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Abstract

Expensive multi-objective optimization problems can be found in many real-world
applications, where their objective function evaluations involve expensive compu-
tations or physical experiments. It is desirable to obtain an approximate Pareto
front with a limited evaluation budget. Multi-objective Bayesian optimization
(MOBO) has been widely used for finding a finite set of Pareto optimal solutions.
However, it is well-known that the whole Pareto set is on a continuous manifold
and can contain infinite solutions. The structural properties of the Pareto set are
not well exploited in existing MOBO methods, and the finite-set approximation
may not contain the most preferred solution(s) for decision-makers. This paper
develops a novel learning-based method to approximate the whole Pareto set for
MOBO, which generalizes the decomposition-based multi-objective optimization
algorithm (MOEA/D) from finite populations to models. We design a simple and
powerful acquisition search method based on the learned Pareto set, which naturally
supports batch evaluation. In addition, with our proposed model, decision-makers
can readily explore any trade-off area in the approximate Pareto set for flexible
decision-making. This work represents the first attempt to model the Pareto set for
expensive multi-objective optimization. Experimental results on different synthetic
and real-world problems demonstrate the effectiveness of our proposed method.

1 Introduction
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Figure 1: Pareto Set Learning can approxi-
mate the whole Pareto set, and let decision-
makers easily explore any trade-off among
objectives to choose their preferred solutions.

Many real-world applications involve optimizing mul-
tiple costly-to-evaluate and potentially competing
objectives, such as finding strong yet ductile mate-
rial [38], building a neural network with high accu-
racy and low latency [28], and improving the quality
while minimizing total charge in particle accelera-
tor tuning [73]. Very often, these objectives conflict
each other and cannot be optimized simultaneously
by a single solution. Instead, there is a set of so-
lutions with different optimal trade-offs among the
objectives, called the Pareto set. For a Pareto op-
timal solution, none of its objective values can be
further improved without deteriorating others. In ad-
dition, the evaluation of each solution could require
time-consuming computation or costly physical ex-
periments, and thus a large number of evaluations are unbearable. Different multi-objective Bayesian
optimization (MOBO) algorithms [44, 48, 43], typically directly generalized from the single-objective
Bayesian optimization (BO) [60, 39, 11, 77, 29], have been proposed to find a small set of approximate
Pareto solutions with a small amount of objective function evaluation budget.
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The finite set approximation has some undesirable drawbacks. For a nontrivial multi-objective
optimization problem, the Pareto set is on a continuous manifold and has infinite solutions with
different optimal trade-offs among the objectives [58]. This Pareto set structure could be helpful
to better select candidate solutions for expensive evaluation, and hence accelerate the optimization
process of MOBO. In addition, a small set of solutions may not contain the one(s) that exactly
satisfy the decision-maker’s preferences. Finding the most preferred trade-off solution(s) could
require several rounds of interaction with the decision-makers. These approaches would be extremely
time-consuming, especially when the optimization modeler and the decision-maker are not in the
same team, which is common in real-world MOBO applications [56].

This paper proposes a novel Pareto set learning (PSL) method to approximate the whole Pareto
set for expensive multi-objective optimization problems with a limited evaluation budget. Our
proposed method can accelerate the multi-objective Bayesian optimization process, and also provide
decision-makers with more useful information to support flexible decision-making. To the best of
our knowledge, this is the first attempt to learn the whole Pareto set for expensive multi-objective
optimization. Our main contributions include:

• We propose a novel set model to map any trade-off preference to its corresponding Pareto
solution, along with a surrogate model-based method to approximate the whole Pareto set
with a limited evaluation budget.

• We develop a lightweight yet powerful batch acquisition search method for efficient MOBO,
which can outperform other MOBO approaches in terms of both performance and computa-
tional cost. We demonstrate that the learned Pareto set can support flexible user-involved
decision-making.

• We test our proposed method on both synthetic benchmarks and real-world application
problems. The results validate the efficiency and usefulness of PSL.

2 Related work

Bayesian Optimization. Surrogate model-based methods have been widely used and studied for
expensive optimization [47, 40, 65, 79]. These methods iteratively build a surrogate model to
approximate the black-box objective function, and uses an acquisition function to search for the
optimal solution. Much effort has been made on various design issues in Bayesian optimization, such
as acquisition functions [81], high-dimensional optimization [91, 92], batch evaluation [22], scalable
optimization [80, 27], and theoretical analysis [42]. Most work for BO are on single-objective
optimization. We refer readers to Garnett [30] for a comprehensive introduction.

Multi-Objective Bayesian Optimization. MOBO extends single-objective Bayesian optimization
for solving expensive multi-objective optimization problems. Although the Pareto set could contain
infinite solutions, the MOBO methods typically focus on finding a single or a finite set of solutions.
The scalarization-based algorithms, such as ParEGO [45] and TS-TCH [62] iteratively scalarize
the multi-objective problem into single-objective ones with random preferences, and then apply
single-objective BO to solve them. MOEA/D-EGO [99] adopts the MOEA/D framework [97] to
solve a set of surrogate scalarized subproblems simultaneously. SMS-EGO [67] and PAL [104, 105]
generalize the upper confidence bound (UCB) to multi-objective optimization. Emmerich et al. [26]
and Emmerich and Klinkenberg [25] propose the probability of improvement (PI) and expected
improvement (EI) for multi-objective hypervolume. Entropy search methods [33, 35, 37, 90] have
also been studied in multi-objective optimization [34, 6, 84]. Bradford et al. [10] and Belakaria et al.
[7] consider Thompson sampling and uncertainty maximization for multi-objective optimization,
respectively. Different algorithms can be hybridized to achieve better performances [82].

Different new developments have been recently proposed to handle the issues of diverse batch
evaluation [53], efficient hypervolume improvement calculation [14], noisy optimization [15, 16],
high-dimensional optimization [17], and decision criteria beyond Pareto optimality [56]. Some
attempts have been made to incorporate the decision-maker’s preference into MOBO [3, 62, 4]. They
typically need the decision-maker’s preference before or during optimization, which may not always
be available in real-world applications. All these MOBO methods aim to provide a finite set of
approximate Pareto optimal solutions to decision-makers.
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Figure 2: (Weakly) Pareto solutions and (Weakly) Pareto front. (a) Examples of Pareto solutions,
weakly Pareto solutions, and dominated solutions. The Pareto solutions are also weakly Pareto optimal.
The weakly Pareto optimal but not Pareto optimal solutions (e.g., purple points) are dominated but
not strictly dominated by at least one Pareto solution. (b) The weakly Pareto front f(Mweak) is the
image of all weakly Pareto optimal solutionsMweak in the objective space. (c) The Pareto front
f(Mps) is the image of all Pareto optimal solutionMps (Pareto set) in the objective space. (d) Our
proposed method approximates the whole Pareto set and uses it to select solutions for expensive
evaluation, which can improve the search efficiency of multi-objective Bayesian optimization.

Structure Learning. In addition to the surrogate objective model, some methods have been proposed
to explore the problem structure for Bayesian optimization. Sener and Koltun [76] learn the geometric
structure of the problem in an online manner to accelerate optimization. Wang et al. [89] and Zhao
et al. [101] apply Monte Carlo tree search (MCTS) to divide the search space for efficient modeling
and searching. Novel latent space modelings [32, 86] have been proposed for optimization problems
with complex solution representations.

From Population to Pareto Set Learning. For the last several decades, most multi-objective
optimization methods have focused on finding a single or a finite set of Pareto optimal solutions (e.g.,
a population) to approximate the Pareto set [58, 24]. A few attempts have been made to approximate
the whole Pareto set with simple mathematical models [68, 36, 98, 31]. Pirotta et al. [66] and Parisi
et al. [63] have proposed to conduct Pareto manifold approximation for multi-objective reinforcement
learning. Recently, different approaches have also been investigated to incorporate the preference
information into deep neural networks for image style transfer [78, 23], multi-task learning with finite
solutions [75, 49, 55, 54] or approximate Pareto front [50, 61, 74], reinforcement learning [96, 1, 2],
and neural combinatorial optimization [51]. In this work, we generalize the decomposition-based
multi-objective optimization algorithm (MOEA/D) [97], and propose to learn a set model which
maps all valid trade-off preferences to the Pareto set for efficient MOBO.

3 Expensive multi-objective optimization

We consider the following expensive continuous multi-objective optimization problem:

min
x∈X

f(x) = (f1(x), f2(x), · · · , fm(x)), (1)

where x is a solution in the decision space X ⊂ Rn, f : X → Rm is anm-dimensional vector-valued
objective function, and the evaluation is expensive for all individual objectives fi(x), i = 1, . . . ,m.
For a non-trivial problem, no single solution can optimize all objectives at the same time, and we have
to make a trade-off among them. We have the following definitions for multi-objective optimization:

Definition 1 (Pareto Dominance and Strict Dominance) Let xa,xb ∈ X , xa is said to dominate
xb, denoted as xa ≺ xb, if and only if fi(xa) ≤ fi(x

b),∀i ∈ {1, ...,m} and ∃j ∈ {1, ...,m} such
that fj(xa) < fj(x

(b)). In addition, xa is said to strictly dominate xb (xa ≺strict x
b), if and only if

fi(x
a) < fi(x

b),∀i ∈ {1, ...,m}.

Definition 2 (Pareto Optimality) A solution x∗ ∈ X is Pareto optimal if there is no x̂ ∈ X such
that x̂ ≺ x∗. A solution x′ ∈ X is weakly Pareto optimal if there is no x̂ ∈ X such that x̂ ≺strict x

′.

Definition 3 (Pareto Set/Front) The set of all Pareto optimal solutions Mps ⊆ X is called the
Pareto set, and its image in the objective space f(Mps) = {f(x)|x ∈ Mps} is called the Pareto
front. Similarly, we can define the weakly Pareto setMweak and weakly Pareto front f(Mweak).
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The strict dominance relation is stronger than the Pareto dominance since it requires strictly better
values for all objectives. Therefore, the set of weakly Pareto optimal solutions Mweak (e.g., the
solutions that are not strictly dominated) would be larger thanMps, and it is straightforward to see
Mps ⊆Mweak. The illustration of (weakly) Pareto solution and Pareto front is shown in Figure 2.

Each Pareto solution x ∈ Mps represents a different optimal trade-off among the objectives for
problem (1). Under mild conditions, the Pareto setMps and Pareto front f(Mps) are both on (m−1)-
dimensional manifold in the decision space X ∈ Rn and objective space Rm, respectively [36, 98].
The number of Pareto solutions could be infinite (i.e. |Mps| =∞).

Bayesian Optimization (BO) is a model-based method for solving expensive black-box optimization
problems. Given a set of already-evaluated solutions {X,y}, BO builds surrogate models (e.g.,
Gaussian process) for each objective, and defines acquisition function(s) to leverage the surrogate
objective values for navigating the search space. Only promising solutions will be selected for
expensive evaluation. We refer interesting reader to [30] for a detailed introduction.

Pareto Set Learning. The current MOBO methods aim to find a small set of finite solutions
S = {x̄(1), x̄(2), · · · , x̄(|S|)} to approximate the Pareto set Mps. In addition to the evaluated
solutions S , our proposed Pareto set learning (PSL) method also learns an estimated Pareto setMpsl

with the predicted Pareto front f̂(Mpsl) to approximate the Pareto setMps and Pareto front f(Mps).
The whole approximate Pareto set can be easily explored by adjusting the trade-off preference as
illustrated in Figure 3. With the learned Pareto set, we also develop an efficient batched solution
selection approach for efficient MOBO, which will be introduced in the next section.

4 Pareto Set Learning for MOBO

4.1 Pareto set model
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Figure 3: Mapping from Preferences to Ap-
proximate Pareto Set/Front: Our proposed PSL
method learns the connection from a set of
valid (infinite) trade-off preference Λ = {λ ∈
Rm+ |

∑
λi = 1} to (a) the approximate Pareto set

Mpsl and hence (b) the corresponding predicted
Pareto front f̂(Mpsl). The whole Pareto set (front)
can be easily explored by adjusting the preference.
The preference simplex have been resized and ro-
tated for better visualization.

As pointed out in Section 3, the Pareto set can
contain infinite solutions with different trade-
offs. In addition, there is no complete order
among the Pareto solutions. A Pareto set model
for MOBO should be powerful enough to ap-
proximate the whole Pareto set, and convenient
enough to easily explore any trade-off solutions.
In this work, we propose to build a set model
that maps any trade-off preferences to their cor-
responding Pareto solutions with scalarization.

Scalarization. The scalarization method pro-
vides a natural connection from a set of pref-
erences Λ = {λ ∈ Rm+ |

∑
λi = 1} among

the m objectives to the Pareto set Mps. The
most simple and straightforward approach is the
weight-sum scalarization:

min
x∈X

gws(x|λ) = min
x∈X

∑m
i=1 λifi(x). (2)

However, this method can only find the con-
vex hull of Pareto front f(Mps) [9, 24]. In this
work, we use the following weighted Tcheby-
cheff approach:

min
x∈X

gtch(x|λ) = min
x∈X

max
1≤i≤m

{λi(fi(x)− (z∗i − ε))}, (3)

where z∗ = (z∗1 , · · · , z∗m) is the ideal vector for the objective vector f(x) (i.e. lower-bound for
minimization problem), ε > 0 is a small positive scalar, and ui = (z∗i − ε) is called an (unachievable)
utopia value for the i-th objective fi(x). This scalarization method has a promising property:

Theorem 1 (Choo and Atkins [13]). A feasible solution x ∈ X is weakly Pareto optimal if and only
if there is a weight vector λ > 0 such that x is an optimal solution of the problem (3).
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Figure 4: Pareto Set Learning for Multi-Objective Bayesian Optimization: (a) The Pareto set
model learns a parameterized mapping from any valid preference λ ∈ Λ = {λ ∈ Rm+ |

∑
λi = 1}

to its corresponding solution x(λ) ∈ Rn. (b) We build independent Gaussian process models for
each objective function. With these surrogate models, the set model can be efficiently trained to
approximate the Pareto set. (c) In this work, we use the augmented Tchebycheff scalarization to
connect each preference to its corresponding Pareto solution.

In other words, all Pareto solutions x ∈ Mps can be found by solving the Tchebycheff scalarized
subproblem (3) with a specific (but unknown) trade-off preference λ. We letMtch be the solution set
for problem (3) with all valid preferences Λ and haveMps ⊆ Mweak =Mtch. The weakly Pareto
optimal but not Pareto optimal solutions (Mweak \Mps) are dominated (but not strictly dominated) by
some Pareto solutions, and are usually not desirable for decision-making. They can be further avoided
by the augmented Tchebycheff approach [83, 41]. In this work, we use the following scalarization:

gtch_aug(x|λ) = max
1≤i≤m

{λi(fi(x)− (z∗i − ε))}+ ρ

m∑
i=1

λifi(x), ∀λ ∈ Λ, (4)

where ρ is a sufficiently small positive scalar depends on the problem and current solution location.
This form of augmentation has also been used in ParEGO [45]. With the augmentation term, the
weakly dominated solutions will have larger scalarized values than the corresponding Pareto solutions
in (4), and will ultimately be eliminated with the optimization process (e.g.,Mtch_aug =Mps). In this
work, we simply set ρ = 0.001, dynamically update z∗i as the current best value for each objective and
let ε = 0.1|z∗|. This setting is robust for all problems we considered. The traditional methods focus
on solving the scalarization problem (4) with a finite set of different preferences λ in a sequential [45]
or collaborative manner [97, 99].

Set Model. With augmented Tchebycheff scalarization, we propose to build a set model for mapping
preferences to their solutions:

x(λ) = hθ(λ), (5)

where λ is any valid preference in Λ = {λ ∈ Rm+ |
∑
λi = 1}, x(λ) ∈ X is its corresponding Pareto

solution, and hθ(λ) is the Pareto set model with parameter θ. The input preference λ has (m− 1)
degree of freedom, and the output solution set Mpsl = {x = hθ(λ)|λ ∈ Λ} is on an (m − 1)-
dimensional manifold in X ∈ Rn. In other words, the set model maps the (m − 1)-dimensional
regular preference simplex Λ to the (m−1)-dimensional solution setMpsl with complicated structure.

We want to find the optimal parameters θ∗ such that the generated setMpsl matches the solution set
for augmented Tchebycheff scalarizationMtch_aug = {x∗(λ)|λ ∈ Λ}, where

x∗(λ) = hθ∗(λ) = arg min
x∈X

gtch_aug(x|λ),∀λ ∈ Λ. (6)

The learned mapping is illustrated in Figure 3. Once the connection is learned, we can explore
the whole approximate Pareto set/front by simply adjusting the preferences among objectives. We
use an MLP neural network as the set model for all MOBO problems, which is good at capturing
complicated problem structures [76]. The model details can be found in Appendix D.

4.2 Pareto Set Learning with Gaussian Process

Since the evaluation of f(x(λ)) = f(hθ(λ)) is expensive, we use the surrogate model-based
approach to learn the Pareto set model hθ(λ) as shown in Figure 4. Our method is orthogonal to the
choice of surrogate models, and we build independent Gaussian process models for each objective as
in other MOBO methods [14, 53].
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Gaussian Process Model. A single-objective Gaussian process [69] has a prior distribution defined
on the function space:

f(x) ∼ GP (µ(x), k(x,x)), (7)

where µ : X → R is the mean function and k : X × X → R is the covariance kernel function. With
n evaluated solutions {X,y} = {[x(i)], [f(x(i)]|i = 1, . . . , n)}, the posterior distribution can be
updated by maximizing the marginal likelihood based on the data. For a new solution xn+1, the
posterior mean and variance are:

µ̂(x(n+1)) = µ(x(n+1)) + kTK−1y, σ̂2(x(n+1)) = k(x(n+1),x(n+1))− kTK−1k, (8)

where k = k(x,X) is the kernel vector,K = k(X,X) is the kernel matrix, Matérn 5/2 kernel are
used for all models in this work. For m independent GP models, we let µ̂(x) = [µ̂1(x), · · · , µ̂m(x)]

and σ̂2(x) = [σ̂2
1(x), · · · , σ̂2

m(x)] be the predicted mean and variance for the objective vector.
Suppose we have a learned Pareto setMpsl, the GP models give us both predicted value µ̂(Mpsl) =

{µ̂(x)|x ∈ Mpsl} and uncertainty σ̂2(Mpsl) = {σ̂2(x)|x ∈ Mpsl} for the whole approximate
Pareto set.

Algorithm 1 PSL with GP Models

1: Input: Model x(λ) = hθ(λ)
2: Initialize the parameters θ0

3: for t = 1 to T do
4: Sample preferences {λk}Kk=1 ∼ Λ
5: Update θt with gradient descent in (10)
6: end for
7: Output: Model x(λ) = hθT

(λ)

Pareto Set Learning. Now we propose an effi-
cient algorithm to find the optimal parameter θ∗

for the Pareto set model hθ(λ). The optimal so-
lution setMtch_aug for augmented Tchebycheff
scalarization (4) is unknown, hence we need to
optimize all solutions generated by our model
x(λ) = hθ(λ) with respect to their correspond-
ing augmented Tchebycheff scalarization sub-
problems for all valid preferences:

θ∗ = arg min
θ

Eλ∼Λgtch_aug(x = hθ(λ)|λ). (9)

If the model is perfectly learned, the obtained approximate Pareto setMpsl = {x = hθ(λ)|λ ∈ Λ}
should be the same asMtch_aug. However, it is difficult to directly optimize (9) due to the expectation
over infinite preferences (|Λ| =∞). We use Monte Carlo sampling and gradient descent to iteratively
learn the model with the surrogate model:

θt+1 = θt − η
K∑
k=1

∇θ ĝtch_aug(x = hθ(λk)|λk), (10)

where we randomly sample K = 10 different valid preferences {λ1, · · · ,λK} ∼ Λ at each iteration
in this work. Here ĝtch_aug(·) is the augmented Tchebycheff scalarization with predicted objective
values:

ĝtch_aug(x|λ) = max
1≤i≤m

{λi(f̂i(x)− (z∗i − ε))}+ ρ

m∑
i=1

λif̂i(x). (11)

One design issue left is how to set the surrogate objective f̂(x). If we only want to obtain the current
predictive Pareto front, it is straightforward to use the posterior mean as the surrogate value. The
approximate Pareto front under the posterior mean could provide valuable information to decision-
makers. However, for Bayesian optimization, we have to take the uncertainty into account to balance
exploitation and exploration. Many widely-used criteria, such as expected improvement (EI) [59] and
upper confidence bound (UCB) [81], could be a more reasonable choice. In this work, we use the
lower confidence bound (LCB) for minimization problems.

f̂(x) = µ̂(x)− βσ̂(x). (12)

We simply set β = 1
2 and discuss the performance with other surrogate values in Appendix F.9.

The expensive objective function f(x) is usually black-box and non-differentiable, but we can easily
obtain the gradients for the Gaussian process and the set model. Indeed, gradient-based methods have
been widely used for optimizing the acquisition function in both BO [95, 93] and MOBO [14, 53].
The max operator in Tchebycheff scalarization is technically only subdifferentiable, but it is known to
have good subgradients [94] for surrogate optimization and can preserve convexity if the objectives
{f̂i(x)}mi=1 are all convex [9].
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The Pareto set learning algorithm with Gaussian process models is summarized in Algorithm 1. We
find that the simple random initialization and gradient descent are enough to learn a good Pareto set
approximation. The overparameterized neural network could be beneficial to overcome potential
non-convexity [52].

4.3 Batched selection on approximate Pareto set

Algorithm 2 MOBO with PSL

1: Input: Black-box vector-valued function f(x)
2: Initial Samples {X0,y0}
3: for t = 1 to T do
4: Train GPs based on {Xt−1,yt−1}
5: Learn set model hθt

(λ) with GPs (Alg. 1)
6: Select {x(b)}Bb=1 with the set model (Alg. 3)
7: Xt ←Xt−1 ∪ {x(b)}Bb=1,

yt ← yt−1 ∪ f({x(b)}Bb=1)
8: end for
9: Output: {Xt,yt} and final set model hθT

(λ)

Algorithm 3 Batch Selection with PSL

1: Input: Model x(λ) = hθ(λ), Batch
Size B

2: Sample P preferences
{λ(p)}Pp=1 ∼ Λ

3: Generate solutions
X = {x(λ(p))}Pp=1 onMpsl

4: Find subset {x(b)}Bb=1 ⊂X that has
the highest HVI(f̂({x(b)}Bb=1))

5: Output: Batch solutions {x(b)}Bb=1

In this subsection, we propose a lightweight yet efficient batched acquisition search for MOBO
with the learned Pareto set model. The algorithm framework is shown in Algorithm 2. The crucial
difference with other MOBO approaches is that we build a set model at each iteration for batched
solution selection as shown in Algorithm 1 and Algorithm 3. The batched selection procedure
contains two closely related steps:

Batch Sampling on Approximate Pareto Set. Our model naturally supports generating an arbitrary
number of solutions in batch. If the decision-maker’s preferences are available, we can use preference-
based sampling in this step. In this work, without any prior knowledge, we uniformly sample P
valid preferences {λ(p)}Pp=1, and generate the corresponding solutions X = {x(λ(p))}Pp=1 on the
approximate Pareto setMpsl.

Batch Selection. At each iteration of MOBO, we typically select a small number B (e.g., 5) of
solutions XB = {x(b)}Bb=1 from the sampled solutions X for expensive evaluations. To take all
already evaluated solutions {Xt−1,yt−1} into consideration, we use the hypervolume [103] as the
selection criteria. The hypervolume HV(y) = Vol(S) measures the volume of S dominated by a
set y in the objective space:

S = {r ∈ Rm | ∃y ∈ y such that y ≺ r ≺ r∗}, (13)

where r∗ is a reference point that dominated by all y ∈ y. The hypervolume improvement (HVI)
of a setXB with respect to the already evaluated solutions {Xt−1,yt−1} can be defined as:

HVI(f̂(XB)) = HV(yt−1 ∪ f̂(XB))− HV(yt−1), (14)

where XB = {x(b)}Bb=1 are selected solutions, and f̂(XB) are the surrogate values. In this work,
we mainly use the LCB (12) as the surrogate value for Bayesian optimization, and provide an ablation
study of different surrogate values in Appendix F.9.

A better trade-off set will have a larger hypervolume, and the true Pareto set always has the largest
one. We want to select a set ofXB such that their corresponding objective values f̂(XB) maximize
HVI(f̂(XB)). It would be computationally expensive to jointly optimize a set of solutions to
exactly maximize the hypervolume improvement (14), and therefore sequential greedy selection is
typically used [14]. In this work, we select the setXB in a sequential greedy manner fromX where
|X| = P = 1, 000 for all problems. More details can be found in Appendix D.2.
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5 Experiments

In this section, we compare the proposed PSL method with other MOBO approaches on the perfor-
mance of evaluated solutions. We also analyze the quality of the learned Pareto set model, which
other methods cannot produce.

Baseline Algorithms. We consider several widely-used MOBO methods and two model-free ap-
proaches as baselines. The implementations of NSGA-II [20], MOEA/D-EGO [99], TSEMO [10],
USeMO-EI [7], DGEMO [53] are from DGEMO’s open-source codebase1 based on pymoo2 [8].
The implementations of scrambled Sobol sequence, qParEGO [45], TS-TCH [62], qEHVI [14] and
qNEHVI [15] and from BoTorch3 [5]. We implement the proposed PSL4 in Pytorch [64].

Benchmarks and Real-World Problems. The algorithms are first compared on six newly pro-
posed synthetic test instances (see Appendix E.1), as well as the widely-used VLMOP1-3 [88] and
DTLZ2 [21] benchmark problems. Then we also conduct experiments on 5 different real-world
multi-objective engineering design problems (RE) [85], including 1) four bar truss design [12]; 2)
pressure vessel design [46]; 3) disk brake design [70]; 4) gear train design [19] and 5) rocket injector
design [87]. Details of these problems can be found in Appendix E.

Experiment Setting. For each experiment, we randomly generate 10 initial solutions for expensive
evaluations, and then conduct MOBO with 20 batched evaluations with batch size 5. Therefore, there
are total 110 expensive evaluations. For an experiment, all algorithms are independently run 10 times.
We use the hypervolume indicator [103] as the metric to compare the quality of evaluated solutions
chosen by different MOBO algorithms, which is monotonic to the Pareto dominance relation. The
ground truth Pareto front will always have the best (highest) hypervolume.

5.1 Experimental results and analysis

Table 1: Algorithm runtime per iteration (in seconds).
Problem #objs MOEA/D-EGO TSEMO USeMO-EI DGEMO qEHVI PSL(Ours): Model + Selection

F1 2 40.95 4.82 6.12 61.48 36.71 5.26 + 1.33 = 6.59
DTLZ2 3 71.83 7.28 8.76 83.57 75.92 7.02 + 1.59 = 8.61

MOBO Performance. We compare PSL with other MOBO methods on the performance of evaluated
solutions. Figure 5 shows the log hypervolume difference to the true/approximate Pareto front for
the synthetic/real-world problems during the optimization process. The approximate Pareto fronts
for the real-world design problems are from Tanabe and Ishibuchi [85] with a large number of
evaluations, which are also used in other MOBO works. In most experiments, our proposed PSL
method has better or comparable performance with other MOBO algorithms. Especially, as a
generalized scalarization-based method, PSL significantly outperforms the model-free counterparts
such as qParEGO [45, 15], MOEA/D-EGO [99], and TS-TCH [62]. These promising results validate
the efficiency and usefulness of Pareto set learning for MOBO. More discussion of the proposed
algorithm can be found in Appendix A.1 and Appendix A.2.

As shown in Table 1, PSL has a shorter or comparable total runtime (e.g., for modeling and batch
selection) per iteration with other MOBO methods, which can be ignored in the expensive optimization
problems (might take days). The algorithm runtimes for all problems can be found in Appendix F.1.
These results confirm that the Pareto set learning approach has a low computational overhead which
is affordable for MOBO.

The Learned Pareto Set. We present the approximate Pareto set learned by PSL under the posterior
mean after optimization in Figure 6, which is not supported by other MOBO methods. According
to the results, PSL can successfully learn the Pareto sets for different benchmarks and real-world
application problems with different shapes of Pareto fronts. For benchmark problems, PSL can
match the ground truth Pareto front with a small evaluation budget. For real-world applications,
the approximate Pareto fronts can capture the trade-off among objectives and provide valuable
information to support decision-making. We further discuss the the practicality of the approximate
Pareto set in Appendix A.3.

1 https://github.com/yunshengtian/DGEMO 2 https://pymoo.org/problems/index.html
3 https://github.com/pytorch/botorch 4 https://github.com/Xi-L/PSL-MOBO
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Figure 5: The log hypervolume difference w.r.t. the number of expensive evaluation of all algorithms
for 15 different problems. The solid line is the mean value averaged over 10 independent runs for
each algorithm, and the shaded region is the standard deviation around the mean value. The labels of
all algorithms can be found in Subfigure (a).
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Figure 6: The Learned Pareto Fronts (Relative Hypervolume Difference) by PSL: Our learned
Pareto fronts can match the ground truth Pareto fronts for the synthetic benchmarks, and have small
relative hypervolume differences to the approximate Pareto fronts for real-world design problems.
The learned Pareto front can well represent the optimal trade-offs among different objectives and
provide valuable information to support flexible decision-making.
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Figure 7: Different trade-off preferences and
their corresponding solutions on the approxi-
mate Pareto set.

Flexible Trade-off Adjustment. With our model,
the decision-makers can easily explore the whole ap-
proximate Pareto set by themselves to select the most
preferred trade-off solution(s) as shown in Figure 7.
No time-consuming communication between the opti-
mization modeler and the decision-maker is required.
By directly exploring the approximate Pareto front
in an interactive manner, the decision-makers can
observe and understand the connection between the
trade-off preferences and corresponding solutions in
real-time. It is also beneficial for decision-makers to
further adjust and assign their most accurate prefer-
ences. The ability to incorporate user’s knowledge
into decision making [30] could be crucial for many
real-world applications. More experimental results and analyses can be found in Appendix F.

6 Conclusion, limitation and future work

Conclusion. We have proposed a novel Pareto set learning method, which is a first attempt to
approximate the whole Pareto set for expensive multi-objective optimization. The advantages of
this approach are two-fold. First, by learning and utilizing the approximate Pareto set, it can serve
as an efficient MOBO method that outperforms different existing approaches. Secondly, it allows
decision-makers to readily explore the whole approximate Pareto set, which supports flexible and
interactive decision-making. We believe the proposed Pareto set learning method could provide a
novel way for solve expensive multi-objective optimization.

Limitation and Future Work. The quality of the approximate Pareto set mainly depends on the
accuracy of the surrogate models and the performance of the Pareto set learning algorithm, which
could be poor for problems with insufficient evaluation budget and/or large-scale search space. A
more detailed discussion of limitations and potential future work can be found in Appendix B, and
potential societal impact can be found in Appendix C.
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