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2 Omitted proofs for Section 4

1 Omitted proofs for Section 3

1.1 Proof of Proposition 3.6]

Proof. Suppose I is f-strongly cyclically monotone for some positive residual f. Denote
M = max {max [l |, maux |y
7 K3

We will show that I" is e-robust for any € > 0 satisfying

4Me < min f(i, 7).
i#]
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In fact, for any distinct 7(1), 7(2), ..., 7(n) € [k], by the definition of f-strong cyclical monotonic-

ity,
> (r@) Yr(i) = YrGien) Z (i + 1))
i=1 P
Thus for any choice of o, (1), . . ., @ir(,,) such that max [|a,(;)|| < €, we have
1 n
2 Z Tr(i) + (i) = Wrien) T araan)l” — 5 Z |22y = Yr i) 12

377— (2) y'r(z - 'r(i+1)> + Z<a'r(i)7x'r(i) - :C'r(ifl) + y'r(z) —Yr z+1) Z ||Oé.,- (i) — O‘T(i+1)H2
=1

vV

M: i M:

Il
-

fr@),7(t+1)) —4nMe

> 0.
Hence R(I") > 0
On the other hand, given R(T") > 0, we show that I is the unique optimal transport plan from {x;}

to {y; }. We prove by contradiction. If I" is not unique, then there exists distinct 7(1), ..., 7(n) € [k]
such that . .
S lzry = vl =Y lere) = yrasn 1> (1)
i=1 i=1

Since R(T") > 0, for g = R(T")/2 and any choice of 7(1), ..., 7(n) with |7(¢)|| < €y, we have

S lzry = e <D N@e) + @) = Grgrn) + rasn) >

Specifically, for any j € [n], letting 7(¢) = O for all ¢ # j in the above equation gives

2<O¢T(]) Tr(j) = Yr(i+1) > < HO‘T(J')H2

for any o, (j) € R? with [|a,(;)|| < €o. Therefore we must have

Tr(j) = Yr(j+1), VJ € [kl
Using (T)), we also know that
Tr(j) = Yr(i)» VI € K],

which violates the assumption that {; } are distinct points in R%. Thus we conclude that I is unique;
hence it is also strongly cyclically monotone due to Proposition [3.8] O

1.2 Proof of Proposition 3.§]

Proof. (i) to (ii). The idea is borrowed from [1} 2} [3]]. Suppose I is f-strongly cyclically monotone
for a positive residual function f. For i € [k], denote

;= inf — — 1
V= <Z<x0(s)vy0(s) Yos+1) — Y F(0(s),0(s + )))

0(2),...0(n)elk], =1 s=1
0(s)#0(s+1)

By the f-strong cyclical monotonicity, we have v; > 0. Furthermore, for ¢ > 1 and any sequence
{6(s)} with (1) = 1,0(n + 1) = i and 6(s) # O(s + 1), there holds

n

> (Tosy Yos) — Yos+1)) T @iy —y1) = D f(0(s),0(s + 1)) + f(i, 1)
s=1

s=1
and it follows that
v; > f(i,1) = (x4, y; — y1) > —o0.



For any j # ¢ and any fixed € > 0, there exists a sequence {0(s)} with (1) =1,60(n+ 1) =i and
6(s) # 0(s + 1), such that

n n

Z<$9(5)7y9(s) — Yo(s+1)) — Z f(0(s),0(s+1)) <wvi+e. (2)

s=1 s=1

Consider the same {6(s)} with one more term 6(n + 2) := j. By definition of v; we have

n n+1
0 <> (To(s) Yo(s) — Yo(s+1)) + (@i yi — u5) — > f(0(5),0(s + 1)) 3)
s=1 s=1
Comparing (2)) and (3 we get

We set p(x;) = —v;. Letting € | 0 in @) yields
(i, yi — y5) 2 p(@:) — o(x;) + £i, 7).

Hence I' is f-strongly implementable.

(ii) to (iii). We prove by contradiction. Suppose I is not the unique optimal transport plan; this
means either I" is not optimal or there exists a different coupling I'” with the same cost. Either case,
there exists a sequence {6(s)}"_; such that

> llmags) — Yoo I* =Y o) — vocsrn I’
s=1

s=1
Summing over s, we get

n n

D FO(5),0(s +1)) < (@o(s): Yors) — Yo(s+1))
1

(Z Zo(s) — Yos+1)|I” — Z lzoesy — ye(s)||2>
s=1 s=1

s=1

w
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a contradiction.

(iii) to (i). Suppose I' is the unique optimal transport plan from {z;} to {y; }. Denote ¢ the transport
cost of I". For any other transport plan in the form of a bijection between {z;} and {y; }, denote ¢;
the minimum among their costs, then ¢; > ¢y. Choose a small enough A > 0, such that for any
choice of 7(1),7(2),...,7(n) € [k] with no duplicates, there holds

A n
5 Z 1Yr() — Yra+n® < 1 — co
i=1
Now for f(i,7) = %|ly; — y;||* we have

S llzry = e = D ey = vr@1? = 1 — o = Y f(7(), 7(i + 1)).
=1 =1 i=1

If there are duplicates in (7(1),7(2),...,7(n)), we break the loop 7(1) = 7(2) = -+ = 7(n) —
7(1) into separate loops without duplicates, apply the above inequality to each loop and sum them
up. We conclude by definition that I" is f-strongly cyclically monotone. O

1.3 Proof of Proposition [3.13]

Proof of Proposition We only need to show that, for an € satisfying (7), and any choice of
7(1),7(2),...,7(n) € [k], and (1), ..., a(n) with [|a(?)|| < €, there holds

S lzey = el <Y @) + 0r@) = Wrgirn) + el ®)



In fact, (3) is equivalent to

2 ZWT@), Yr(i+ ) ~Yr() TEr(i-1) ~Tr(i)) < 2 Z@Tu), Yr(4) —Zh(vz+1>>+z lovr (i) = i41) |
(6)

Since || (4)|| < e for all 4, we have

22 Qr (i) Yr(i+1) = Yr(i) T Tr(i=1) = T7(s))
< 22 ||y'r (i+1) — yr(z‘)” + ||$r(i+1) - Uﬂr(i)H)

< Z f(r(@), (i + 1))
where we used the choice of ¢ in the last inequality. In the meantime, strong implementability gives
22(%(@)7%(0 — Yr(i+1)) T Z ller(iy = @rsn 1* > Zf(T(i)aT(i +1)).
Therefore (6) holds, which completes the proof. O

1.4 Proof of Proposition [3.14]

Proof. Following the proof of Proposition [3.13 we only need to show that, for the residual f (i, ;)
defined in Theorem 3.10] there holds

2> e (lyrisr) — el + 12y — 220yl Z f(r(@),7(i+1)). W
By the choice of ¢, we have

23 e (lyriisn) — vr o)l + [2rir1) — 220 ll)

1
<3 max {5”@@“) ol algren) — ym)n?} .
Meanwhile,

Zf (i + 1))

1
~ 5 a > (@) = e I? + aBllyriy — YrnlI? = 20Uy = Yr(i+1)s Trgi) — Tr+1)))

1 1
> F—a Z (Hfﬂr(i) — 2o 1P+ aBlly-iy — Y |? — @ ()\||a:7(¢) — 2|+ X”yT(i) — yT(i+1)||2>) .
i

The last inequality holds for any A > 0 by the Cauchy-Schwarz inequality. Choosing A = 1/ and
A = 1/ayields

1
Zf 7(i+ 1)) > max {ﬂllfCT(iH) — 2 1%, llyr sy — y‘r(i)”2} :

Therefore (7)) holds, which completes the proof. O

2 Omitted proofs for Section 4

2.1 Proof of Theorem 4.1]

Proof. Define the truncated smoothing kernel

Ny := N(0,6%0) - 1{|| X|| < .} + (1 = p)do



where
p=P[IN(O. D) <c.].

Since A, is supported on B(0, ¢, ), by Lemma we know
Wo (% Ny, v+ Ny) = Wo(u, v).
Therefore,
(Wa (% Noy v s Nip) = Wa(p, v)[?

= [Wapx Ny, v # N ) = Wa(p s No, v+ N )|

< (Wa(p # Noy i x No) + Wa(v 5 Ny, v+ Ny ))?

SEzNN(O,UQI) [||Z||21|\z\|za*]

=02 E.ono) [1211P1)2120. /0]

< 00*6703/202.

Here the second inequality is yielded by considering a coupling of u * N, and p x N, that is
the distribution of (X + Z, X + Z - 1{||Z|| < €x}), where X and Z are independent, X ~ p and
Z ~ N(0,02I), and the same coupling for x replaced with v. Taking square root on both sides
yields the result. O

2.2 Proof of Lemma[4.2]

Proof. We naturally split the source measure into k parts:

Q= Z( m*@)

Consider a map T which, for each ¢ € [k], is defined by
Tx)=x+y; —x; Va € B(xi,04).

We can obtain a transport plan between p * () and v x @) by considering the distribution of a
pair of random variables (X,T(X)) for X ~ p x Q. The support of this plan lies in the set

Ule UaeB(0,0.) (@i + @, y; + a). By the definition of R(I"), this set is cyclically monotone, so this
coupling is optimal for 11 * @ and v * Q by Theorem [3.2] Therefore

W2(uxQuvsQ) = /nx— 2)[2d(n * Q)(x)

1
- EZ ||y1 - wZHQ = W22(/_1,1/),
=1

as claimed. ]

2.3 Proof of Proposition[d.3]

Proof. For M > 0, denote

g(m) = sup {Z 2@y — Yr@ 2 = D 1 (@rgay + @r(iy) = Wrsn) + @)1 - max [[a ;|| = m} ;
=1 =

then G(M) = sup{g(m) : m € [0, M]}. We first prove that g(m) is concave in m. In fact, denote
the set

I= {(T(1)7 oo 77—(”)’ Qr(1)y -+ O5‘1’(71)) : T(Z) € [k]v T(Z) 7é T(j)7 miax ||a‘r(z)H = 1} .
By definition,

{Z |27y = Y@ 17 = D 1 (@rga) + mer@y) = Wr(itn) + marrn) |
=1

(r(1),-- -, 7(n), aray, -y Arny) € T}



Note that, for every choice of (7(1),...,7(n)) and o, (1, ..., @ (n)) € Z,

D_llaey = urll* = 2o I@ee) +mar) = (Ui + marqen)II
i=1 i=1
is a concave function in m. Therefore, g(m) is concave in m, and G(M) is also concave in M. [

2.4 Proof of Theorem 4.4

Proof. For M > o, pick 7(1),7(2),...,7(n) € [k] and {ov,(;y}7; C R? such that [lo, (|| < M
and

S ey = vl = D @iy + ariy) = Wrirn) + araan)|I? = GM).
=1 i=1

For every i € [k], denote B, ;) the ball centered at Tr(s) T ;) With radius o, and ET(i) the ball
centered at y,(;) + a,(;) with radius . Also denote

o v € (uxN,,v*N,) thelaw of (X + Z,Y + Z), where (X,Y) ~ ¢ Zle 8(z;,y;) and
Z ~ N, are independent.
® ) € II(Unif(B.(;)), Unif(Br(i))) the coupling associated with the transport map

T T+ Yr(i) — Tr(i);
® Y, € II(Unif (B, ;)), Unif(BT(i_H))) the coupling associated with the transport map
T T+ Yr(itl) — Tr()

(M+0)?
202

e A constant m = cq exp (— ) where ¢4 is a constant only dependent on the dimen-

sion d.

Consider the following measure in R? x R:

n n
i=1 i=1

We shall show that 7 € II(p * N, v * N,). We first verify that 7 is a positive measure on R% x R,
In fact, for z,y € RY,

||z —x;

k
1 1 ill?
de.d :72 — € 22 dx-0y_p 1y (d .
’Y( X,y y) L v ((\/%O')de €L - Oy uz,-Hh( y))

Meanwhile,
i i 1{1‘ S Br(z)}
<mZ’VT(Z)> (d$, dy) =m Z (VO'(BT(l))dx . 5I—Ir(i)+yr(z‘) (dy) .
i=1 i=1
For every 7(i) such that z € B, ;), note that
[z — 2@yl < llz = (@r6) + ar@)ll + llaz@ll < o+ M,
hence (with a proper choice of cz)
11 _le—mr)1? 1 _ (Mto)? m
o2 2 2

1
E( 271'0)‘16 : E( 271'0')d6 v ~ Vol(B;;))

As aresult, y — m Zle Yriy = 0, and 7 is a positive measure. Also note that its first marginal
(i.e. the marginal on the first d dimensions) and second marginal (i.e. the marginal on the last d



dimensions) agree with the respective marginals of v. Thus we conclude that ¥ € TT(px N, v+ N5 ).
Now note that

/C(ﬂc,y)dv(w,y) —/C(x,y)di(fmy)

- (Z 27y =y I? =D N@r(y + @) = Grrn + a7<i+1>)“2>
=1 i=1
G(M).

In the meantime,
[ et paray) anxz yll? = W3 v),
therefore,
W3 (p* Ny, v+ N,)
S/C(x,y)di(:&y)

< W2(p,v) — G(M) - cqexp (-W) .

202

In particular, choosing M = o + o, yields
2
Wi (p,v) — Wi (s Ny, v s Ny) 2 G(o + 0.) exp (—c%) .
g

The rest follows from the observation that, for o € (0, 20,),

G(30.) — G(o4) Y

20,

Glo+0.)=G(o+0.) —Gloy) >

since G is concave by Proposition O

3 Omitted proofs for Section 5

3.1 Proof of Theorem[5.1]

Proof. Suppose that there exists a transport plan 7 between p and v which achieves the optimal cost
and is not a perfect matching. Without loss of generality, we assume that (z1, y1) and (x1, y2) both
lie in the support of 7. Let A = min{n(x1,y1), 7(x1,y2)}. We decompose 1 and v as

fo=p—2X0(z1), fi = 2X\6(x1),
v=v—X(y1) +(y2)), v=A(0(y1)+(y2))-

By Lemma|5.2] there exists ¢ > 0 such that for o € (0, co),

W2, o) — Wi(ix Ny, v x Ny) 2 o

Therefore, for o € (0, ¢g), we also have
W3 (u,v) = W3 (i No, v Noy)
> W3 (1, 0) = W3 (ix No, 0% Ng ) + W3 (1, 7) = W3 (i x No, 7% Ny
> W3 (f1,7) = W3 (fx No, 7% Ny)
2 o.



3.2 Proof of Lemmal[5.2]

Proof. First suppose that x, y1, y2 are not on the same line with y; between x and y, or y between
x and y1. Let A be the bisecting hyperplane of Zy; xy2, namely

A = {zGRd . <Z*I7y17£17> — <Zl‘7y21'>}
ly1 — | ly2 — | 7
and define its unit normal vector m such that (m, y; — z) > 0. We adopt the decomposition
py = N(z,0?) | (z — 2,m) >0,

2 ®)
p— =N(z,0%) | {z—z,m) <0,
and )
Viq = (ylao— ) | <ny17m> > 05
Vi— = (ylaO-Q) | <Z_y17m> <0, 9)
vay = N(y2,0%) | (z — y2,m) > 0,

va_ = N(y2,0%) | (z — y2,m) < 0.
Note that all the six sub-probability measures above have mass 1/2. By the definition of W5, we
have

W2 10« N o N ) < 5 (Wi was) + W3 Gt i) + W3 v ) + W3 )
(10)
It is obvious that
WE s 01s) = 5l =l WE G sva0) = 5lle =
For Wi (14, v1—), consider the map
Tu(z+t) = y1—t, t~N(0,0°])
we have
WQQ(N+7 vie) S Eypy flu— T#uH2
= B, i — (g1 — i+ )|
= Sllz = 01l ~ 4B, g = 70— 2) + DB 2P

1
= 5”95 —y1|* — dero(m, y; — z) + dexo?,
where c; and ¢, are absolute positive constants. Similarly,
1
W3 (po,vay) < e = Yol = dcro(m, z — y2) + deaa.

Plugging into (T0) we get
W3 (o * Ny vo % No) < W5 (o, v0) — dero(m, yi — y2) + 8cz07,
hence W3 (110, vo) — Wi (10 * Ny, vo % N;) 2 o for small o, since (m,y; — y2) > 0.

Finally, we consider the special case where z, y1, yo are on the same line and y; is between x and
y2. We choose m the unit vector along the direction = — y;, and the same line of proof yields the
conclusion. O
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