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1 Omitted proofs for Section 3

1.1 Proof of Proposition 3.6

Proof. Suppose Γ is f -strongly cyclically monotone for some positive residual f . Denote

M := max
{

max
i
‖xi‖,max

i
‖yi‖

}
.

We will show that Γ is ε-robust for any ε > 0 satisfying

4Mε < min
i 6=j

f(i, j).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



In fact, for any distinct τ(1), τ(2), . . . , τ(n) ∈ [k], by the definition of f -strong cyclical monotonic-
ity,

n∑
i=1

〈xτ(i), yτ(i) − yτ(i+1)〉 ≥
n∑
i=1

f(τ(i), τ(i+ 1))

Thus for any choice of ατ(1), . . . , ατ(n) such that max ‖ατ(i)‖ ≤ ε, we have

1

2

n∑
i=1

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2 −
1

2

n∑
i=1

‖xτ(i) − yτ(i)‖2

=

n∑
i=1

〈xτ(i), yτ(i) − yτ(i+1)〉+

n∑
i=1

〈ατ(i), xτ(i) − xτ(i−1) + yτ(i) − yτ(i+1)〉+
1

2

n∑
i=1

‖ατ(i) − ατ(i+1)‖2

≥
n∑
i=1

f(τ(i), τ(i+ 1))− 4nMε

> 0.

Hence R(Γ) > 0.

On the other hand, given R(Γ) > 0, we show that Γ is the unique optimal transport plan from {xi}
to {yi}. We prove by contradiction. If Γ is not unique, then there exists distinct τ(1), . . . , τ(n) ∈ [k]
such that

n∑
i=1

‖xτ(i) − yτ(i)‖2 =

n∑
i=1

‖xτ(i) − yτ(i+1)‖2. (1)

Since R(Γ) > 0, for ε0 = R(Γ)/2 and any choice of τ(1), . . . , τ(n) with ‖τ(i)‖ ≤ ε0, we have
n∑
i=1

‖xτ(i) − yτ(i)‖2 ≤
n∑
i=1

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2.

Specifically, for any j ∈ [n], letting τ(i) = 0 for all i 6= j in the above equation gives

2〈ατ(j), xτ(j) − yτ(j+1)〉 ≤ ‖ατ(j)‖2

for any ατ(j) ∈ Rd with ‖ατ(j)‖ ≤ ε0. Therefore we must have

xτ(j) = yτ(j+1), ∀ j ∈ [k].

Using (1), we also know that
xτ(j) = yτ(j), ∀ j ∈ [k],

which violates the assumption that {yi} are distinct points in Rd. Thus we conclude that Γ is unique;
hence it is also strongly cyclically monotone due to Proposition 3.8.

1.2 Proof of Proposition 3.8

Proof. (i) to (ii). The idea is borrowed from [1, 2, 3]. Suppose Γ is f -strongly cyclically monotone
for a positive residual function f . For i ∈ [k], denote

vi := inf
θ(1)=1,θ(n+1)=i,
θ(2),...,θ(n)∈[k],
θ(s)6=θ(s+1)

(
n∑
s=1

〈xθ(s), yθ(s) − yθ(s+1)〉 −
n∑
s=1

f(θ(s), θ(s+ 1))

)

By the f -strong cyclical monotonicity, we have v1 ≥ 0. Furthermore, for i > 1 and any sequence
{θ(s)} with θ(1) = 1, θ(n+ 1) = i and θ(s) 6= θ(s+ 1), there holds

n∑
s=1

〈xθ(s), yθ(s) − yθ(s+1)〉+ 〈xi, yi − y1〉 ≥
n∑
s=1

f(θ(s), θ(s+ 1)) + f(i, 1)

and it follows that
vi ≥ f(i, 1)− 〈xi, yi − y1〉 > −∞.
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For any j 6= i and any fixed ε > 0, there exists a sequence {θ(s)} with θ(1) = 1, θ(n+ 1) = i and
θ(s) 6= θ(s+ 1), such that

n∑
s=1

〈xθ(s), yθ(s) − yθ(s+1)〉 −
n∑
s=1

f(θ(s), θ(s+ 1)) ≤ vi + ε. (2)

Consider the same {θ(s)} with one more term θ(n+ 2) := j. By definition of vj we have

vj ≤
n∑
s=1

〈xθ(s), yθ(s) − yθ(s+1)〉+ 〈xi, yi − yj〉 −
n+1∑
s=1

f(θ(s), θ(s+ 1)) (3)

Comparing (2) and (3) we get

vj ≤ vi + 〈xi, yi − yj〉 − f(i, j) + ε (4)

We set ϕ(xi) = −vi. Letting ε ↓ 0 in (4) yields

〈xi, yi − yj〉 ≥ ϕ(xi)− ϕ(xj) + f(i, j).

Hence Γ is f -strongly implementable.
(ii) to (iii). We prove by contradiction. Suppose Γ is not the unique optimal transport plan; this
means either Γ is not optimal or there exists a different coupling Γ′ with the same cost. Either case,
there exists a sequence {θ(s)}ns=1 such that

n∑
s=1

‖xθ(s) − yθ(s)‖2 ≥
n∑
s=1

‖xθ(s) − yθ(s+1)‖2

Summing over s, we get
n∑
s=1

f(θ(s), θ(s+ 1)) ≤
n∑
s=1

〈xθ(s), yθ(s) − yθ(s+1)〉

=
1

2

(
n∑
s=1

‖xθ(s) − yθ(s+1)‖2 −
n∑
s=1

‖xθ(s) − yθ(s)‖2
)

≤ 0,

a contradiction.
(iii) to (i). Suppose Γ is the unique optimal transport plan from {xi} to {yi}. Denote c0 the transport
cost of Γ. For any other transport plan in the form of a bijection between {xi} and {yi}, denote c1
the minimum among their costs, then c1 > c0. Choose a small enough λ > 0, such that for any
choice of τ(1), τ(2), . . . , τ(n) ∈ [k] with no duplicates, there holds

λ

2

n∑
i=1

‖yτ(i) − yτ(i+1)‖2 ≤ c1 − c0.

Now for f(i, j) = λ
2 ‖yi − yj‖

2 we have
n∑
i=1

‖xτ(i) − yτ(i+1)‖2 −
n∑
i=1

‖xτ(i) − yτ(i)‖2 ≥ c1 − c0 ≥
n∑
i=1

f(τ(i), τ(i+ 1)).

If there are duplicates in (τ(1), τ(2), . . . , τ(n)), we break the loop τ(1)→ τ(2)→ · · · → τ(n)→
τ(1) into separate loops without duplicates, apply the above inequality to each loop and sum them
up. We conclude by definition that Γ is f -strongly cyclically monotone.

1.3 Proof of Proposition 3.13

Proof of Proposition 3.13. We only need to show that, for an ε satisfying (7), and any choice of
τ(1), τ(2), . . . , τ(n) ∈ [k], and α(1), . . . , α(n) with ‖α(i)‖ ≤ ε, there holds∑

i

‖xτ(i) − yτ(i)‖2 ≤
∑
i

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2. (5)
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In fact, (5) is equivalent to

2
∑
i

〈ατ(i), yτ(i+1)−yτ(i)+xτ(i−1)−xτ(i)〉 ≤ 2
∑
i

〈xτ(i), yτ(i)−yτ(i+1)〉+
∑
i

‖ατ(i)−ατ(i+1)‖2

(6)
Since ‖α(i)‖ ≤ ε for all i, we have

2
∑
i

〈ατ(i), yτ(i+1) − yτ(i) + xτ(i−1) − xτ(i)〉

≤ 2
∑
i

ε ·
(
‖yτ(i+1) − yτ(i)‖+ ‖xτ(i+1) − xτ(i)‖

)
≤
∑
i

f(τ(i), τ(i+ 1))

where we used the choice of ε in the last inequality. In the meantime, strong implementability gives

2
∑
i

〈xτ(i), yτ(i) − yτ(i+1)〉+
∑
i

‖ατ(i) − ατ(i+1)‖2 ≥
∑
i

f(τ(i), τ(i+ 1)).

Therefore (6) holds, which completes the proof.

1.4 Proof of Proposition 3.14

Proof. Following the proof of Proposition 3.13, we only need to show that, for the residual f(i, j)
defined in Theorem 3.10, there holds

2
∑
i

ε ·
(
‖yτ(i+1) − yτ(i)‖+ ‖xτ(i+1) − xτ(i)‖

)
≤
∑
i

f(τ(i), τ(i+ 1)). (7)

By the choice of ε, we have

2
∑
i

ε ·
(
‖yτ(i+1) − yτ(i)‖+ ‖xτ(i+1) − xτ(i)‖

)
≤
∑
i

max

{
1

β
‖xτ(i+1) − xτ(i)‖2, α‖yτ(i+1) − yτ(i)‖2

}
.

Meanwhile,∑
i

f(τ(i), τ(i+ 1))

=
1

β − α
∑
i

(
‖xτ(i) − xτ(i+1)‖2 + αβ‖yτ(i) − yτ(i+1)‖2 − 2α〈yτ(i) − yτ(i+1), xτ(i) − xτ(i+1)〉

)
≥ 1

β − α
∑
i

(
‖xτ(i) − xτ(i+1)‖2 + αβ‖yτ(i) − yτ(i+1)‖2 − α

(
λ‖xτ(i) − xτ(i+1)‖2 +

1

λ
‖yτ(i) − yτ(i+1)‖2

))
.

The last inequality holds for any λ > 0 by the Cauchy-Schwarz inequality. Choosing λ = 1/β and
λ = 1/α yields∑

i

f(τ(i), τ(i+ 1)) ≥ max

{
1

β
‖xτ(i+1) − xτ(i)‖2, α‖yτ(i+1) − yτ(i)‖2

}
.

Therefore (7) holds, which completes the proof.

2 Omitted proofs for Section 4

2.1 Proof of Theorem 4.1

Proof. Define the truncated smoothing kernel

Ñσ := N (0, σ2I) · 1{‖X‖ ≤ ε∗}+ (1− p)δ0
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where
p = P

[
‖N (0, σ2I)‖ < ε∗

]
.

Since Ñσ is supported on B(0, ε∗), by Lemma 4.2, we know

W2(µ ∗ Ñσ, ν ∗ Ñσ) = W2(µ, ν).

Therefore,

|W2(µ ∗ Nσ, ν ∗ Nσ)−W2(µ, ν)|2

= |W2(µ ∗ Nσ, ν ∗ Nσ)−W2(µ ∗ Ñσ, ν ∗ Ñσ)|2

≤ (W2(µ ∗ Nσ, µ ∗ Ñσ) +W2(ν ∗ Nσ, ν ∗ Ñσ))2

. Ez∼N (0,σ2I)

[
‖z‖21‖z‖≥σ∗

]
= σ2 Ez∼N (0,I)

[
‖z‖21‖z‖≥σ∗/σ

]
. σσ∗e

−σ2
∗/2σ

2

.

Here the second inequality is yielded by considering a coupling of µ ∗ Nσ and µ ∗ Ñσ that is
the distribution of (X + Z,X + Z · 1{‖Z‖ ≤ ε∗}), where X and Z are independent, X ∼ µ and
Z ∼ N (0, σ2I), and the same coupling for µ replaced with ν. Taking square root on both sides
yields the result.

2.2 Proof of Lemma 4.2

Proof. We naturally split the source measure into k parts:

µ ∗Q =

k∑
i=1

(
1

k
δ(xi) ∗Q

)
Consider a map T which, for each i ∈ [k], is defined by

T (x) = x+ yi − xi ∀x ∈ B(xi, σ∗) .

We can obtain a transport plan between µ ∗ Q and ν ∗ Q by considering the distribution of a
pair of random variables (X,T (X)) for X ∼ µ ∗ Q. The support of this plan lies in the set⋃k
i=1

⋃
α∈B(0,σ∗)

(xi +α, yi +α). By the definition of R(Γ), this set is cyclically monotone, so this
coupling is optimal for µ ∗Q and ν ∗Q by Theorem 3.2. Therefore

W 2
2 (µ ∗Q, ν ∗Q) =

∫
‖x− T (x)‖2d(µ ∗Q)(x)

=
1

k

k∑
i=1

‖yi − xi‖2 = W 2
2 (µ, ν) ,

as claimed.

2.3 Proof of Proposition 4.3

Proof. For M > 0, denote

g(m) := sup

{
n∑
i=1

‖xτ(i) − yτ(i)‖2 −
n∑
i=1

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2 : max
i
‖ατ(i)‖ = m

}
,

then G(M) = sup{g(m) : m ∈ [0,M ]}. We first prove that g(m) is concave in m. In fact, denote
the set

I =
{

(τ(1), . . . , τ(n), ατ(1), . . . , ατ(n)) : τ(i) ∈ [k], τ(i) 6= τ(j), max
i
‖ατ(i)‖ = 1

}
.

By definition,

g(m) = sup

{
n∑
i=1

‖xτ(i) − yτ(i)‖2 −
n∑
i=1

‖(xτ(i) +mατ(i))− (yτ(i+1) +mατ(i+1))‖2 :

(τ(1), . . . , τ(n), ατ(1), . . . , ατ(n)) ∈ I
}
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Note that, for every choice of (τ(1), . . . , τ(n)) and ατ(1), . . . , ατ(n)) ∈ I,

n∑
i=1

‖xτ(i) − yτ(i)‖2 −
n∑
i=1

‖(xτ(i) +mατ(i))− (yτ(i+1) +mατ(i+1))‖2

is a concave function in m. Therefore, g(m) is concave in m, and G(M) is also concave in M .

2.4 Proof of Theorem 4.4

Proof. For M > σ∗, pick τ(1), τ(2), . . . , τ(n) ∈ [k] and {ατ(i)}ni=1 ⊂ Rd such that ‖ατ(i)‖ ≤ M
and

n∑
i=1

‖xτ(i) − yτ(i)‖2 −
n∑
i=1

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2 = G(M).

For every i ∈ [k], denote Bτ(i) the ball centered at xτ(i) + ατ(i) with radius σ, and B̂τ(i) the ball
centered at yτ(i) + ατ(i) with radius σ. Also denote

• γ ∈ Π(µ ∗Nσ, ν ∗Nσ) the law of (X +Z, Y +Z), where (X,Y ) ∼ 1
k

∑k
i=1 δ(xi, yi) and

Z ∼ Nσ are independent.

• γτ(i) ∈ Π(Unif(Bτ(i)),Unif(B̂τ(i))) the coupling associated with the transport map

x 7→ x+ yτ(i) − xτ(i);

• γ̃τ(i) ∈ Π(Unif(Bτ(i)),Unif(B̂τ(i+1))) the coupling associated with the transport map

x 7→ x+ yτ(i+1) − xτ(i);

• A constant m = cd exp
(
− (M+σ)2

2σ2

)
, where cd is a constant only dependent on the dimen-

sion d.

Consider the following measure in Rd × Rd:

γ̃ := γ −m
n∑
i=1

γτ(i) +m

n∑
i=1

γ̃τ(i).

We shall show that γ̃ ∈ Π(µ ∗Nσ, ν ∗Nσ). We first verify that γ̃ is a positive measure on Rd ×Rd.
In fact, for x, y ∈ Rd,

γ(dx, dy) =
1

k

k∑
i=1

(
1

(
√

2πσ)d
e−
‖x−xi‖

2

2σ2 dx · δx−xi+yi(dy)

)
.

Meanwhile,(
m

n∑
i=1

γτ(i)

)
(dx, dy) = m

n∑
i=1

(
1{x ∈ Bτ(i)}
Vol(Bτ(i))

dx · δx−xτ(i)+yτ(i)(dy)

)
.

For every τ(i) such that x ∈ Bτ(i), note that

‖x− xτ(i)‖ ≤ ‖x− (xτ(i) + ατ(i))‖+ ‖ατ(i)‖ ≤ σ +M,

hence (with a proper choice of cd)

1

k

1

(
√

2πσ)d
e−
‖x−xτ(i)‖

2

2σ2 ≥ 1

k

1

(
√

2πσ)d
e−

(M+σ)2

2σ2 ≥ m

Vol(Bτ(i))
.

As a result, γ − m
∑n
i=1 γτ(i) ≥ 0, and γ̃ is a positive measure. Also note that its first marginal

(i.e. the marginal on the first d dimensions) and second marginal (i.e. the marginal on the last d

6



dimensions) agree with the respective marginals of γ. Thus we conclude that γ̃ ∈ Π(µ∗Nσ, ν∗Nσ).
Now note that∫

c(x, y)dγ(x, y)−
∫
c(x, y)dγ̃(x, y)

= m

(
n∑
i=1

‖xτ(i) − yτ(i)‖2 −
n∑
i=1

‖(xτ(i) + ατ(i))− (yτ(i+1) + ατ(i+1))‖2
)

= m ·G(M).

In the meantime, ∫
c(x, y)dγ(x, y) =

1

2k

k∑
i=1

‖xi − yi‖2 = W 2
2 (µ, ν),

therefore,
W 2

2 (µ ∗ Nσ, ν ∗ Nσ)

≤
∫
c(x, y)dγ̃(x, y)

≤W 2
2 (µ, ν)−G(M) · cd exp

(
− (M + σ)2

2σ2

)
.

In particular, choosing M = σ + σ∗ yields

W 2
2 (µ, ν)−W 2

2 (µ ∗ Nσ, ν ∗ Nσ) & G(σ + σ∗) exp

(
−cσ

2
∗
σ2

)
.

The rest follows from the observation that, for σ ∈ (0, 2σ∗),

G(σ + σ∗) = G(σ + σ∗)−G(σ∗) ≥
G(3σ∗)−G(σ∗)

2σ∗
· σ

since G is concave by Proposition 4.3.

3 Omitted proofs for Section 5

3.1 Proof of Theorem 5.1

Proof. Suppose that there exists a transport plan π between µ and ν which achieves the optimal cost
and is not a perfect matching. Without loss of generality, we assume that (x1, y1) and (x1, y2) both
lie in the support of π. Let λ = min{π(x1, y1), π(x1, y2)}. We decompose µ and ν as

µ̂ = µ− 2λδ(x1), µ̃ = 2λδ(x1),

ν̂ = ν − λ (δ(y1) + δ(y2)) , ν̃ = λ (δ(y1) + δ(y2)) .

By Lemma 5.2, there exists c0 > 0 such that for σ ∈ (0, c0),

W 2
2 (µ̃, ν̃)−W 2

2 (µ̃ ∗ Nσ, ν̃ ∗ Nσ) & σ.

Therefore, for σ ∈ (0, c0), we also have

W 2
2 (µ, ν)−W 2

2 (µ ∗ Nσ, ν ∗ Nσ)

≥W 2
2 (µ̂, ν̂)−W 2

2 (µ̂ ∗ Nσ, ν̂ ∗ Nσ) +W 2
2 (µ̃, ν̃)−W 2

2 (µ̃ ∗ Nσ, ν̃ ∗ Nσ)

≥W 2
2 (µ̃, ν̃)−W 2

2 (µ̃ ∗ Nσ, ν̃ ∗ Nσ)

& σ.
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3.2 Proof of Lemma 5.2

Proof. First suppose that x, y1, y2 are not on the same line with y1 between x and y2 or y2 between
x and y1. Let ∆ be the bisecting hyperplane of ∠y1xy2, namely

∆ =

{
z ∈ Rd :

〈z − x, y1 − x〉
|y1 − x|

=
〈z − x, y2 − x〉
|y2 − x|

}
,

and define its unit normal vector m such that 〈m, y1 − x〉 > 0. We adopt the decomposition

µ+ := N (x, σ2) | 〈z − x,m〉 > 0,

µ− := N (x, σ2) | 〈z − x,m〉 < 0,
(8)

and
ν1+ := N (y1, σ

2) | 〈z − y1,m〉 > 0,

ν1− := N (y1, σ
2) | 〈z − y1,m〉 < 0,

ν2+ := N (y2, σ
2) | 〈z − y2,m〉 > 0,

ν2− := N (y2, σ
2) | 〈z − y2,m〉 < 0.

(9)

Note that all the six sub-probability measures above have mass 1/2. By the definition of W2, we
have

W 2
2 (µ0 ∗ Nσ, ν0 ∗ Nσ) ≤ 1

2

(
W 2

2 (µ+, ν1+) +W 2
2 (µ+, ν1−) +W 2

2 (µ−, ν2+) +W 2
2 (µ−, ν2−)

)
.

(10)
It is obvious that

W 2
2 (µ+, ν1+) =

1

2
‖x− y1‖2, W 2

2 (µ−, ν2−) =
1

2
‖x− y2‖2.

For W 2
2 (µ+, ν1−), consider the map

T#(x+ t) = y1 − t, t ∼ N (0, σ2I)

we have
W 2

2 (µ+, ν1−) ≤ Eu∼µ+
‖u− T#u‖2

= Eu∼µ+
‖u− (y1 − u+ x)‖2

=
1

2
‖x− y1‖2 − 4Eu∼µ+

〈y1 − x, u− x〉+ 4Eu∼µ+
‖u− x‖2

=
1

2
‖x− y1‖2 − 4c1σ〈m, y1 − x〉+ 4c2σ

2,

where c1 and c2 are absolute positive constants. Similarly,

W 2
2 (µ−, ν2+) ≤ 1

2
‖x− y2‖2 − 4c1σ〈m, x− y2〉+ 4c2σ

2.

Plugging into (10) we get
W 2

2 (µ0 ∗ Nσ, ν0 ∗ Nσ) ≤W 2
2 (µ0, ν0)− 4c1σ〈m, y1 − y2〉+ 8c2σ

2,

hence W 2
2 (µ0, ν0)−W 2

2 (µ0 ∗ Nσ, ν0 ∗ Nσ) & σ for small σ, since 〈m, y1 − y2〉 > 0.

Finally, we consider the special case where x, y1, y2 are on the same line and y1 is between x and
y2. We choose m the unit vector along the direction x − y1, and the same line of proof yields the
conclusion.
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