Asymptotics of smoothed Wasserstein distances in the small noise regime

Supplementary Material

Yunzi Ding¹ Jonathan Niles-Weed²

¹Courant Institute of Mathematical Sciences, NYU

²Courant Institute of Mathematical Sciences and the Center for Data Science, NYU

yunziding@gmail.com
jnw@cims.nyu.edu

Contents

1	Omi	itted proofs for Section 3	1
	1.1	Proof of Proposition 3.6	1
	1.2	Proof of Proposition 3.8	2
	1.3	Proof of Proposition 3.13	3
	1.4	Proof of Proposition 3.14	4
2	Omi	itted proofs for Section 4	4
	2.1	Proof of Theorem 4.1	4
	2.2	Proof of Lemma 4.2	5
	2.3	Proof of Proposition 4.3	5
	2.4	Proof of Theorem 4.4	6
3	Omi	itted proofs for Section 5	7
	3.1	Proof of Theorem 5.1	7
	3.2	Proof of Lemma 5.2	8

1 Omitted proofs for Section 3

1.1 Proof of Proposition 3.6

Proof. Suppose Γ is f-strongly cyclically monotone for some positive residual f. Denote

$$M := \max \left\{ \max_{i} \|x_i\|, \max_{i} \|y_i\| \right\}.$$

We will show that Γ is ϵ -robust for any $\epsilon > 0$ satisfying

$$4M\epsilon < \min_{i \neq j} f(i,j).$$

In fact, for any distinct $\tau(1), \tau(2), \dots, \tau(n) \in [k]$, by the definition of f-strong cyclical monotonicity,

$$\sum_{i=1}^{n} \langle x_{\tau(i)}, y_{\tau(i)} - y_{\tau(i+1)} \rangle \ge \sum_{i=1}^{n} f(\tau(i), \tau(i+1))$$

Thus for any choice of $\alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}$ such that $\max \|\alpha_{\tau(i)}\| \le \epsilon$, we have

$$\begin{split} &\frac{1}{2} \sum_{i=1}^{n} \| (x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)}) \|^2 - \frac{1}{2} \sum_{i=1}^{n} \| x_{\tau(i)} - y_{\tau(i)} \|^2 \\ &= \sum_{i=1}^{n} \langle x_{\tau(i)}, y_{\tau(i)} - y_{\tau(i+1)} \rangle + \sum_{i=1}^{n} \langle \alpha_{\tau(i)}, x_{\tau(i)} - x_{\tau(i-1)} + y_{\tau(i)} - y_{\tau(i+1)} \rangle + \frac{1}{2} \sum_{i=1}^{n} \| \alpha_{\tau(i)} - \alpha_{\tau(i+1)} \|^2 \\ &\geq \sum_{i=1}^{n} f(\tau(i), \tau(i+1)) - 4nM\epsilon \\ &> 0. \end{split}$$

Hence $R(\Gamma) > 0$.

On the other hand, given $R(\Gamma) > 0$, we show that Γ is the unique optimal transport plan from $\{x_i\}$ to $\{y_i\}$. We prove by contradiction. If Γ is not unique, then there exists distinct $\tau(1), \ldots, \tau(n) \in [k]$ such that

$$\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 = \sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i+1)}\|^2.$$
 (1)

Since $R(\Gamma) > 0$, for $\epsilon_0 = R(\Gamma)/2$ and any choice of $\tau(1), \ldots, \tau(n)$ with $\|\tau(i)\| \le \epsilon_0$, we have

$$\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 \le \sum_{i=1}^{n} \|(x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)})\|^2.$$

Specifically, for any $j \in [n]$, letting $\tau(i) = 0$ for all $i \neq j$ in the above equation gives

$$2\langle \alpha_{\tau(j)}, x_{\tau(j)} - y_{\tau(j+1)} \rangle \le \|\alpha_{\tau(j)}\|^2$$

for any $\alpha_{\tau(j)} \in \mathbb{R}^d$ with $\|\alpha_{\tau(j)}\| \leq \epsilon_0$. Therefore we must have

$$x_{\tau(j)} = y_{\tau(j+1)}, \quad \forall j \in [k].$$

Using (1), we also know that

$$x_{\tau(i)} = y_{\tau(i)}, \quad \forall j \in [k],$$

which violates the assumption that $\{y_i\}$ are distinct points in \mathbb{R}^d . Thus we conclude that Γ is unique; hence it is also strongly cyclically monotone due to Proposition 3.8.

1.2 Proof of Proposition 3.8

Proof. (i) to (ii). The idea is borrowed from [1, 2, 3]. Suppose Γ is f-strongly cyclically monotone for a positive residual function f. For $i \in [k]$, denote

$$v_{i} := \inf_{\substack{\theta(1) = 1, \theta(n+1) = i, \\ \theta(2), \dots, \theta(n) \in [k], \\ \theta(s) \neq \theta(s+1)}} \left(\sum_{s=1}^{n} \langle x_{\theta(s)}, y_{\theta(s)} - y_{\theta(s+1)} \rangle - \sum_{s=1}^{n} f(\theta(s), \theta(s+1)) \right)$$

By the f-strong cyclical monotonicity, we have $v_1 \ge 0$. Furthermore, for i > 1 and any sequence $\{\theta(s)\}$ with $\theta(1) = 1$, $\theta(n+1) = i$ and $\theta(s) \ne \theta(s+1)$, there holds

$$\sum_{s=1}^{n} \langle x_{\theta(s)}, y_{\theta(s)} - y_{\theta(s+1)} \rangle + \langle x_i, y_i - y_1 \rangle \ge \sum_{s=1}^{n} f(\theta(s), \theta(s+1)) + f(i, 1)$$

and it follows that

$$v_i \ge f(i,1) - \langle x_i, y_i - y_1 \rangle > -\infty.$$

For any $j \neq i$ and any fixed $\epsilon > 0$, there exists a sequence $\{\theta(s)\}$ with $\theta(1) = 1$, $\theta(n+1) = i$ and $\theta(s) \neq \theta(s+1)$, such that

$$\sum_{s=1}^{n} \langle x_{\theta(s)}, y_{\theta(s)} - y_{\theta(s+1)} \rangle - \sum_{s=1}^{n} f(\theta(s), \theta(s+1)) \le v_i + \epsilon.$$
 (2)

Consider the same $\{\theta(s)\}$ with one more term $\theta(n+2) := j$. By definition of v_j we have

$$v_{j} \leq \sum_{s=1}^{n} \langle x_{\theta(s)}, y_{\theta(s)} - y_{\theta(s+1)} \rangle + \langle x_{i}, y_{i} - y_{j} \rangle - \sum_{s=1}^{n+1} f(\theta(s), \theta(s+1))$$
 (3)

Comparing (2) and (3) we get

$$v_i \le v_i + \langle x_i, y_i - y_j \rangle - f(i, j) + \epsilon \tag{4}$$

We set $\varphi(x_i) = -v_i$. Letting $\epsilon \downarrow 0$ in (4) yields

$$\langle x_i, y_i - y_j \rangle \ge \varphi(x_i) - \varphi(x_j) + f(i, j).$$

Hence Γ is f-strongly implementable.

(ii) to (iii). We prove by contradiction. Suppose Γ is not the unique optimal transport plan; this means either Γ is not optimal or there exists a different coupling Γ' with the same cost. Either case, there exists a sequence $\{\theta(s)\}_{s=1}^n$ such that

$$\sum_{s=1}^{n} \|x_{\theta(s)} - y_{\theta(s)}\|^2 \ge \sum_{s=1}^{n} \|x_{\theta(s)} - y_{\theta(s+1)}\|^2$$

Summing over s, we get

$$\begin{split} \sum_{s=1}^{n} f(\theta(s), \theta(s+1)) &\leq \sum_{s=1}^{n} \langle x_{\theta(s)}, y_{\theta(s)} - y_{\theta(s+1)} \rangle \\ &= \frac{1}{2} \left(\sum_{s=1}^{n} \|x_{\theta(s)} - y_{\theta(s+1)}\|^2 - \sum_{s=1}^{n} \|x_{\theta(s)} - y_{\theta(s)}\|^2 \right) \\ &\leq 0. \end{split}$$

a contradiction.

(iii) to (i). Suppose Γ is the unique optimal transport plan from $\{x_i\}$ to $\{y_i\}$. Denote c_0 the transport cost of Γ . For any other transport plan in the form of a bijection between $\{x_i\}$ and $\{y_i\}$, denote c_1 the minimum among their costs, then $c_1 > c_0$. Choose a small enough $\lambda > 0$, such that for any choice of $\tau(1), \tau(2), \ldots, \tau(n) \in [k]$ with no duplicates, there holds

$$\frac{\lambda}{2} \sum_{i=1}^{n} \|y_{\tau(i)} - y_{\tau(i+1)}\|^2 \le c_1 - c_0.$$

Now for $f(i,j) = \frac{\lambda}{2} ||y_i - y_j||^2$ we have

$$\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i+1)}\|^2 - \sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 \ge c_1 - c_0 \ge \sum_{i=1}^{n} f(\tau(i), \tau(i+1)).$$

If there are duplicates in $(\tau(1), \tau(2), \dots, \tau(n))$, we break the loop $\tau(1) \to \tau(2) \to \dots \to \tau(n) \to \tau(1)$ into separate loops without duplicates, apply the above inequality to each loop and sum them up. We conclude by definition that Γ is f-strongly cyclically monotone.

1.3 Proof of Proposition 3.13

Proof of Proposition 3.13. We only need to show that, for an ϵ satisfying (7), and any choice of $\tau(1), \tau(2), \ldots, \tau(n) \in [k]$, and $\alpha(1), \ldots, \alpha(n)$ with $\|\alpha(i)\| \le \epsilon$, there holds

$$\sum_{i} \|x_{\tau(i)} - y_{\tau(i)}\|^{2} \le \sum_{i} \|(x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)})\|^{2}.$$
 (5)

In fact, (5) is equivalent to

$$2\sum_{i} \langle \alpha_{\tau(i)}, y_{\tau(i+1)} - y_{\tau(i)} + x_{\tau(i-1)} - x_{\tau(i)} \rangle \le 2\sum_{i} \langle x_{\tau(i)}, y_{\tau(i)} - y_{\tau(i+1)} \rangle + \sum_{i} \|\alpha_{\tau(i)} - \alpha_{\tau(i+1)}\|^{2}$$

$$(6)$$

Since $\|\alpha(i)\| \le \epsilon$ for all i, we have

$$2\sum_{i} \langle \alpha_{\tau(i)}, y_{\tau(i+1)} - y_{\tau(i)} + x_{\tau(i-1)} - x_{\tau(i)} \rangle$$

$$\leq 2\sum_{i} \epsilon \cdot (\|y_{\tau(i+1)} - y_{\tau(i)}\| + \|x_{\tau(i+1)} - x_{\tau(i)}\|)$$

$$\leq \sum_{i} f(\tau(i), \tau(i+1))$$

where we used the choice of ϵ in the last inequality. In the meantime, strong implementability gives

$$2\sum_{i} \langle x_{\tau(i)}, y_{\tau(i)} - y_{\tau(i+1)} \rangle + \sum_{i} \|\alpha_{\tau(i)} - \alpha_{\tau(i+1)}\|^2 \ge \sum_{i} f(\tau(i), \tau(i+1)).$$

Therefore (6) holds, which completes the proof.

1.4 Proof of Proposition 3.14

Proof. Following the proof of Proposition 3.13, we only need to show that, for the residual f(i, j) defined in Theorem 3.10, there holds

$$2\sum_{i} \epsilon \cdot (\|y_{\tau(i+1)} - y_{\tau(i)}\| + \|x_{\tau(i+1)} - x_{\tau(i)}\|) \le \sum_{i} f(\tau(i), \tau(i+1)). \tag{7}$$

By the choice of ϵ , we have

$$2\sum_{i} \epsilon \cdot \left(\|y_{\tau(i+1)} - y_{\tau(i)}\| + \|x_{\tau(i+1)} - x_{\tau(i)}\| \right)$$

$$\leq \sum_{i} \max \left\{ \frac{1}{\beta} \|x_{\tau(i+1)} - x_{\tau(i)}\|^{2}, \alpha \|y_{\tau(i+1)} - y_{\tau(i)}\|^{2} \right\}.$$

Meanwhile,

$$\begin{split} & \sum_{i} f(\tau(i), \tau(i+1)) \\ & = \frac{1}{\beta - \alpha} \sum_{i} \left(\|x_{\tau(i)} - x_{\tau(i+1)}\|^{2} + \alpha\beta \|y_{\tau(i)} - y_{\tau(i+1)}\|^{2} - 2\alpha \langle y_{\tau(i)} - y_{\tau(i+1)}, x_{\tau(i)} - x_{\tau(i+1)} \rangle \right) \\ & \geq \frac{1}{\beta - \alpha} \sum_{i} \left(\|x_{\tau(i)} - x_{\tau(i+1)}\|^{2} + \alpha\beta \|y_{\tau(i)} - y_{\tau(i+1)}\|^{2} - \alpha \left(\lambda \|x_{\tau(i)} - x_{\tau(i+1)}\|^{2} + \frac{1}{\lambda} \|y_{\tau(i)} - y_{\tau(i+1)}\|^{2} \right) \right). \end{split}$$

The last inequality holds for any $\lambda>0$ by the Cauchy-Schwarz inequality. Choosing $\lambda=1/\beta$ and $\lambda=1/\alpha$ yields

$$\sum_{i} f(\tau(i), \tau(i+1)) \ge \max \left\{ \frac{1}{\beta} \|x_{\tau(i+1)} - x_{\tau(i)}\|^2, \alpha \|y_{\tau(i+1)} - y_{\tau(i)}\|^2 \right\}.$$

Therefore (7) holds, which completes the proof.

2 Omitted proofs for Section 4

2.1 Proof of Theorem 4.1

Proof. Define the truncated smoothing kernel

$$\tilde{\mathcal{N}}_{\sigma} := \mathcal{N}(0, \sigma^2 I) \cdot \mathbf{1}\{\|X\| \le \epsilon_*\} + (1 - p)\delta_0$$

where

$$p = \mathbb{P}\left[\|\mathcal{N}(0, \sigma^2 I)\| < \epsilon_*\right].$$

Since $\tilde{\mathcal{N}}_{\sigma}$ is supported on $B(0, \epsilon_*)$, by Lemma 4.2, we know

$$W_2(\mu * \tilde{\mathcal{N}}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma}) = W_2(\mu, \nu).$$

Therefore,

$$|W_{2}(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}) - W_{2}(\mu, \nu)|^{2}$$

$$= |W_{2}(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}) - W_{2}(\mu * \tilde{\mathcal{N}}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma})|^{2}$$

$$\leq (W_{2}(\mu * \mathcal{N}_{\sigma}, \mu * \tilde{\mathcal{N}}_{\sigma}) + W_{2}(\nu * \mathcal{N}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma}))^{2}$$

$$\lesssim \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^{2}I)} \left[||z||^{2} \mathbf{1}_{||z|| \geq \sigma_{*}} \right]$$

$$= \sigma^{2} \mathbb{E}_{z \sim \mathcal{N}(0, I)} \left[||z||^{2} \mathbf{1}_{||z|| \geq \sigma_{*}/\sigma} \right]$$

$$\lesssim \sigma \sigma_{*} e^{-\sigma_{*}^{2}/2\sigma^{2}}.$$

Here the second inequality is yielded by considering a coupling of $\mu * \mathcal{N}_{\sigma}$ and $\mu * \tilde{\mathcal{N}}_{\sigma}$ that is the distribution of $(X+Z,X+Z\cdot \mathbf{1}\{\|Z\|\leq \epsilon_*\})$, where X and Z are independent, $X\sim \mu$ and $Z\sim \mathcal{N}(0,\sigma^2I)$, and the same coupling for μ replaced with ν . Taking square root on both sides yields the result.

2.2 Proof of Lemma 4.2

Proof. We naturally split the source measure into k parts:

$$\mu * Q = \sum_{i=1}^{k} \left(\frac{1}{k} \delta(x_i) * Q \right)$$

Consider a map T which, for each $i \in [k]$, is defined by

$$T(x) = x + y_i - x_i \quad \forall x \in B(x_i, \sigma_*).$$

We can obtain a transport plan between $\mu*Q$ and $\nu*Q$ by considering the distribution of a pair of random variables (X,T(X)) for $X\sim\mu*Q$. The support of this plan lies in the set $\bigcup_{i=1}^k\bigcup_{\alpha\in B(0,\sigma_*)}(x_i+\alpha,y_i+\alpha)$. By the definition of $R(\Gamma)$, this set is cyclically monotone, so this coupling is optimal for $\mu*Q$ and $\nu*Q$ by Theorem 3.2. Therefore

$$W_2^2(\mu * Q, \nu * Q) = \int ||x - T(x)||^2 d(\mu * Q)(x)$$
$$= \frac{1}{k} \sum_{i=1}^k ||y_i - x_i||^2 = W_2^2(\mu, \nu),$$

as claimed.

2.3 Proof of Proposition 4.3

Proof. For M > 0, denote

$$g(m) := \sup \left\{ \sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 - \sum_{i=1}^{n} \|(x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)})\|^2 : \max_{i} \|\alpha_{\tau(i)}\| = m \right\},$$

then $G(M) = \sup\{g(m) : m \in [0, M]\}$. We first prove that g(m) is concave in m. In fact, denote the set

$$\mathcal{I} = \left\{ (\tau(1), \dots, \tau(n), \alpha_{\tau(1)}, \dots, \alpha_{\tau(n)}) : \ \tau(i) \in [k], \ \tau(i) \neq \tau(j), \ \max_{i} \|\alpha_{\tau(i)}\| = 1 \right\}.$$

By definition.

$$g(m) = \sup \left\{ \sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 - \sum_{i=1}^{n} \|(x_{\tau(i)} + m\alpha_{\tau(i)}) - (y_{\tau(i+1)} + m\alpha_{\tau(i+1)})\|^2 : (\tau(1), \dots, \tau(n), \alpha_{\tau(1)}, \dots, \alpha_{\tau(n)}) \in \mathcal{I} \right\}$$

Note that, for every choice of $(\tau(1), \ldots, \tau(n))$ and $\alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}) \in \mathcal{I}$,

$$\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 - \sum_{i=1}^{n} \|(x_{\tau(i)} + m\alpha_{\tau(i)}) - (y_{\tau(i+1)} + m\alpha_{\tau(i+1)})\|^2$$

is a concave function in m. Therefore, g(m) is concave in m, and G(M) is also concave in M. \square

2.4 Proof of Theorem 4.4

Proof. For $M > \sigma_*$, pick $\tau(1), \tau(2), \ldots, \tau(n) \in [k]$ and $\{\alpha_{\tau(i)}\}_{i=1}^n \subset \mathbb{R}^d$ such that $\|\alpha_{\tau(i)}\| \leq M$ and

$$\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 - \sum_{i=1}^{n} \|(x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)})\|^2 = G(M).$$

For every $i \in [k]$, denote $B_{\tau(i)}$ the ball centered at $x_{\tau(i)} + \alpha_{\tau(i)}$ with radius σ , and $\hat{B}_{\tau(i)}$ the ball centered at $y_{\tau(i)} + \alpha_{\tau(i)}$ with radius σ . Also denote

- $\gamma \in \Pi(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma})$ the law of (X + Z, Y + Z), where $(X, Y) \sim \frac{1}{k} \sum_{i=1}^{k} \delta(x_i, y_i)$ and $Z \sim \mathcal{N}_{\sigma}$ are independent.
- $\gamma_{\tau(i)} \in \Pi(\mathsf{Unif}(B_{\tau(i)}), \mathsf{Unif}(\hat{B}_{\tau(i)}))$ the coupling associated with the transport map $x \mapsto x + y_{\tau(i)} x_{\tau(i)};$
- $\tilde{\gamma}_{\tau(i)} \in \Pi(\mathsf{Unif}(B_{\tau(i)}), \mathsf{Unif}(\hat{B}_{\tau(i+1)}))$ the coupling associated with the transport map $x \mapsto x + y_{\tau(i+1)} x_{\tau(i)};$
- A constant $m = c_d \exp\left(-\frac{(M+\sigma)^2}{2\sigma^2}\right)$, where c_d is a constant only dependent on the dimension d

Consider the following measure in $\mathbb{R}^d \times \mathbb{R}^d$:

$$\tilde{\gamma} := \gamma - m \sum_{i=1}^{n} \gamma_{\tau(i)} + m \sum_{i=1}^{n} \tilde{\gamma}_{\tau(i)}.$$

We shall show that $\tilde{\gamma} \in \Pi(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma})$. We first verify that $\tilde{\gamma}$ is a positive measure on $\mathbb{R}^d \times \mathbb{R}^d$. In fact, for $x, y \in \mathbb{R}^d$,

$$\gamma(dx, dy) = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{1}{(\sqrt{2\pi}\sigma)^d} e^{-\frac{\|x - x_i\|^2}{2\sigma^2}} dx \cdot \delta_{x - x_i + y_i}(dy) \right).$$

Meanwhile,

$$\left(m \sum_{i=1}^{n} \gamma_{\tau(i)}\right) (dx, dy) = m \sum_{i=1}^{n} \left(\frac{\mathbf{1}\{x \in B_{\tau(i)}\}}{\mathsf{Vol}(B_{\tau(i)})} dx \cdot \delta_{x - x_{\tau(i)} + y_{\tau(i)}}(dy)\right).$$

For every $\tau(i)$ such that $x \in B_{\tau(i)}$, note that

$$||x - x_{\tau(i)}|| \le ||x - (x_{\tau(i)} + \alpha_{\tau(i)})|| + ||\alpha_{\tau(i)}|| \le \sigma + M,$$

hence (with a proper choice of c_d)

$$\frac{1}{k} \frac{1}{(\sqrt{2\pi}\sigma)^d} e^{-\frac{\|x - x_{\tau(i)}\|^2}{2\sigma^2}} \ge \frac{1}{k} \frac{1}{(\sqrt{2\pi}\sigma)^d} e^{-\frac{(M + \sigma)^2}{2\sigma^2}} \ge \frac{m}{\text{Vol}(B_{\tau(i)})}.$$

As a result, $\gamma - m \sum_{i=1}^{n} \gamma_{\tau(i)} \ge 0$, and $\tilde{\gamma}$ is a positive measure. Also note that its first marginal (i.e. the marginal on the first d dimensions) and second marginal (i.e. the marginal on the last d

dimensions) agree with the respective marginals of γ . Thus we conclude that $\tilde{\gamma} \in \Pi(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma})$. Now note that

$$\int c(x,y)d\gamma(x,y) - \int c(x,y)d\tilde{\gamma}(x,y)$$

$$= m \left(\sum_{i=1}^{n} \|x_{\tau(i)} - y_{\tau(i)}\|^2 - \sum_{i=1}^{n} \|(x_{\tau(i)} + \alpha_{\tau(i)}) - (y_{\tau(i+1)} + \alpha_{\tau(i+1)})\|^2 \right)$$

$$= m \cdot G(M).$$

In the meantime,

$$\int c(x,y)d\gamma(x,y) = \frac{1}{2k} \sum_{i=1}^{k} ||x_i - y_i||^2 = W_2^2(\mu,\nu),$$

therefore,

$$\begin{aligned} &W_2^2(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}) \\ &\leq \int c(x, y) d\tilde{\gamma}(x, y) \\ &\leq W_2^2(\mu, \nu) - G(M) \cdot c_d \exp\left(-\frac{(M + \sigma)^2}{2\sigma^2}\right). \end{aligned}$$

In particular, choosing $M = \sigma + \sigma_*$ yields

$$W_2^2(\mu,\nu) - W_2^2(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}) \gtrsim G(\sigma + \sigma_*) \exp\left(-c\frac{\sigma_*^2}{\sigma^2}\right).$$

The rest follows from the observation that, for $\sigma \in (0, 2\sigma_*)$,

$$G(\sigma + \sigma_*) = G(\sigma + \sigma_*) - G(\sigma_*) \ge \frac{G(3\sigma_*) - G(\sigma_*)}{2\sigma_*} \cdot \sigma$$

since G is concave by Proposition 4.3.

3 Omitted proofs for Section 5

3.1 Proof of Theorem 5.1

Proof. Suppose that there exists a transport plan π between μ and ν which achieves the optimal cost and is not a perfect matching. Without loss of generality, we assume that (x_1,y_1) and (x_1,y_2) both lie in the support of π . Let $\lambda = \min\{\pi(x_1,y_1),\pi(x_1,y_2)\}$. We decompose μ and ν as

$$\hat{\mu} = \mu - 2\lambda \delta(x_1), \quad \tilde{\mu} = 2\lambda \delta(x_1),$$

$$\hat{\nu} = \nu - \lambda \left(\delta(y_1) + \delta(y_2)\right), \quad \tilde{\nu} = \lambda \left(\delta(y_1) + \delta(y_2)\right).$$

By Lemma 5.2, there exists $c_0 > 0$ such that for $\sigma \in (0, c_0)$,

$$W_2^2(\tilde{\mu}, \tilde{\nu}) - W_2^2(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma}) \gtrsim \sigma.$$

Therefore, for $\sigma \in (0, c_0)$, we also have

$$W_2^2(\mu,\nu) - W_2^2(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma})$$

$$\geq W_2^2(\hat{\mu}, \hat{\nu}) - W_2^2(\hat{\mu} * \mathcal{N}_{\sigma}, \hat{\nu} * \mathcal{N}_{\sigma}) + W_2^2(\tilde{\mu}, \tilde{\nu}) - W_2^2(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma})$$

$$\geq W_2^2(\tilde{\mu}, \tilde{\nu}) - W_2^2(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma})$$

$$\geq \sigma.$$

3.2 Proof of Lemma 5.2

Proof. First suppose that x, y_1, y_2 are not on the same line with y_1 between x and y_2 or y_2 between x and y_1 . Let Δ be the bisecting hyperplane of $\angle y_1 x y_2$, namely

$$\Delta = \left\{ z \in \mathbb{R}^d : \frac{\langle z - x, y_1 - x \rangle}{|y_1 - x|} = \frac{\langle z - x, y_2 - x \rangle}{|y_2 - x|} \right\},\,$$

and define its unit normal vector **m** such that $\langle \mathbf{m}, y_1 - x \rangle > 0$. We adopt the decomposition

$$\mu_{+} := \mathcal{N}(x, \sigma^{2}) \mid \langle z - x, \mathbf{m} \rangle > 0,$$

$$\mu_{-} := \mathcal{N}(x, \sigma^{2}) \mid \langle z - x, \mathbf{m} \rangle < 0,$$
(8)

and

$$\nu_{1+} := \mathcal{N}(y_1, \sigma^2) \mid \langle z - y_1, \mathbf{m} \rangle > 0,
\nu_{1-} := \mathcal{N}(y_1, \sigma^2) \mid \langle z - y_1, \mathbf{m} \rangle < 0,
\nu_{2+} := \mathcal{N}(y_2, \sigma^2) \mid \langle z - y_2, \mathbf{m} \rangle > 0,
\nu_{2-} := \mathcal{N}(y_2, \sigma^2) \mid \langle z - y_2, \mathbf{m} \rangle < 0.$$
(9)

Note that all the six sub-probability measures above have mass 1/2. By the definition of W_2 , we have

$$W_2^2(\mu_0 * \mathcal{N}_{\sigma}, \nu_0 * \mathcal{N}_{\sigma}) \le \frac{1}{2} \left(W_2^2(\mu_+, \nu_{1+}) + W_2^2(\mu_+, \nu_{1-}) + W_2^2(\mu_-, \nu_{2+}) + W_2^2(\mu_-, \nu_{2-}) \right). \tag{10}$$

It is obvious that

$$W_2^2(\mu_+, \nu_{1+}) = \frac{1}{2} ||x - y_1||^2, \quad W_2^2(\mu_-, \nu_{2-}) = \frac{1}{2} ||x - y_2||^2.$$

For $W_2^2(\mu_+, \nu_{1-})$, consider the map

$$T_{\#}(x+t) = y_1 - t, \quad t \sim \mathcal{N}(0, \sigma^2 I)$$

we have

$$\begin{split} W_2^2(\mu_+, \nu_{1-}) &\leq \mathbb{E}_{u \sim \mu_+} \|u - T_\# u\|^2 \\ &= \mathbb{E}_{u \sim \mu_+} \|u - (y_1 - u + x)\|^2 \\ &= \frac{1}{2} \|x - y_1\|^2 - 4\mathbb{E}_{u \sim \mu_+} \langle y_1 - x, u - x \rangle + 4\mathbb{E}_{u \sim \mu_+} \|u - x\|^2 \\ &= \frac{1}{2} \|x - y_1\|^2 - 4c_1 \sigma \langle \mathbf{m}, y_1 - x \rangle + 4c_2 \sigma^2, \end{split}$$

where c_1 and c_2 are absolute positive constants. Similarly,

$$W_2^2(\mu_-, \nu_{2+}) \le \frac{1}{2} ||x - y_2||^2 - 4c_1 \sigma \langle \mathbf{m}, x - y_2 \rangle + 4c_2 \sigma^2.$$

Plugging into (10) we get

$$W_2^2(\mu_0 * \mathcal{N}_{\sigma}, \nu_0 * \mathcal{N}_{\sigma}) \leq W_2^2(\mu_0, \nu_0) - 4c_1\sigma \langle \mathbf{m}, y_1 - y_2 \rangle + 8c_2\sigma^2,$$
 hence $W_2^2(\mu_0, \nu_0) - W_2^2(\mu_0 * \mathcal{N}_{\sigma}, \nu_0 * \mathcal{N}_{\sigma}) \gtrsim \sigma$ for small σ , since $\langle \mathbf{m}, y_1 - y_2 \rangle > 0$.

Finally, we consider the special case where x, y_1, y_2 are on the same line and y_1 is between x and y_2 . We choose \mathbf{m} the unit vector along the direction $x - y_1$, and the same line of proof yields the conclusion.

References

- [1] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context. *Journal of mathematical Economics*, 16(2):191–200, 1987.
- [2] Ralph Rockafellar. Characterization of the subdifferentials of convex functions. *Pacific Journal of Mathematics*, 17(3):497–510, 1966.
- [3] Ralph Rockafellar. On the maximal monotonicity of subdifferential mappings. *Pacific Journal of Mathematics*, 33(1):209–216, 1970.