fig. 2a), but that
p̂(θ0 | x\0) = p(θ0) = U(−5, 5). We also found that FSLM correctly identified the dependency
structure between the other parameters and features (Appendix Fig. 5a-c), with FSLM matching the
analytic ground truth while being much faster than both NLE approaches (Tab. 1).

3.2 Example 2: Hodgkin-Huxley neuron model

Next, we turned to a more realistic complex mechanistic model used for simulations of neurons. For
our experiments we used a single compartment Hodgkin-Huxley model [3], Eq. 8, derived from
Pospischil et al. [44]. In addition to the standard sodium, potassium and leak currents to generate
spiking this model also considers a slow non-inactivating K+ current to model spike-frequency
adaptation and a high-threshold Ca2+ current to generate bursting.

It = C ASoma
dVt
dt

+ ḡNam
3h(Vt − ENa) + ḡKn4(Vt − EK) (8)

+ ḡleak(Vt − Eleak) + ḡMp(Vt − EK) + ḡLq
2r(Vt − ECa)

Eq. 8 models the evolution of the membrane voltage Vt = V (t) given a stimulus I(t) = It.
ḡi, i ∈ {Na,K, l,M,L} are the maximum conductances of the sodium, potassium, leak, adaptive
potassium and calcium ion channels, respectively, and Ei are the associated reversal potentials. It
denotes the current per unit area, C the membrane capacitance, ASoma the compartment area and
n,m, h, q, r and p represent the fraction of independent gates in the open state, based on Hodgkin
and Huxley [3]. For the remaining equations and parameter settings, see Appendix A.3.

We then compared the performance of FSLM and the two versions of brute-force NLE to measure how
commonly used summary features constrain the posterior of an exemplary voltage trace. Specifically,
we used a set of 10 summary statistics commonly of interest to neurophysiologists, which capture
the response dynamics of the HH model and can be used to differentiate cortical cell types. They
are briefly explained in Table 3. To extract these features from the simulated traces we use the Allen
SDK.

To train the density estimator we simulated 1 million observations with parameters drawn from a
Uniform prior over biologically plausible parameter ranges (see A.3). However, because a substantial
fraction of the generated observations did not produce spiking behavior, some features such as spike
rate were not defined. Hence, these observations could not be used to train the density estimator. We
employed two different techniques introduced by Lueckmann et al. [15] to reduce the amount of
invalid samples returned by the prior and to compensate for any remaining invalid observations in
the training data (for details see Appendix A.2). This yielded accurate posterior estimates, despite
incomplete data. The change in uncertainty was then assessed on 3000 samples from the MDN
estimates of p̂(θ | x) and p̂(θ | x\i). Architectures and training were kept the same as in Sec.3.1

We found that all three algorithms identified the same two features as yielding the highest increase in
posterior uncertainty (Fig. 3a): the action potential threshold (APT) and the action potential count
(APC), while a MAF additionally identified the mean resting potential (µ(Vrest)) as a constraining
feature. For the MDN-based density estimates, APT strongly affected the threshold voltage VT , the
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Figure 4: Greedy selection of the most informative features from a candidate set for the HH model: a.
Example trajectory of a single run using FSLM for greedy search (black). Parameters are added to the
feature set from left to right (right most point includes all features). Medians and confidence intervals
for 50 runs, when parameters are selected at random (blue) vs. when selected by the greedy-search
procedure (orange). b. Order in which the features were chosen for the first 10 feature searches.

leak conductance gleak as well as the sodium conductance gNa. APC, influenced the leak reversal
potential Eleak, the leak conductance gleak, as well as C and gNa (Fig. 3a). When a flow was used,
gNA did not seem to be constrained by either APT or APC and µ(Vrest) additionally constrained the
leak reversal potential (Eleak), as well as the adaptive Potassium current gM . In contrast, the action
potential amplitude (APA), as well as other features, did not have a sizable impact on the posterior in
this example (Fig. 3a). While the results for both MDN-based algorithms are equivalent and have
strong overlap with the flow-based predictions, FSLM was significantly faster than both brute-force
alternatives (≈ 5-fold and ≈ 7-fold speedups respectively, Table 1) and overall almost as accurate,
when measured against a common baseline (Table 1).

As a consequence, simulations based on samples from p̂(θ | x) and p̂(θ | x\APA) were comparable
to the observed voltage trace Vo(t), while the sample drawn from p̂(θ | x\APT ) showed different
spiking behavior, with much longer inter spike intervals in the simulation (Fig. 3b). This resulted
from higher values for the sodium conductance gNa and threshold voltage VT , compared to θo, for
the particular simulation shown (Fig. 3a,c). The measured increase in uncertainty is also directly
visible in the two-dimensional marginal distributions of the posterior, where the removal of APT
lead to a much less constrained posterior estimate (Fig.3c), while the removal of APA did not affect
the posterior uncertainty much (Fig.3d). Also, the measured summary statistics from samples from
p̂(θ | x\APT ) and p̂(θ | x\APA) showed the expected behavior: the APT feature was much more
variable in samples from p̂(θ | x\APT ) than in p̂(θ | x), while the estimated value for APA did not
vary as drastically even for samples from p̂(θ | x\APA) (Fig. 3e).

3.3 Efficient greedy feature selection using FSLM

In the previous section, we showed that FSLM can be used to study how the removal of individual
features increases the uncertainty of the posterior. Next we show how FSLM can be used to study
how the addition of features decreases uncertainty and provide a method to efficiently search for
informative features by greedy selection of new features.

First, we used NLE to obtain a posterior estimate given a candidate set of features. We then used
FSLM to obtain all the 1D marginal likelihoods, sampled their associated posteriors p̂(θ | xi) and
computed their KL divergences to the full posterior. We subsequently selected the feature xi that
minimizes the KL, before we repeated the procedure for all 2D marginals p̂(θ | (xi, xj)) which
include the selected feature xi. We can iterate this procedure until a desired number of features is
identified. This is equivalent to a beam-search [45] with a beam size equal to one. To investigate
combinations of features the scheme is easily extensible to larger beam sizes.

To demonstrate this, we turned again to the HH example already studied in Sec. 3.2. We used 1
million samples for training and sampled every posterior 1000 times. To check for consistency, we
repeated the procedure 50 times. Compared to selecting features at random, selecting features based
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on the results of our greedy algorithm consistently yielded more constrained posterior estimates (see
Fig. 4a). Furthermore, we found the three most informative features to be µ(Vrest), APT , AHP ,
respectively, which were consistently chosen in this order (see Fig. 4b).

4 Discussion

We set out to develop an efficient method to characterize the relative contribution of different features
to constraining the posterior in simulation-based inference. To this end, we used NLE with a mixture
density network to estimate the surrogate likelihood and marginalize it analytically. We showed
that our method, FSLM, correctly identifies influential features both in a simple linear Gaussian
model, as well as in a complex mechanistic model, namely the HH model in neuroscience. In both
cases FSLM was as accurate as repeated application of NLE, but many times faster, independent
of whether the likelihood was approximated by MDNs or MAFs. While the different architectures
lead to subtle differences in their predictions of important features of HH models, we found them
still to be mostly in agreement. FSLM can thus provide guidance on how to specify, prepare and
select appropriate summary statistics, while also allowing to study which parameters are constrained
by which features to gain insight into the scientific structure of the model. In contrast to methods
developed for automatically deriving optimal (combinations of) summary features [17–19, 21, 23],
FSLM focuses on making the evaluation and selection of individual scientifically relevant feature sets
interpretable. Our visualization method allowed us to identify which features influenced the posterior
uncertainty over which model parameters, and for which model parameters the posterior was not
influenced by any feature. A similar approach could also be implemented for Approximate Bayesian
Computation (ABC) [46, 47].

Compared to approaches that aim to directly quantify the mutual information (MI) between sets of
parameters and features [23], our method aims to quantify the relationship between model parameters
and features for individual observations. Computing estimates of the MI for simulator models is
difficult without access to a closed form likelihood and purely sample based estimators [48, 49] do
not allow for inspection of individual or small sets of observations. However, this is of interest when
different cells, cell types or cell families are constrained by different feature sets. Nonetheless, FSLM
still retains the option to obtain a single ranking of features across a whole dataset by averaging over
all observations in the set, which would then be equivalent to the MI between posterior and prior (the
trained neural network is amortized and, thus, requires no retraining for different observations).

For the case of a Hodgkin-Huxley model, frequently used in neuroscience as a mechanistic model
of neural activity, we showed that action potential threshold and action potential count were the
most informative features, jointly constraining the action potential threshold, the resting potential,
membrane capacitance as well as model conductances (except for that of potassium). Removing
these features from the inference procedure led to much more poorly constrained posteriors and
simulations that did not match the original trace.

We note some limitations of FSLM and the metrics introduced: First, the inherent dependence on
MDNs for the conditional neural density estimation limits overall accuracy for highly complex
posteriors or likelihoods, compared to e.g. normalizing flows, as it only works well for likelihoods
that are well approximated by mixtures of Gaussians. Additionally, the use of full covariance matrices
can be problematic in higher-dimensional feature spaces due to the curse of dimensionality and one
would have to evaluate whether the use of e.g. diagonal covariances is more suitable. Second, since
our metrics are relative to the overall level of uncertainty in a given posterior marginal, for very sharp
distributions a small increase in variance can already lead to a large increase in our metrics, which
would not be the case for a broad distribution. While this may be the desired behavior in some cases,
it might be misleading in others. Third, the effect of a feature may be judged differently depending
on whether the effect of removing it from a large set of features is being assessed, or whether it is
being added early in a greedy feature selection run. Finally, the approximation quality of NLE, thus
also FSLM, depends crucially on the choice of prior [50]. However, posterior predictive checks [51,
52] and coverage tests [53] applicable to NLE can also be applied to FLSM to verify the correctness
of the inference results.

Our method opens the door for careful studies on the relationship between data features and model
distributions. In neuroscience, for example, we could explore whether commonly used features such
as those used here constrain the posterior equally across different cellular families or types — for
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example, is action potential threshold equally important for modeling fast-spiking interneurons and
for cellular families with more complex firing behavior, or are additional features needed in this
case? Given the efficient exploration of the relationship between features and posterior uncertainty,
we believe that our method will also be applicable to a wide range of inference problems beyond
neuroscience.
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