
Trustworthy Monte Carlo
Supplement

Juha Harviainen
University of Helsinki

juha.harviainen@helsinki.fi

Petteri Kaski
Aalto University

petteri.kaski@aalto.fi

Mikko Koivisto
University of Helsinki

mikko.koivisto@helsinki.fi

Contents

A Proofs 1

A.1 Proof of Theorem 1 . 1

A.2 Proof of Lemma 4 . 2

A.3 Proof of Theorem 5 . 3

A.4 Proof of Corollary 6 . 3

A.5 Proof of Lemma 7 . 3

A.6 Proof of Lemma 8 . 4

B Circuits for gradient estimation 4

B.1 Sampling from the exponential distribution . 4

B.2 Sampling from the normal distribution . 7

B.3 Computing the dot product . 9

B.4 Approximating the log-sigmoid . 10

C Circuit primitives for binary number representation 11

A Proofs

A.1 Proof of Theorem 1

We use Algorithm V with a univariate polynomial p over the extension field F of F that satisfies
|F | = |F|` > 3Kd with ` as small an integer as possible.

Pick a subset S ⊂ F of K elements. Associate each point uk ∈ Fn, 1 ≤ k ≤ K, with a unique
element ξk ∈ S; denote by uξ the point associated with element ξ ∈ S. For each i = 1, 2, . . . , n,
let λi(x) ∈ F [x] be an interpolation polynomial satisfying λi(ξ) := uξi for all ξ ∈ S. Each λi has
degree at most K.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Finally, define p(x) as the polynomialC
(
λ1(x), λ2(x), . . . , λn(x)

)
over F . Note that p(ξk) = C(uk)

and the degree of p is at most Kd. Thus, if p̃ 6= p, a random ξ0 ∈ F satisfies p̃(ξ0) 6= p(ξ0) with
probability at least 1−Kd/|F | ≥ 2/3; indeed, p̃− p 6= 0 has at most Kd roots.

Consider the time requirement of the verifier in each step of Algorithm V. In step V1, the verifier puts
E := Kd+ 1, picks E−K additional elements ξK+1, ξK+2, . . . , ξE from F , end sents all the E ele-
ments to the prover; this takes time Õ(E). In step V2, the verifier receives the claimed E values; this
takes time Õ(E). In step V3, the verifier computes the degree D and the coefficients p̃0, p̃1, . . . , p̃D
of the claimed polynomial P̃ ; this takes time Õ(E) thanks to fast univariate interpolation [7]. In
step V4, the verifier evaluates both p̃ and p at a random element ξ0 ∈ F ; the former evaluation takes
time Õ(E), e.g., by Horner’s method. The latter evaluation takes time Õ(Kn+ s), since the inter-
polation polynomials λi(x) ∈ F [x] can be constructed in time Õ(Kn), again using fast univariate
interpolation, computing the values u0i := λi(ξ0) takes time Õ(K) for each i, and evaluating the
circuit C at the single point (u01, u

0
2, . . . , u

0
n) takes time Õ(s) by gate-by-gate evaluation. Step V5 is

trivial. In total, the verifier requires time Õ(E +Kn+ s), which is Õ(K(n+ d) + s).

The time requirement of the prover is Õ(Es), which is Õ(Kds), provided that the E −K points
(λi(ξk))ni=1 ∈ Fn can be constructed sufficiently fast for all K < k ≤ E, which can be achieved
in time Õ(En) using fast multipoint evaluation of univariate polynomials [7]; also observe that we
can without loss of generality assume that s = Ω(n), thus leading to time Õ(Kds) for the prover,
since otherwise the s gates of the circuit C would not touch all of its n inputs, and we could assume a
smaller n. This completes the proof of Theorem 1.

Remark. The proof above presented a prover that is centralized. To obtain a massively distributed
prover, we can perform a minor change of steps V1 and V2 of Algorithm V. In step V1, rather
than sending the points ξ1, ξ2, . . . , ξE to a centralized prover, the verifier first computes the vectors
λ(ξ1), λ(ξ2), . . . , λ(ξE) ∈ Fn. This takes time Õ(En)—which is Õ(Kdn) and thus within the
claimed time in Theorem 1—using fast multipoint evaluation of univariate polynomials [7]. Then,
the verifier sends each vector λ(ξk) to a prover. Each prover computes yk = C(λ(ξk)) = p(ξk) in
time Õ(s) by gate-by-gate evaluation of the circuit C, and then sends the result yk back to the verifier.
Thus, the total work of the provers is Õ(Es), and there can be up to E provers doing the work in
parallel, completely independently of each other, since k = 1, 2, . . . , E. In step V2, the verifier
receives the proof as in the centralized setting, only now the proof arrives in one or more parts from
one or more distributed provers.

A.2 Proof of Lemma 4

Define

C∗(u) :=
∑

v∈{0,1}b
C(y1t , y

2
t , . . . , y

n
t) , with t := (u1, u2, . . . , ua, v1, v2, . . . , vb) .

It remains to show that C∗ can be represented as an arithmetic circuit over F with the claimed size
and degree. To this end, construct the circuit C∗ from 3 layers.

The first layer maps the input to 2b tuples (y1t , y
2
t , . . . , y

n
t). The bit vector t is obtained by concatenat-

ing the given u with each v. For each j = 1, 2, . . . , n, there is a separate parity circuit that computes
yjt given xj and t as input. The size of this layer is O(2b`n) and the degree is `.

The second layer consists of 2b circuits Cv, each of which takes the n bits yjt as input and produces
C(y1t , y

2
t , . . . , y

n
t) as output. The size and the degree of each Cv are thus s and d.

The third layer adds up the outputs of the circuits Cv , the size and the degree being O(2b) and 1.

The total size of C∗ is the sum of the sizes of the three layers, yielding O(2b(`n+ s)). The degree of
C∗ is obtained as the product of the degrees of the three layers, yielding the degree `d.

2

A.3 Proof of Theorem 5

The verifier uses the median trick: It computes T := d12 ln δ−1e independent (ε, 1/4)-
approximations of the mean and returns their median. By a standard Chernoff bound for a binomial
variable with T trials and success probability 1/4, the median is an (ε, δ)-approximation of the mean.

An (ε, 1/4)-approximation is obtained by taking an average of N ≥ 4ε−2R pairwise independent
copies of W . Namely, by Chebyshev’s inquality the average deviates from the mean by more than ε
times the mean with probability at most the critical ratio divided by ε2N .

To apply Lemma 4, we may assume that N is a power of 2. To obtain an average of N pairwise
copies of W , the verifier draws a tuple of bit vectors X := (x1, x2, . . . , xn) uniformly at random
from {0, 1}n`, with 2` − 1 ≥ N , and then evaluates the circuit C∗ at 2a points (X,u), one point per
u ∈ {0, 1}a; for a moment, let a, b > 0 be any integers such that 2a2b = N .

Supposing the values sent by the prover are correct, by Lemma 4 and Fact 2, their sum divided by N
is an average of N pairwise independent copies of W . By Lemma 4, C∗ takes n∗ := a elements of F
as input and is of size s∗ = O(2b(`n+ s)) and degree d∗ := `d.

Now, apply Theorem 1 for K := d12 ln δ−1e2a evaluations of the circuit C∗. We get that the prover
time is Õ(Kd∗s∗), which is Õ(2a2bsd log δ−1), matching the claimed bound. The verifier time is
Õ(Kd∗n∗ + s∗), which is Õ(2ad log δ−1 + 2bs). Note that the bounds suppress the insignificant
terms n ≤ s and ` = O(logN).

To optimize the asymptotic verifier time, write d′ = d ln δ−1 and select a and b so as to minimize
2ad′ + 2bs under the constraints 2a2b = N and a, b ≥ 0. An elementary analysis reveals that the
optimal values are a′ := (log2Ns/d

′)/2 and b′ := (log2Nd
′/s)/2, provided that the values are

nonnegative. The verifier time is then Õ
(
(Nds log δ−1)1/2

)
. If a′ < 0, then N < d′/s, yielding a

verifier time Õ(d′); If b′ < 0, then N < s/d′, yielding a verifier time Õ(s).

A.4 Proof of Corollary 6

Let µ and σ be the mean and the standard deviation of W . Let ε, δ ∈ (0, 1). Let α ≤ ε/3 and
β ≤ δε2/

(
3456R ln(2/δ)

)
. Write W ′ := Cγ(x), and let A denote an acceptance event for W ′.

We apply Theorem 5, with (ε, δ) replaced by (ε/2, δ/2) and C replaced by Cγ .

Observe first that, conditionally on the event A, the random variable W ′ has mean µ′ and standard
deviation σ′ that approximate µ and σ to within a relative error of α ≤ ε/3 and 1, respectively. This
implies that the critical ratio ofW ′ is bounded from above byR′ := [2/(1−ε/3)]2R ≤ 9R. Using this
bound, the number of copies of W ′ needed for the estimator is M := (12 ln(2/δ))(4(ε/2)−2R′) =
1728Rε−2 ln(2/δ). By the union bound, with probability at least 1−Mβ ≥ 1− δ/2, the event A
occurs for all these samples.

Now, since we obtain an (ε/2, δ/2)-approximation µ′′ of µ′, with probability at least 1 − δ/2, we
have 1− ε/2 ≤ µ′′/µ′ ≤ 1 + ε/2, whence

1− ε ≤ (1− ε/2)(1− ε/3) ≤ µ′′/µ ≤ (1 + ε/2)(1 + ε/3) ≤ 1 + ε .

The probability of not yielding an estimate within a relative error of ε is at most δ/2 + δ/2 = δ.

A.5 Proof of Lemma 7

Observe that

c(ψ) = |S1 ∪ S2 ∪ · · · ∪ Sm| =
m∑
j=1

|Sj \ (S1 ∪ S2 ∪ · · · ∪ Sj−1)| .

Thus the mean of W equals

µ = Pr(W = 1) =

m∑
j

|Sj |∑m
k=1 |Sk|

· |Sj \ (S1 ∪ S2 ∪ · · · ∪ Sj−1)|
|Sj |

=
c(ψ)∑m
j=1 |Sj |

.

Since W is a Bernoulli random variable, its variance equals µ(1 − µ) and the critical ratio equals
(1− µ)/µ ≤ 1/µ. Clearly µ ≥ 1/m, completing the proof.

3

A.6 Proof of Lemma 8

The circuit consists of three layers. First, we select some clause Cj . Then, a satisfying assignment
a ∈ Sj is generated for it. Finally, we either accept or reject the assignment.

Denote Tk :=
∑k
j=1 |Sj |. Let r = r(b) be the remainder of 2b modulo Tm, and choose b to

be the smallest nonnegative integer such that r(b)/2b < β. Thus, the integer J represented by
b = O(n + log β−1) independent uniformly distributed bits is between 0 and Tm · b2b/Tmc with
probability at least 1 − β. Denote d := b2b/Tmc. For each j, construct a comparison circuit for
computing Bj(J) := [[dTj−1 ≤ J < dTj]] ∈ {0, 1}. The value is 1 for at most one index j.

Arbitrarily index the variables. Next, draw an assignment a = (a1, a2, . . . , an) from Sj using n
additional random input bits x1, x2, . . . , xn, as follows. Let Fi be the set of indices of clauses that
contain the ith variable. Additionally, let yij ∈ {0, 1} be 1 if and only if the ith variable has to be
true in the jth clause. Now, we let

ai :=
(

1−
∑
j∈Fi

Bj(J)
)
xi +

∑
j∈Fi

Bj(J)yij .

On the final step, we check whether a is in Sk for any k < j. For Sk, this can be done by comparing
the variables contained by the clause against the bits of a. Thus, we get the result as

m∑
j=1

Bj(J)

j−1∏
k=1

[[a 6∈ Sk]] .

By noting that Bj(J) = [[J < dTj]]
(
1− [[J < dTj−1]]

)
, we conclude that the size of the circuit is

O
(
m(n+ log β−1)

)
and the degree is O

(
mn(n+ log β−1)

)
.

B Circuits for gradient estimation

This section gives an arithmetic circuit that maps n independent uniformly distributed bit vectors
r1, r2, . . . , rn ∈ {0, 1}` to an approximation of ln g(yx · w), where each component wi of w is a
discretized sample from a normal distribution N (µi, σi). Here y ∈ {−1, 1}, xi, µi, σi are constants,
which do not depend on the input (ri)i. We construct the circuit in several phases.

First, we give a circuit that uses the random bits in ri to generate a discretized sample vi from the
standard normal distribution N (0, 1). To this end, we begin in Section B.1 by adopting von Neu-
mann’s algorithm to generate samples from the exponential distribution, and continue in Section B.2
by adopting Kahn’s algorithm to generate normal variables from independent exponential variables.

Second, we give a circuit that maps the samples v1, v2, . . . , vn to the dot product z := yx · w, where
wi = µi + σivi. Put otherwise, z = µ̃+ σ̃ · v, where µ̃ =

∑
i yxiµi and σ̃i = yxiσi are constants.

Finally, we give a circuit that maps z to an approximation of ln g(z).

Our constructions rely on “circuit primitives” for comparing, adding, and multiplying numbers
represented as bit vectors. We give the needed results in Section C.

B.1 Sampling from the exponential distribution

For a positive integer s, denote by Bs the set of numbers of the form k · 2−s, where k is an integer
between −4s + 1 and 4s − 1. Elements of Bs are represented as bit vectors of length 2s + 1, the
highest bit being the sign bit.
Definition 5. Let F be a probability distribution function, ε > 0, and X a random variable that takes
values in Bs. Furthermore, let a, b ∈ Bs with a ≤ b. We say that X is an ε-approximate draw from F
over (a, b) if

F (b)− F (a) ≥ 1− ε and e−εE(x) ≤ Pr(X = x) ≤ eεE(x) for all x ∈ [a, b] ∩ Bs ,

where E(x) := F (x+ 2−s)− F (x) is the exact probability.

4

Theorem 9. For all ε > 0, there is an arithmetic circuit of size and degree O(log3 ε−1) whose output,
given independent random bits as input, is an ε-approximate draw from Exp(1) over (0, ln ε−1).

We prove this result in the rest of this section.

Von Neumann’s algorithm. The following ingenious algorithm for generating random variables
from Exp(1) is due to von Neumann [6]. The original algorithm assumes the availablity of an
arbitrarily long sequence of draws from the uniform distribution on the real interval [0, 1]. We modify
the algorithm by discretizing the uniform variables to s bits and by bounding their number. Let
Us(0, 1) denote the uniform distribution on {0, 1}s; we interpret the bit vectors drawn from Us(0, 1)
as numbers in [0, 1) ∩ Bs. In what follow, we assume the parameter u is an odd integer.

Algorithm E

E1 Set l← 0.

E2 Sample x from Us(0, 1).

E3 Sample independent U1, U2, . . . , Uu from Us(0, 1).

E4 Let n be the largest n ≤ u with x > U1 > U2 > · · · > Un; set n← 0 if x ≤ U1.

E5 If n is odd, then increase l by 1 and go back to Step E2.

E6 Return l + x.

For an explanation of the orginal algorithm, consider the behavior of the algorithm as s and u tend
to infinity. Then Us tends to the uniform distribution on the interval [0, 1]. For a fixed x ∈ [0, 1]
and n ≥ 0, the probability that x > U1 > U2 > · · · > Un is xn/n!. Thus the probability that n
is the largest value with this property is xn/n! − xn+1/(n + 1)!. This implies that n is even with
probability ∑

n even

xn

n!
− xn+1

(n+ 1)!
= e−x .

When integrated over x, we have that n is even with probability
∫ 1

0
1·e−xdx = 1−1/e. Consequently,

exactly l trials of Steps E2–E5 are performed with probability (1− (1− 1/e))le−x = e−(l+x). For
more details and variants of the algorithm, we refer to Karney [3].

The circuit. To turn von Neumann’s algorithm into an arithmetic circuit, we assume that the number
of available random bits is st(u+ 1), i.e., the maximum of t trials (or rounds), each consuming u+ 1
uniform bit vectors of size s. Thus we represent x using s bits and l using dlog2 te bits.

For each value l = 0, 1, . . . , t− 1, we have a separate subcircuit. The input of the subscircuit consist
of u+ 1 bit vectors x, U1, U2, . . . , Uu (we omit the dependence on l in the notation). The output is

yl := [[x ≤ U1]] + [[x > U1]]
∑

1≤n<u
n even

[[Un ≤ Un+1]]

n−1∏
i=0

[[Ui > Ui+1]] .

In other words, the output is 1 if x > U1 > U2 > · · · > Un ≤ Un+1 for some even n < u, and
otherwise 0. Each subcircuit is of size and degree O(us).

We run the t subcircuits in parallel and select the smallest valid output l + x, i.e.,

t−1∑
l=0

(
l + x(l)

)
· [[yl = 1]]

l−1∏
j=0

[[yj = 0]] .

Here we write x(l) for the value x in round l. The size and degree of the whole circuit is O(tus).

Note that that the circuit outputs 0 if all t rounds fail to produce an even n.

5

Finite-precision analysis. To prove Theorem 11, it suffices to show that the output the circuit is an
ε-approximate draw from the exponential distribution when s, t, u = O(log ε−1).

Consider the following events for a single trial:
A1 : Ui ≤ Ui+1 for some 1 ≤ i < u ,

A2 : Ui 6= Uj whenever 1 ≤ i 6= j ≤ u ,
Bx,n : x > U1 > U2 > · · · > Un .

The trial fails if either of the complement events Ā1 or Ā2 occurs. By the union bound, the probability
of failing is at most

Pr(Ā1) + Pr(Ā2) =

(
2s

u

)
2su

+

(
1−

(
2s

u

)
u!

2su

)
≤ 1

u!
+
u(u− 1)

2s
=: p(s, u) ,

where the inequality follows from the following bound:
Lemma 10. Let n and k be positive integers. Denote n(k) := n(n− 1) · · · (n− k + 1). Then

n(k)

nk
≥ 1− k(k − 1)

n
.

Proof. We have

n(k)

nk
≥
(n− k + 1

n

)k
=
(

1− k − 1

n

)k
≥ 1− k(k − 1)

n
,

where the last step is an application of Bernoulli’s inequality.

The probability that a specific n < u is obtained in Step E4 for a fixed x is given by
Pr(Bx,n ∩A1 ∩A2) = 1− Pr(B̄x,n ∪ Ā1 ∪ Ā2) ≥ Pr(Bx,n)− Pr(Ā1 ∪ Ā2) .

An upper and lower bound for Pr(Bx,n ∩A1 ∩A2) is now obtained by applying the bounds

xn

n!
≥ Pr(Bx,n) =

k(n)

2snn!
≥ xn

n!

(
1− n(n− 1)

k

)
,

where in in the latter we used again Lemma 10.

The probability that an even n is obtained is bounded from above by

Pr(n is even, given x) =
∑
n even
n<u

Pr(A1 ∩A2 ∩Bx,n ∩ B̄x,n+1)

≤
∑
n even
n<u

xn

n!
−

(
xn+1

(n+ 1)!

(
1− (n+ 1)n

k

)
− p(s, u)

)

≤
∑
n≤u

(−x)n

n!
+

(
x

k

∑
n odd
n≤u

n(n− 1)

n!

)
+ (u− 1) · p(s, u)

≤ e−x +
2

2s
+ (u− 1) · p(s, u)

≤ e−x + u · p(s, u) .

Similarly, we bound the probability from below by

Pr(n is even, given x) ≥
∑
n even
n<u

(
xn

n!

(
1− n(n− 1)

k

)
− p(s, u)

)
− xn+1

(n+ 1)!

≥
∑
n≤u

(−x)n

n!
−
(
x2

k

∑
n even
n≤u

n(n− 1)

n!

)
− (u− 1) · p(s, u)

≥ e−x − 2

2s
− (u− 1) · p(s, u)− 1

u!
≥ e−x − u · p(s, u) .

6

Let ε0 := 2eu · p(s, u). We have e−x − ε0/(2e) ≥ e−x(1− ε0/2) ≥ e−xe−ε0 and e−x + ε0/(2e) ≤
e−x(1 + ε0/2) ≤ e−xeε0/2 ≤ e−xeε0 . Thus, by integrating over x, we get

Pr(n is even) ≶
2s−1∑
k=0

2−s exp(−k2−s ± ε0)

≶ e±(ε0+ε1)
2s−1∑
k=0

∫ (k+1)2−s

k2−s

e−zdz

≶ e±(ε0+ε1)(1− 1/e) ,

where ε1 := 2−s; here we use the shorthands ≶ and ± to give a symmetric upper and lower bound.

Now, for any integer 0 ≤ l < t and x ∈ (0, 1) ∩ Bs we have

Pr(Algorithm E outputs l + x) ≶
(
1− e±(ε0+ε1)(1− 1/e)

)l
e−x±ε02−s

≶ e±(ε0+ε1)l
(
1− (1− 1/e)

)l
e−x±ε02−s

≶ e±(ε0+ε1)le−le−x±ε02−s

≶ e±(ε0+ε1)l±ε0e−(l+x)2−s

≶ e±(ε0+ε1)(l+1)E(l + x) .

It remains to select the parameters s, t, u such that (ε0 + ε1)t ≤ ε and e−t ≤ ε. We put t := dln ε−1e
to satisfy the latter. To satisfy the former, we let u := t and s := 3t. Assuming ln t ≥ 3, we have

(ε0 + ε1)t ≤ (2e)
(ut
u!

+
u3t

2s

)
≤ 6
(
t2e−t ln t+t + t42−3tet · e−t

)
≤ 6
(
t2e−t + t4(8/e)−t

)
e−t .

One can verify that this is less than e−t ≤ ε when t ≥ 15, which is implied by ln t ≥ 3.

This completes the proof of Theorem 11.

B.2 Sampling from the normal distribution

Theorem 11. For all ε ∈ (0, 1/e), there is an arithmetic circuit of size and degree lnO(1)ε−1

whose output, given independent random bits as input, is an ε-approximate draw from N (0, 1) over
(ln ε, ln ε−1).

We prove this result in the rest of this section.

Kahn’s algorithm. Karney [3] attributes the following algorithm to Herman Kahn. In our modi-
fication, we let the exponential random variables be ε-approximate draws; we denote this discrete
distribution by Exp(1; ε).

Algorithm N

N1 Sample independent Y and Z from Exp(1; ε) using Algorithm E.

N2 If 2Z ≤ (Y − 1)2, go back to Step N1.

N3 Sample X uniformly at random from {−Y, Y }.

N4 Return X .

For an explanation of the orginal algorithm, consider the behavior of the algorithm as ε tends to 0.
Then Y and Z are exact draws from Exp(1). The probability that Steps N1 and N2 result in a value

7

Y < v is given by

Pr
(
Y < v and 2Z > (Y − 1)2

)
=

∫ v

0

∫ ∞
0

e−ye−z [[2z > (y − 1)2]] dz dy

=

∫ v

0

e−y
(
− e−z

∣∣∞
(y−1)2/2

)
dy

=

∫ v

0

e−ye−(y−1)
2/2dy

= e−1/2
∫ v

0

e−y
2/2dy .

Thus the marginal probability of proceeding to Step N3 is e−1/2
√
π/2 =

√
π/(2e). Conditionally

on that, the probability of Y < v is 2 ·
∫ v
0

(2π)−1/2e−y
2/2dy, as desired. The expected number of

trials (Steps N1 and N2) needed is
√

2e/π ≈ 1.3. For more details and variants of the algorithm, we
refer to Karney [3].

The circuit. To turn Kahn’s algorithm into an arithmetic circuit, we assume that the inputs consists
of t triplets (Yl, Zl, Rl) ∈ Bs × Bs × {0, 1}, l = 1, 2, . . . t, where s = O log ε−1) is specified by
Algorithm E.

For each value l = 1, 2, . . . , t, we have a separate subcircuit. The input of the subcircuit is the triplet
(Yl, Zl, Rl). The output is

Xl := (1− 2Rl) · Yl · [[2Zl > (Yl − 1)2]] .

We run the t subcircuits in parallel and select Xl with the smallest l such that Xl 6= 0:
t∑
l=1

Xl · [[Xl 6= 0]]

l−1∏
j=1

[[Xl = 0]] .

Note that that the circuit outputs 0 if all t rounds satisfy the if-condition in Step N2.

A bound for the degree of each subcircuit is obtained as O(s6.13), since subtraction contributes a
factor of O(s), multiplication contributes another factor of O(s4.13) by Lemma 17, and comparison
contributes yet another factor of O(s). After taking a product of the results of the t comparisons, we
obtain the bound O(ts6.13) for the degree of the whole circuit.

The size of the circuit is dominated by the sizes of the subcircuits for the multiplications (Yl − 1)2.
By Lemma 17, the size of each subcircuit is O(s3.13). The total size is thus O(ts3.13).

Finally, we combine the constructed circuit with one for the exponential distribution. We get that the
combined circuit has size O(ts3.13) and degree O(ts9.13). We show next that t = O(s) is sufficient
for obtaining the claimed approximation guararantees.

Finite-precision analysis. Consider one round of Algorithm N. We drop the index l and, by
Theorem 11 and its proof, assume that Y and Z are independent ε-approximate draws from Exp(1)
over (0, b), with b = dln ε−1e, taking values in Bs ∩ [0, b) with s = 3b. We set the number of trials
to t = b.

Let y ∈ Bs ∩ (0, b′) where b′ := b1/2. Put a := (y − 1)2/2. We have

Pr(Y = y, Z ∈ [a, b)) =
∑

z∈[a,b)∩Bs

Pr(Y = y) Pr(Z = z) ≶
∑

z∈[a,b)∩Bs

e±2εE(y)E(z) ,

where E is the exact probability for the exponential distribution.

Our goal is to show (i) that a successful round results in an approximate sample,

Pr(Y = y |Y ∈ (0, b)), Z ∈ [a, b)) ≶ e±ε0E0(y) ,

where E0 is the exact probability for the standard one-sided normal distribution, and ε0 = O(
√
ε),

and (ii) that each round has a good success probability,

Pr(Y ∈ (0, b)), Z ∈ [a, b)) ≥ 1− 1/e ,

8

when ε0 ∈ (0, 1/e), so that all t trials fail with probability at most e−t ≤ ε. This is sufficient for the
theorem (with ε replaced by ε0), since the size and degree of the circuit are polylogarithmic in ε−1

We have ∑
z∈[a,b)∩B`

E(z) = F (b)− F (a) = e−a − e−b .

Observe that e−a − e−b ≥ e−a(1 − ε1) ≥ e−ae−2ε1 , where ε1 := e−b/2 ≤
√
ε; this follows since

b ≥ 2a (by our choice of b′) and 1− x ≥ e−2x for all 0 ≤ x < 1/2.

This gives us

Pr(Y = y, Z ∈ [a, b)) ≶ e±2(ε+ε1)E(y) e−a

≶ e±2(ε+ε1)±ε2e−a−y2−s

≶ e±2(ε+ε1)±ε2e−1/2e−y
2/22−s

≶ e±2(ε+ε1+ε2)e−1/2E0(y)

√
π

2
,

where ε2 := 2−s ≤ ε3. Likewise

Pr
(
Y ∈ (0, b′), Z ∈ [a, b)

)
≶ e±2(ε+ε1+ε2)e−1/2

∫ b′

2−s

e−y
2/2dy

≶ e±2(ε+ε1+ε2+ε3)e−1/2
√
π

2
.

where ε3 := 2
√
ε; here we used b′ ≥ 1 and the bound∫ b′

2−s

e−y
2/2dy ≥

∫ ∞
0

e−y
2/2dy − 2−s − e−b/2 ≥

√
π

2

(
1− 2

√
ε
)
≥
√
π

2
e−4
√
ε

Now, taking the ratio yields the desired result for the conditional probability, as long as we put
ε0 ≥ 4(ε + ε1 + ε2 + ε3). In fact, it is convenient to put ε0 := 6(ε + ε1 + ε2 + ε3), so that we
can bound the success probability of one round, as follows. Observe that e−ε0/3 ≥ 1− 1/(3e) and√
π/(2e) ≥ 1− 2/(3e), implying Pr

(
Y ∈ (0, b′), Z ∈ [a, b)

)
≥ (1− 1/3e)(1− 2/3e) ≥ 1− 1/e.

B.3 Computing the dot product

Now, assume we have generated independent ε-approximate draws v1, v2, . . . , vn ∈ Bs fromN (0, 1),
as described in the previous section. Recall that s = 3dln ε−1e. We will assume that n < 4s; if this
does not hold, we increase s accordingly.

Our aim is to compute the dot product z := yx · w, where wi = µi + σivi so that wi follows
approximately a discretized normal distributionN (µi, σ

2
i). We can simplify by writing z = µ̃+ σ̃ · v,

where the sum µ̃ =
∑
i yxiµi and the components σ̃i = yxiσi are constants. We assume that these

constants are encoded as elements of Bs.
Our arithmetic circuit computes the dot product exactly. Each multiplication σ̃ivi is computed by
a multiplication circuit and the result is represented as an element of B2s. By Lemma 17, each of
the n circuits is of size O(s3.13) and degree O(s4.13). The sum of the n products, plus the constant
µ̃, is represented as an element of B3s. Since n < 4s, we can compute it by a circuit for adding 4s
numbers, each represented using 4s bits. By the proof of Lemma 17, this circuit of size O(s3.13) and
degree O(s4.13). Combining the two layers yields a circuit of size O(ns3.13) and degree O(s6.26).

Since each vi converges in distribution to a standard normal random variable as ε tends to 0, the
dot product z converges in distribution to a random variable that follows N

(
µ̃,
∑n
i=1 σ̃

2
i

)
. Clarly,

the mean of z is µ̃ (with no error) and the variance of z is
∑n
i=1 σ̃

2
i ci, where ci is the variance of

vi. An analysis, similar to those in Section B.2, shows that ci ≶ e±O(ε), i.e., |1− ci| ≤ O(ε), thus
guaranteeing that the variance of z is has a relative error of O(ε).

9

B.4 Approximating the log-sigmoid

The sigmoid is the function σ : R → R given by σ(x) := 1/(1 + e−x). The log-sigmoid is the
function λ : R→ R given by λ(x) := lnσ(x).

Lemma 12. For all n = 1, 2, . . ., the log-sigmoid λ is n times continuously differentiable in R and
‖λ(n)‖∞ ≤ (n− 1)!.

Proof. We have λ(1)(x) = e−x/(1 + e−x) = 1 − σ(x). Thus, λ(n) = −σ(n−1). Since σ(1) =

σ(1− σ), we have σ(k+1) =
(
σ(1− σ)

)(k)
=
∑k
i=0

(
k
i

)
σ(i)σ(k−i). As σ(x) ≤ 1 for all x ∈ R, by

induction, ‖σ(k)‖∞ ≤ k!.

Definition 6. The natural cubic spline interpolant of a function f at points x0 < x1 < . . . < xn is
a 2 times continuously differentiable function s that is a degree-3 polynomial in each [xi−1, xi] for
i = 1, 2, . . . , n, satisfying s(xi) = f(xi) for i = 0, 1, . . . , n, and s′(xj) = f ′(xj) for j = 0, n.

Lemma 13. Let s be a natural cubic spline interpolant of λ with n+ 1 points x0 < x1 < · · · < xn
with spacing length ε. Furthermore, assume that |x0|, |xn| = O(log ε−1). Then, the coefficients of
each polynomial are of size O(ε−2).

Proof. We can write the polynomial for the interval [xi, xi+1] as

fi(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di.

First, note that λ(xi) = fi(xi) = di. Since the absolute value of the derivative of λ never exceeds 1
and λ is increasing, we have |λ(xi)| = O(log ε−1),

λ(xi+1)− λ(xi) < ε

and
|λ(xi)− 2λ(xi+1) + λ(xi+2)| < ε.

These inequalities are used to bound the coefficients of the polynomials.

Coefficients bi can be solved from a matrix equation, and the other coefficients can be written as a
function of bi’s, di’s and ε (see, for example, [4] for details). With some effort one can see that

|ai| = O(ε−2) , |bi| = O(ε−1) , |ci| = O(1) , and |di| = O(log ε−1) .

Thus, it follows that the coefficients of fi are of magnitude O(ε−2) as well.

Theorem 14 ([1, 2]). Let f : [a, b]→ R be 4 times continuously differentiable in [a, b]. Let s be the
natural cubic spline interpolant of f at n+ 1 evenly spaced points from a to b. Then

‖f − s‖∞ ≤
5

384
‖f (4)‖∞n−4 .

Theorem 15 (Approximating circuit for the log-sigmoid). For any ε > 0, there exists an arithmetic
circuit C : {0, 1}2m+1 → F of size O(ε−1/4 log ε−1) and degree O(log ε−1) such that∣∣λ(z)− C(z2m) · 2−M

∣∣ ≤ ε for all z ∈
{
r · 2−m,−r · 2−m : r = 0, 1, . . . , 4m − 1

}
,

where m = O(log ε−1) and M = O(log ε−1).

Proof. Assume C takes as input a rational number of the form±r · 2−m, where r = 0, 1, . . . , 4m− 1
represented by 2m+ 1 bits. Observe that it suffices to have 2−m ≤ ε/3, or, m = O(log ε−1), since
the derivative of λ is everywhere positiv and at most 1—higher resolution of the input numbers is not
needed for the target accuracy.

Small and large arguments x are not challenging for the approximation of λ(x). Indeed, let b ≥ 1 be
the smallest multiple of 2−m such that λ(b) > −ε/3 and x − λ(x) < ε/3 for all x < −b. Denote
a := −b. One finds that b− a = 2b = O(log ε−1). Outside the interval [a, b] we now have simple
approximations to λ, namely, the functions x and 0.

10

It remains to approximate λ inside [a, b]. This is accomplished by using a natural cubic spline s and
nε points with spacing length O(ε1/4). It follows from Lemma 12 and Theorem 14 that this suffices
for absolute error ε/2 in [a, b].

We round each coefficient c of the spline polynomials to a rational number r/q with integers r and
q; we take a common q := 2` for all these coefficients, thus the absolute error of r/q to c is at most
2−`. By Lemma 13, O(log ε−1) bits are enough for representing the coefficients of the polynomials.
Denote the rounded cubic spline by s̃. We get that

∣∣s(x) − s̃(x)
∣∣ ≤ 4b32−`, which is at most ε/2

when we put ` := dlog2(8b3ε−1)e = O(log ε−1).

For evaluations of s̃ at rational points x := r · 2−m with a varying r, let C be the (piecewise)
polynomial of degree 3 where in each piece the kth coefficient is obtained by multiplying the kth
coefficient of s̃ by 2`2(3−k)m. Observe thatC has integer coefficients and s̃(r·2−m) = C(r)·2−`−3m.
Therefore, using the triangle inequality, we conclude that

∣∣λ(r · 2−m)− C(r) · 2−`−3m
∣∣ ≤ ε for all

r · 2−m ∈ [a, b]. Finally, C can be implemented as an arithmetic circuit that takes O(m) bits as input
and is of size O(m+ ε−1/4 log ε−1) and degree O(m). Note that the bit representation of the input
number z is only used for selecting the piece to which z belongs—the spline polynomial itself is
evaluated over an appropriately large prime field, adding only 3 to the total degree of the circuit.

C Circuit primitives for binary number representation

Lemma 16 (Addition). There is an arithmetic circuit C : {0, 1}2n → {0, 1}n+1 of size O(n) and
degree at most 2n for adding two n-bit numbers together for any positive integer n.

Proof. We compute the sum of x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) by using full adders:
For each bit i compute a carry bit ci and an output bit zi such that

zi = (1− 2ci+1)(xi + yi − 2xiyi) + ci+1

and
ci = xiyi + xici+1 + yici+1 − 2xiyici+1

with cn+1 = 0.

Lemma 17 (Multiplication). There is an arithmetic circuit C : {0, 1}2n → {0, 1}2n+1 of size and
degree O(n4.13) for multiplying two n-bit numbers for any positive integer n.

Proof. There exists a formula of size O(n3.13) per output bit that uses operators {∧,⊕,¬} to add
together n integers [5]. Each of these operators can be implemented as an arithmetic circuit of degree
at most 2. Thus, the degree of the polynomial produced by a gate is the sum of degrees of its inputs.

The formula actually outputs two numbers whose sum equals the sum of all n numbers, so one
additional addition is required. This can be computed with, for example, the addition circuit of
Lemma 16, yielding the total size O(n4.13) and degree O(n4.13) for the circuit.

We obtain the same complexities for the multiplication circuit: Multiplying two n-bit numbers x and
y is equivalent to summing x copies of y, and 2k times y equals shifting y by k bits.

Lemma 18 (Comparison). There is an arithmetic circuit C : {0, 1}2n → {0, 1} of size O(n) and
degree 2n such that C(x, y) = [x < y] for all x, y ∈ {0, 1}n for any positive integer n.

Proof. Let

C(x, y) :=

n∑
i=1

[[xi < yi]]

i−1∏
j=1

[[xj = xj]] ,

where [[xi < yi]] is a shorthand for (1−xi)yi and [[xj = yj]] is a shorthand for xjyj+(1−xj)(1−yj).
Observe that C(x, y) = 1 if x < y, and C(x, y) = 0 otherwise.

11

References
[1] Charles A. Hall. On error bounds for cubic spline interpolation. Journal of Approximation

Theory, 1:209–218, 1968.

[2] Charles A. Hall and W. Weston Meyer. Optimal error bounds for cubic spline interpolation.
Journal of Approximation Theory, 16(2):105–122, 1976.

[3] Charles F. F. Karney. Sampling exactly from the normal distribution. ACM Trans. Math. Softw.,
42(1):3:1–3:14, 2016.

[4] Sky McKinley and Megan Levine. Cubic spline interpolation. College of the Redwoods,
45(1):1049–1060, 1998.

[5] Mike Paterson and Uri Zwick. Shallow circuits and concise formulae for multiple addition and
multiplication. Comput. Complex., 3:262–291, 1993.

[6] John von Neumann. Various techniques used in connection with random digits. In A. S.
Householder, G. E. Forsythe, and H. H. Germond, editors, Monte Carlo Method, volume 12
of National Bureau of Standards Applied Mathematics Series, chapter 13, pages 36–38. US
Government Printing Office, Washington, DC, 1951.

[7] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University
Press, Cambridge, third edition, 2013.

12

	Proofs
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Corollary 6
	Proof of Lemma 7
	Proof of Lemma 8

	Circuits for gradient estimation
	Sampling from the exponential distribution
	Sampling from the normal distribution
	Computing the dot product
	Approximating the log-sigmoid

	Circuit primitives for binary number representation

