
A Organization of the Appendix

In the Appendices we give full proofs of all results; there is no dependence on the Technical
Overview as all the information there will be repeated here in more detail. In Appendix B we
state more formally the open problem described in the intro. In Appendix C we prove the results
for known trees: in particular, this includes the main lower bound result, which is the failure of
low degree polynomials for recovering the root; we also show how to deduce the RBF kernel lower
bound using this. This is also where the RecMaj algorithm from Figure 1 is formally explained.
In Appendix D we prove the results in the setting with an unknown tree; the main technical step is
showing how to reconstruct the tree when �2 = 0 using a sample-efficient algorithm, which can be
straightforwardly implemented in SQ.

B Open Problem: General Broadcast Chains

Question 12 (Kesten-Stigum is sharp for Low-Degree Polynomials?). Suppose that d and transition
matrix M are such that d|�2(M)|2 < 1, i.e. we are below the Kesten-Stigum threshold. Let DN be
an arbitrary function of N = d

` such that DN = O(logN) as `! 1. Is it true that the degree-DN

maximum correlation between the broadcast process at the leaves XL and the root X⇢ in the sense
of Definition 4 is asymptotically zero, i.e. lim inf`!1 CorrDN = 0? Equivalently, is it true that

lim inf
`!1

max
c2[q]

sup
deg(f)DN ,E[f(XL)2]=1

Eµ` [f(XL)(1(X⇢ = c)� ⌫(c))] = 0?

Here we make the common choice of looking at logN degree polynomials (see e.g. Hopkins and
Steurer 2017; Kunisky et al. 2019), but any degree is interesting.

With the same intuition, we ask if a similar result to Theorem 8, the lower bound for kernel ridge
regression, holds below the Kestum-Stigum threshold — see Figure 1 for related simulation results,
which support the failure of KRR for small values of �2. We note that in our experiment the threshold
where KRR starts to work is much closer to d�2 = 1. It is quite possible that this is a finite-depth
effect since the experiment was done with a relatively shallow tree. Of course, if the sharp threshold
is not the Kestum-Stigum threshold it would be extremely interesting to understand what the correct
threshold is as a function of the broadcast model parameters.

C Known Tree: Upper and Lower Bounds

In this section, we prove a lower bound for arbitrary markov chains M satisfying �2(M) = 0.
From basic linear algebra (the existence of the Jordan Normal Form (Artin 2011)), we know that
�2(M) = 0 if and only if Mk is a rank one matrix for some 1  k  q, i.e. the Markov chain
mixes perfectly in a finite number of steps. For concreteness, we give an example of such a chain
with k = 2, q = 3 below.
Example 13 (Proof of Proposition 5, Mossel 2001). The following Markov chain on q = 3 states is
a simple example of a chain with �2(M) = 0: we have

M =

"
0.5 0 0.5
0.25 0.5 0.25
0 1 0

#
, M

2 =

"
0.25 0.5 0.25
0.25 0.5 0.25
0.25 0.5 0.25

#
.

C.1 Failure of Low-Degree Polynomials

Theorem 14. Let M be the transition matrix of a Markov chain on [q] and suppose that 1  k  q

is such that Mk is a rank-one matrix. Let S be any subset of the leaves of the depth-` complete d-ary
tree T = (V,E, ⇢) with root ⇢ and let (Xv)v2V denote the broadcast process on T with channel M .
Let S be an arbitrary subset of the leaf nodes of this tree. If |S| < 2b`/(k�1)c, then I(X⇢;XS) = 0,
i.e. XS is independent of the root value X⇢.

Proof. Assume for contradiction that |S| < 2b`/(k�1)c and I(X⇢;XS) > 0. Let TS be the minimal
spanning subtree of T containing the root node ⇢ and all of the elements of S. (Equivalently, TS is
the union of all of the root-to-leaf paths to S.)
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Recall that in our convention, the edges of the tree T are directed from the parent to the child. We
say that TS contains an isolated length k directed path if there exists adjacent nodes u0, . . . , uk

contained in T with (ui, ui+1) 2 E for all 0  i < k, and such that nodes u1, . . . , uk�1 all have
degree 2 in TS .

We show that we can reduce to the case where TS contains no isolated length k directed paths. Oth-
erwise, let u0, . . . , uk be as defined above and let Suk be the subset of S consisting of descendants
of uk (note that by the definition of TS , Suk is nonempty). Observe that

I(X⇢;XS)  I(X⇢;XS , Xuk) = I(X⇢;XS\Suk
, Xuk)

where the last equality follows by the Markov property (all nodes in Suk are descendants of uk, so
XSuk

is independent of the root value X⇢ conditionally on XS\Su
, Xuk ).

Next, by the chain rule for mutual information

I(X⇢;XS\Suk
, Xuk) = I(X⇢;XS\Suk

) + I(X⇢;Xuk | XS\Suk
) = I((X⇢;XS\Suk

)

where the last equality follows from the fact that

I(X⇢;Xuk | XS\Suk
)  I(Xu0 , X⇢;Xuk | XS\Suk

) = I(Xu0 ;Xuk | XS\Suk
) = 0

where in turn the first equality follows from the Markov property (X⇢ is independent of Xuk condi-
tional on Xu0 and XS\Suk

) and the second equality follows because by the Markov property,

XS\Suk
! Xu0 ! Xuk

is a Markov chain where the rightmost channel has transition matrix M
k, a rank-one matrix, so the

conditional law of Xuk is the stationary measure of M regardless of the value of Xu0 , hence Xuk is
conditionally independent of Xu0 . Combining the above claims shows that

I(X⇢;XS)  I(X⇢;XS\Suk
)

where |S \ Suk | < |S|; by monotonicity of mutual information we in fact have

I(X⇢;XS) = I(X⇢;XS\Suk
).

Repeating this argument recursively reduces to the case where TS has no isolated length k paths.

Finally, if TS has no isolated length k paths then every internal node of TS is either: (a) at depth
at most k � 1, or (b) has an ancestor at graph distance at most k � 1 away with degree at least 3.
By induction, this implies that the number of nodes at depth `0 in TS is at least twice as large as the
number of nodes at depth `0 � (k� 1). Since S is the set of nodes in TS at depth `, this implies that

|S| � 2b`/(k�1)c

which completes our proof by contradiction.

Corollary 15. In the setting of the previous Theorem, for any function f : [q]L ! R of Efron-Stein
degree at most 2b`/(k�1)c of the leaves XL and any prior ⌫ on the root,

E[f(XL) · ( (X⇢ = c)� ⌫(c))] = 0.

Proof. By linearity of expectation and the Efron-Stein decomposition,

E[f(XL)X⇢] =
X

S⇢L,|S|D

E[fS(XL) · ( (X⇢ = c)� ⌫(c))]i] = 0

where the last equality used the previous Theorem and the fact E[ (X⇢ = c)] = ⌫(c).

C.1.1 A consequence: failure of RBF kernel regression with oracle tuning

Setting and notation. We consider the performance of RBF kernel ridge regression (with arbi-
trary/oracle hyperparameter selection) for predicting the color of the root given the color of the
leaves. As is customary, we encode the leaf vectors using a one-hot encoding, so the input to the
regression is a list of i.i.d. samples (xi, yi)mi=1 where xi is the vector of one-hot encoded leaves, i.e.
(xi)`,c = (X` = c), and for an arbitrary fixed color c, yi := (X⇢ = c) � ⌫(c) is the centered
indicator that the root is colored c.
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Background on Kernel Ridge Regression. We remind the reader of some standard facts about
kernel ridge regression and the Gaussian/RBF kernel — see (Shalev-Shwartz and Ben-David
2014) for a reference. Given a kernel K(x, x0), training points x1, . . . , xm, and responses y =
(y1, . . . , ym), the kernel ridge regressor with ridge parameter � is given by solving a linear equation

v = (K+ �I)�1
y

where Kij = K(xi, xj) is the kernel matrix, and the predicted response for a fresh data point x0 is
given by

ŷ0 :=
nX

i=1

viK(xi, x0).

As is well-known, kernel ridge regression with ridge parameter � is equivalent to solving the ridge
regression problem

argmin
w

nX

i=1

(yi � hw,'(xi))
2 + �kwk22 (2)

with feature vectors '(x) lying in a certain Hilbert space. Note that with this parameterization the
prediction for fresh data point x0 would just be ŷ0 = hw,'(x0)i since w is in the Hilbert space. In
the case of the RBF kernel K(x, y) = e

�kx�yk2
2/2�

2

, the corresponding feature map for x 2 Rd is

'(x) = e
�kxk2

/2�2

✓
1

�2(n1+···+nd)

x
n1
1 · · ·xnd

dp
n1! · · ·nd!

◆

n1,...,nd�0

(3)

so that K(x, y) = h'(x),'(y)i. Note that k'(x)k = 1 since K(x, x) = e
0 = 1.

Proof of the lower bound. We now proceed to prove the subexponential RBF sample complexity
lower bound in our setting. For  an element of the RKHS, define the orthogonal projection operator
onto the space of degree J and higher polynomials P�J by

(P�J )n1,...,nd
:=

⇢
0 if n1 + · · ·+ nd < J

 n1,...,nd otherwise
.

From the definition, we first show that for large degree J and bandwidth � not too tiny, P�J is very
contractive when operating on feature embeddings '(x).
Lemma 16. For any x 2 Rd and '(x) as defined in (3) with bandwidth parameter � > 0,

kP�J'(x)k2  1p
J

✓
ekxk2

J�2

◆J

Proof. First observe that

(kxk2/�2)j

j!
=

X

n1+···+nd=j

1

n1! · · ·nd!(�2)2j
x
2n1
1 · · ·x2nd

d

by applying the multinomial theorem. Therefore,

kP�J'(x)k2 = e
�kxk2

/�
2

1X

j=J

kxk2j

�2jj!
= e

�kxk2
/�

2 kxk2J

�2JJ !

1X

j=0

kxk2jJ !
�2j(J + j)!

 kxk2J

�2JJ !

and then the stated result follows from a nonasymptotic version of Stirling’s approximation.

Next, we prove that there exists a relatively low-degree and low-RKHS norm polynomial which
perfectly interpolates the training data, by showing that with high probability every sample has a
small and unique “fingerprint” given by looking at a small set of well-separated leaves.
Lemma 17. Let M be the transition matrix of a markov chain on [q] and suppose that 1  k  q

is such that Mk = ⇡⇡
T is a rank-one matrix, and suppose that ⇡ has at least two nonzero entries.

Then if S is a set of leaves of distance at least 2k from each other and X1, . . . , Xm are i.i.d. random
vectors generated by the broadcast process with transition matrix M , the probability that there exists
i, j 2 [m] such that (Xi)S = (Xj)S is at most

�
m

2

�
�
|S| where � = �(M) 2 (0, 1) is a constant

depending only on M .
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Proof. First, let X,X
0 be independent samples of the leaves from the generative model and let

c = c(M) > 0 be such that the stationary distribution ⇡ has at least two entries of size at least c.
For S a set of leaves of distance at least 2k from each other, we have by the Markov property that
the entries of XS are independent from each other conditional on the values of the markov process
Xv for all vertices v at height k above the leaves; we see then that the conditional law of the leaves
XS is ⇡⌦S which does not depend on Xv , so in fact the leaves XS are unconditionally distributed
according to the product measure ⇡⌦S . Then by independence,

Pr(XS = X
0
S
) =

Y

i2S

Pr(Xi = X
0
i
)  (1� c)|S|

where in the last step we used that regardless of the value of Xi, X 0
i

has a probability at least c of
being different from it.

Lemma 18. For x 2 {0, 1}d with
P

i
xi = p, and S ✓ [d] and bS 2 {0, 1}d arbitrary, there exists

w = w(p, S) of (Hilbert space) norm

kwk2  2|S|
e
p/2�2

max
n
1,�2|S|

op
|S|!

such that
hw,'(x)i = 1(xS = bS).

Proof. Observe that
1(xS = bS) =

Y

i2S

[bixi + (1� bi)(1� xi)]

which for fixed b, expands into a sum of at most 2|S| many monomials of degree at most |S| and
with coefficient 1. Representing this expanded polynomial in the RKHS, using (3), then leads to the
stated norm bound.

We show that the overlap between two independent samples of the leaves from the model concen-
trates exponentially with a subgaussian tail:
Lemma 19. Let M be the transition matrix of a markov chain on [q] and suppose that 1  k  q

is such that Mk = ⇡⇡
T is a rank-one matrix. Then if XL, X

0
L

are two independent random vectors
of leaf colorations generated by the broadcast process on the d-ary tree with N = |L| leaves and
xL, x

0
L

are the corresponding one-hot encodings, we have that

Pr

✓����
1

N
hxL, x

0
L
i � k⇡k22

���� > t

◆
 2e�cNt

2

where c = c(M,d) > 0 is a constant not depending on N .

Proof. First, observe that if N is smaller than d
k, this bound can be proved trivially by shrinking

c, so henceforth we assume N is larger than this. By the law of total probability, it is sufficient to
prove the desired bound conditional on the colors XV , X

0
V

where V is the set of vertices at height
k above the leaves, and similar to the proof of Lemma 17 we observe by the Markov property that
this makes the color of the set of children of any particular v 2 V independent of the colors of all
non-children of v. This means that hxL, x

0
L
i a sum of bounded independent random variables, and

because M
k = ⇡⇡

T we have that its expectation is k⇡k22N , so the result follows immediately from
Hoeffding’s inequality (Vershynin 2018).

Theorem 20. Let M be the transition matrix of a markov chain on [q] and suppose that 1  k  q

is such that Mk = ⇡⇡
T is a rank-one matrix, and suppose that ⇡ has at least two nonzero entries.

Suppose that m/�  e
cN

✏

. Then given m i.i.d. samples (x1, y1), . . . , (xm, ym) from the broadcast
model on the d-ary tree with N leaves and broadcast channel M , we have that for any bandwidth
� � 0 and ridge parameter � � 0, for w the output of ridge regression in RKHS space with those
parameters, that with probability at least 1� �

Ex0,y0 [y0hw,'(x0)i]p
Ex0,y0 [y

2
0 ]

= O(
p
1/N)

provided that m/� = O(eN
✏

) where ✏ = ✏(M,d) > 0 is independent of N (equivalently, indepen-
dent of the depth of the tree).
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Proof. As usual, we will use that N can be assumed larger than a fixed absolute constant without
loss of generality. The proof is via case analysis on the bandwidth parameter �.

First we make an argument which covers the case of small bandwidth parameter �. Note that for
any i, kxik2 = N almost surely since there are N leaves and each leaf is one-hot encoded. By
Lemma 19 and the union bound, with probability at least 1� �/4 for any i 6= j in [m] we have

kxi � xjk22 = 2N � 2hxi, xji � 2(1� k⇡k22)N �OM,d(
p
N log(m/�))

so
Kij = e

�kxi�xjk2
2/2�

2

 exp
⇣
[�(1� k⇡k22)N +OM,d(

p
N log(m/�))]/�2

⌘
.

It follows that there exists c2 = c2(M,d) > 0 such that if �  c2N
1/2�✏/4, then (K)ij  e

�N
✏/3

for i 6= j and so by Gershgorin’s disk theorem and the fact that the diagonal of K is all-ones,
kK� IkOP  1/N . Hence for the Kernel Ridge solution v = (K+�I)�1

y we have kvk  2kyk 
2
p
m.

Consider a fresh test set of independently sampled pairs of leaf and root colorations
(x0

1, y
0
1), . . . , (x

0
ms

, y
0
ms

) where s := N log(2/�). Observe by Hoeffding’s inequality that with
probability at least 1� �/4,

�������

1

ms

msX

i=1

0

@
mX

j=1

vjK(xj , x0)

1

A
2

� Ex0

2

64

0

@
mX

j=1

vjK(xj , x0)

1

A
2
3

75

�������
= O(

p
log(2/�)/s)

where x0 is a fresh one-hot encoded vector of leaf colorations sampled from the same distribution
and where we used the fact that kvk  2

p
m and K(·, ·)  1 to show that over the randomness

of x0,
���
P

m

j=1 vjK(xj , x0)
���  2

p
m almost surely, which we used in order to apply Hoeffding’s

inequality. By repeating the argument used to show the off-diagonal entries of K are small, we have
with probability at least 1� �/4

1

ms

msX

i=1

0

@
mX

j=1

viK(xj , xi)

1

A
2

 me
�N

✏/2

,

hence by the triangle inequality we have with probability at least 1� � that

Ex0

2

4
 

mX

i=1

viK(xi, x0)

!2
3

5  me
�N

✏/2

+O(
p
log(2/�)/s)

and recalling s = N log(2/�) gives the result in this case.

Now we cover the remaining set of bandwidth parameters where � > c2N
1/2�✏/4. By the combi-

nation of Lemma 17 applied with |S| = CM log(m/�) and Lemma 18, we have that there exists w
such that for every xi

hw,'(xi)i = yi

and
kwk  (m/�)C

0
M e

N/4�2

�
CM logm/�

p
(CM logm/�)!. (4)

It follows that the output of KRR with any ridge parameter � � 0 has norm at most the rhs of (4)
(otherwise, replacing the output with w would shrink the norm without decreasing the training error
in (2)). Next, by Lemma 16 we have that for any x and degree J

hP�Jw,'(x)i = hw,P�J'(x)i
 kwkkP�J'(x)k

 kwk 1p
J

✓
ekxk2

J�2

◆J

= kwk 1p
J

✓
eN

J�2

◆J

so taking as in Corollary 15 J = 2b`/(k�1)c = N
✏ where this equation defines ✏ and using that

N/J�
2 = N

1�✏
/�

2 = O(��✏/(1�✏/2)),
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we have that for any w satisfying (4),

|hP�Jw,'(x)i|  kwk(c3/�✏/(1�✏/2))N
✏

 (m/�)C
0
M e

N
✏/2

/4c2�
CM logm/�

p
(CM logm/�)!(c3/�

✏/(1�✏/2))N
✏

= O((1/�)N
✏
/2).

Since by Corollary 15 and Cauchy-Schwarz we have that

Ex0,y0 [y0hw,'(x0)i] = Ex0,y0 [y0hP�Jw,'(x0)i] 
q
Ex0,y0 [y

2
0 ]
q

Ex0,y0 [hP�Jw,'(x0)i2]

combining this with the bound on |hP�Jw,'(x)i| completes the proof.

C.2 Success of noise-robust reconstruction using non-low-degree algorithms

Above we saw that when |�2(M)| = 0, very high degree polynomials are needed to get any es-
timate correlated with the root. Nevertheless, for “most” matrices M with |�2(M)| = 0 and for
degree d sufficiently large as a function M there exists a simple recursive and noise-robust method
which witnesses the fact that reconstructing the root is possible. If one likes, this recursive function
can trivially be expressed as a polynomial: then it will be a very high-degree polynomial that is
nonetheless robust to noise.

The reason for the qualifier “most” in the discussion above is that there are some degenerate M for
which the task is clearly impossible: e.g. if M is rank one (so it does not depend on its input). There
are other similar examples, e.g. the chain on 3 states which deterministically transitions from state
1 to state 2, and such that at states 2 and 3 the chain flips a fair coin to transition to either state 2 or
3. With this clarified, we can now state the known positive result for reconstruction.
Theorem 21 (Theorem 6.1 of Mossel 2004). Suppose M is a the transition matrix of a Markov
chain with pairwise distinct rows, i.e. for all i, j 2 [q] the rows Mi and Mj are distinct vectors.
Then there exists d0 = d0(M) such that for all d � d0, reconstruction is possible on the d-ary tree.

A variant of the condition in this Theorem gives a tight characterization of Markov chains where
reconstruction is possible on the infinite d-ary tree for sufficiently large d, see Theorem 2.1 of
Mossel and Peres 2003.

By revisiting the proof of Theorem, we get the following slightly more precise result which we will
use in later sections. This result shows that for any desired accuracy �, for sufficiently large degrees
d there exists a noise-tolerant estimator f which reconstructs the root correctly with probability at
least 1� � uniformly of the color of the root.
Theorem 22 (Proof of Theorem 2.1 of Mossel and Peres 2003). Suppose M is a the transition
matrix of a Markov chain with pairwise distinct rows, i.e. for all i, j 2 [q] the rows Mi and Mj

are distinct vectors. Let � 2 (0, 1) be arbitrary. There exists d0 = d0(M, �), ✏ > 0 such that
for all d � d0, ✏-noisy reconstruction is possible on the d-ary tree and furthermore there exists a
polynomial-time computable function f = fM,` valued in [q] such that

max
c2[q]

Pr(f(X 0
L
) 6= X⇢ | X⇢ = c) < �

where X
0
L

is the ✏-noisy version of XL (see Definition 3).

Proof sketch. As explained above, this result follows from examination of the proof of Theorem 2.1
in Mossel and Peres 2003. For the reader’s convenience, we summarize the main idea of the proof.

In the base case of a depth 1 tree, reconstruction of the root with probability at least 1� � is possible
provided d is a suitably large constant, because by basic large deviations theory (Sanov’s Theorem
(Dembo and Zeitouni 2010)) the empirical distribution of the children will concentrate around the
row of M corresponding to the root label (which by assumption is distinct from all of the other
rows). This procedure is also robust to a small amount of noise, which handles the case where ✏ > 0
and in fact even if the ✏ proportion of children assigned labels by the noise process choose their
labels adversarially. When doing the induction, the result of the reconstruction process at lower
levels of the tree can therefore (by conditional independence) be modeled as the true values with a
small amount of adversarial noise and this allows the same argument to show that at each level each
vertex is recovered correctly with probability at least 1� ✏ (where we take ✏ := �).
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Remark 23 (RecMaj in Figure 1). The RecMaj algorithm in Figure 1 corresponds to the algorithm
described in the above proof sketch: i.e. a recursive algorithm which to reconstruct the coloration of
a vertex, looks at the reconstructions of its children, takes the empirical distribution, and picks the
corresponding row of M which is closest in `2 norm.

C.3 Low-Degree Polynomials succeed above the KS threshold

The Kesten-Stigum threshold is the sharp threshold for count reconstruction defined earlier. The
definition of count reconstruction informally says that there is a nontrivial amount of mutual infor-
mation between count statistics at the leaves and the value of the Markov Random Field at the root.
To relate count reconstruction to low-degree polynomials, we use the following more precise result:
Lemma 24 (Proof of Theorem 1.4 of Mossel and Peres 2003). Suppose that d|�2(M)|2 > 1. There
exist coefficients sc 2 C for c 2 [q] such that the random variable

S =
X

c2[q]

sc#{X` = c : ` 2 L}

satisfies
E[S | X⇢ = c] = vc

where v is an unit-norm eigenvector of M in its second-largest eigenspace, i.e. achieving kMvk =
|�2(M)|, and such that

E[|S|2 | X⇢ = c] 2 [A,B]

where 0 < A  B are constants depending only on d and M (in particular, they are independent of
the depth of the tree).

As a consequence of this, we immediately obtain that low-degree polynomials (in fact, degree 1
polynomials) have nontrivial correlation with the root above the KS threshold, in the same sense as
Definition 4.

C.3.1 A Question: Bayes-Optimal Reconstruction

We saw above that degree-1 polynomials of the leaves are sufficient to achieve nontrivial correlation
with the root, provided that the model we consider is above the KS threshold. A natural question is
whether higher degree polynomials have a significant advantage over degree-1 polynomials for esti-
mating the value of the root. Relevant to this question, we recall the following result and conjecture
from Mossel et al. 2014 which concerns noise-robust recovery with the Binary Symmetric Channel
(equivalently, the Ising model on trees without external field):
Theorem 25 (Theorem 3.2 of Mossel et al. 2014). There exists an absolute constant C � 1 such
that the following result is true. For ✓ � 0 let

M =


(1 + ✓)/2 (1� ✓)/2
(1� ✓)/2 (1 + ✓)/2

�

and observe that �2(M) = ✓. If d✓2 > C, then for all ✏ < 1 and X
0
L

defined by the ✏-noisy
broadcast model,

lim
`!1

dTV (Lµ`(X
0
L
= · | X⇢ = 1),Lµ`(X

0
L
= · | X⇢ = 0))

= lim
`!1

dTV (Lµ`(XL = · | X⇢ = 1),Lµ`(XL = · | X⇢ = 0))

in other words, if ✏ < 1 is fixed then in the limit of infinite depth the probability of reconstructing
the root correctly is the same as in the noiseless case ✏ = 0.

(Recall that the equivalence of the statement in terms of TV and in terms of maximum probability of
reconstructing the root follows from the Neyman-Pearson Lemma Neyman and Pearson 1933.) This
statement is conjectured to hold with C = 1 Mossel et al. 2014 and as explained there, is closely
related to Bayes-optimal recovery in the stochastic block model. Based on this, we ask the following
question:
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Question 26. Do polynomials of degree O(logN) achieve asymptotically Bayes-optimal recovery
with the above channel when d✓

2
> 1? More precisely, does there exist a polynomial threshold

function f of degree O(logN) which asymptotically achieves

Pr(f(XL) = X⇢) = (1 + o(1)) Pr(sgn(E[X⇢ | XL]� 1/2) = X⇢)

where the rhs is the error of the Bayes-optimal estimator.

It seems likely the answer to this question is positive. The reason for this is the following: (1) if the
conjectured strengthening of Theorem 25 is true, then it implies that the combination of a majority
vote up to some depth and !(1) number of rounds of belief propagation achieves Bayes-optimal
recovery, and (2) a constant or very slowly growing number of rounds of belief propagation can be
simulated with low-degree polynomials (see Appendix of Gamarnik et al. 2020), and the threshold
used in the majority vote should also be approximable by polynomials. We state the conjecture with
O(logN) degree polynomials since this is informally considered to correspond to “polynomial time
algorithms” in the low-degree framework (Hopkins 2018; Kunisky et al. 2019), but based on the
above discussion it seems likely that a smaller degree than O(logN) is sufficient, e.g. any degree
going to infinity with N may be sufficient.

D Unknown Tree Setting

In this section, we show that for any channel M satisfying the conditions of Theorem 22, i.e. such
that for sufficiently large d reconstructing the root is possible (in the known tree setting/in the usual
sense), then in the unknown tree setting that a relatively simple algorithm succeeds at reconstructing
the root with a polynomial number of samples, and this algorithm can be straightforwardly imple-
mented in the SQ (Statistical Query) model with polynomial number of queries and error tolerance.

The key step in the algorithm for reconstructing the root is a method of reconstructing the tree, which
lets us reduce to the known tree setting. This kind of problem has previously been extensively studied
in the context of phylogenetic reconstruction with particular channels M coming from biology, and
for example algorithms with polynomial runtime and sample complexity are known in the case that
M is a nonsingular matrix (Mossel and Roch 2005). In the present context, we are very interested
in the case of singular matrices (e.g. those with �2(M) = 0) so we cannot rely on existing results.

Model. We remind the reader that in the unknown tree setting, we are in the model of Definition 9.
This means that an unknown Y

⇤ is sampled from Uni([q]), and the algorithm seeks to reconstruct
Y

⇤ given access to m i.i.d. samples X
(1)
L

, . . . , X
(m)
L

of the leaves generated by the broadcasting
process with root prior (2/3)�Y ⇤ +(1/3)Uni([q]), i.e. the root is biased/tilted towards the unknown
Y

⇤. When we say the tree is “unknown” in this model, it means that the algorithm is not given a
priori knowledge of the true order of the leaves, e.g. the algorithm does not know at the beginning
whether coordinates 1 and 2 of X(1)

L
correspond to siblings or to leaves far apart in the tree (this is

completely analogous to the situation in phylogenetic reconstruction Steel 2016). In the definition
of this model, this is modeled by shuffling the order of the leaves by an unknown permutation ⌧ ;
note that this order is kept consistent between each sample.

D.1 Failure of low-degree polynomials

Theorem 27. Let M be the transition matrix of a Markov chain on [q] and suppose that 1  k  q

is such that Mk is a rank-one matrix. If c 2 [q] is arbitrary and f is a polynomial with Efron-Stein
degree strictly less than 2b`/(k�1)c, then

ER[f(X)( (Y ⇤ = c)� 1/q)] = 0

where R is as defined in Definition 9.

Proof. Let ⌫(c) = 1/q for c 2 [q] denote the prior on Y
⇤.

By linearity of expectation and the definition of Efron-Stein degree, it suffices to show the result
for functions f of the form fS1(X

(1)
L

) · · · fSm(X(m)
L

) where
P

i
|Si| < 2b`/(k�1)c, where each
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fSi(X
(i)
L

) is a function only of the coordinates of its input in Si. Since the samples X(1)
, . . . , X

(m)

are conditionally independent given the value of Y ⇤, we have

ER

" 
mY

i=1

fSi(X
(i)
L

)

!
( (Y ⇤ = c)� ⌫(c))

#

= ER

"
E
" 

mY

i=1

fSi(X
(i)
L

)

!
( (Y ⇤ = c)� ⌫(c)) | Y ⇤

##

= ER

" 
mY

i=1

E[fSi(X
(i)
L

) | Y ⇤]

!
( (Y ⇤ = c)� ⌫(c))

#

= ER

" 
mY

i=1

E[fSi(X
(i)
L

)]

!
( (Y ⇤ = c)� ⌫(c))

#
= 0

where in the first equality we used the law of total expectation, in the second equality we used the
aforementioned conditional independence, in the third equality we crucially used that by Theorem 14
the low-degree polynomial fSi(X

(i)
L

) is independent of the root value and thus Y ⇤, and in the last
step we used that Y ⇤ ⇠ ⌫ by definition.

D.2 Reconstruction Algorithm

For c 2 [q], let e(c) or ec denote the qth standard basis vector in Rq . In both cases, the vector is a
column vector.
Lemma 28. Suppose that ⌫ is a probability measure on [q] and ⌫(c) > 0 for all c 2 [q], then there
exists a constant ↵ = ↵(M, ⌫) > 0 such that the following is true. Let (Xu)u ⇠ µ for u 2 V

be defined by the broadcasting process on T = (V,E, ⇢) with prior ⌫ at the root and channels
corresponding to M : q⇥q the transition matrix of an ergodic Markov chain. Then µ(Xu = c) > ↵

for all u 2 V .

Proof. Under the assumptions, there exists some � > 0 such that ⌫ = �⇡M + (1 � �)⌫0 for ⌫0 a
probability measure. Because ⇡M is the stationary distribution and the marginal law at any vertex u

is ⌫Mk for some k � 0, it follows that µ(Xu = c) > �⇡M (c) � minc �⇡M (c) =: ↵ > 0.

Lemma 29. Suppose that u, v are two descendants of node w at graph distance k from w and
random variables Xu, Xv, Xw follow the Markov process on trees µ with transition matrix M :
q ⇥ q. Then

E[e(Xu)e(Xv)
T ] = (Mk)T⇧wM

k

where ⇧w : q⇥ q is a diagonal matrix with entries the marginal law of Xw, i.e. (⇧w)cc = µ(Xw =
c) for c 2 [q].

Proof. Using the law of total expectation and using by the Markov property that Xu and Xv are
conditionally independent given Xw, we have

E[e(Xu)e(Xv)
T ] = E[E[e(Xu) | Xw]E[e(Xv)

T | Xw]] = E[(eT
Xw

M
k)T (eT

Xw
M

k)] = (Mk)T⇧wM
k

where in the last equality we used the definition of ⇧w and the definition of the broadcast process in
terms of the transition matrix M .

Based on this, we can recursively reconstruct the tree when the degree is sufficiently large. We note
that for other channels like the BSC channel, tree reconstruction methods often handle internal nodes
u by computing majorities of the nodes under them, which gives an unbiased estimate of the spin
Xu, but this technique is not applicable in our setting (it’s unclear that unbiased estimators exist).
Nevertheless, we show that applying the estimator from Theorem 22 can be used in a similar way,
provided the degree d is sufficiently large.
Theorem 30. Suppose M is a the transition matrix of a Markov chain with pairwise distinct rows,
i.e. for all i, j 2 [q] the rows Mi and Mj are distinct vectors. If |�2(M)| > 0, additionally
suppose that the prior on the root of the tree is the stationary distribution of M . There exists
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d � 1 and ✏ > 0 so that the following result holds true for the complete d-ary tree with any
depth ` � 1. For any � > 0, there exist a polynomial time algorithm with sample complexity
m = polyM (logN, log(1/�)) from the ✏-noisy repeated broadcast model (Definition 9) which with
probability at least 1� �:

1. outputs the true tree T (equivalently, the true permutation ⌧ )

2. outputs Ŷ such that Ŷ = Y
⇤.

Also, this algorithm can be implemented in the Statistical Query (SQ) model using a V STAT (m)
oracle with m = polyM (log(N/�)) and polynomial number of queries.

Proof. Given that the algorithm can correctly output the true tree T , the fact that it outputs the
correct root label follows straightforwardly from Theorem 22 by using the algorithm specified in
that result to estimate the root in each sample, and then taking the majority vote over those samples
(which will succeed with high probability provided we take ⌦(log(2/�)) samples due to Hoeffding’s
inequality), and this can approach can also clearly be implemented in the SQ model (the SQ query
is the robust reconstruction function of the leaves which outputs a vector, so we take the expectation
of this and look at the largest entry of this vector). In the remainder of the proof, we show how to
correctly output the true tree T with high probability.

We first prove the result in the case that �2(M) 6= 0 and afterwards describe how to modify the
argument straightforwardly when �2(M) = 0. Let ' be a right eigenvector such that M' = �2'.
We start by describing the algorithm which computes the estimated tree T̂ from the bottom up: let
↵ = ↵(M, �) > 0 be a parameter to be set later. Let Ê[·] denote the expectation over the empirical
distribution of m samples, so for any function f we have Ê[f(X)] = 1

m

P
i
f(X(i)).

1. Base case: for all leaves u 6= v define g(u, v) := |h', Ê[e(Xu)e(Xv)T ]'i|. Let gmax =
maxu 6=v g(u, v) and set u, v to be neighbors in T̂ iff g(u, v) � gmax � ↵. This constructs
the first layer of the tree T̂ .

2. Recursive case: suppose that we have reconstructed the first s � 1 layers of the tree (from
the bottom), and the current layer of the tree has more than one element. For each pair of
internal nodes u, v at the current level of the tree, let Su, Sv be the set of leaves under these
nodes and let gs(u, v) := |h', Ê[e(fM,`�s(XSu))e(fM,`�s(XSv ))

T ]'i| where fM,`�s is
as defined in Theorem 22. Let gmax = maxu 6=v g(u, v) and set u, v to be neighbors in T̂

iff g(u, v) � gmax � ↵. This constructs the next layer of the tree T̂ .

We now need to show that with total probability at least 1��, T̂ = T . First we consider the behavior
of the base case; for simplicity, we first describe the argument when ✏ = 0. Observe that if u and v

are siblings in T at depth ` then by Lemma 29

h',E[e(Xu)e(Xv)
T ]'i = |�2|2h',⇧`�1'i

where ⇧`�1 is a diagonal matrix encoding the marginal law of Xw for any w at depth ` � 1, and
similarly, if u and v are not siblings then they are at graph distance at least 4 in T so

h',E[e(Xu)e(Xv)
T ]'i  |�2|4h',⇧`�1'i

which is smaller by a factor of |�2|2. (Note, here we are using the fact that in the case |�2| > 0,
we additionally assumed the prior at the root is stationary and so the marginal law at every depth
in the tree is the stationary distribution.) Observe that by Hoeffding’s inequality and the union
bound we have that with probability at least 1 � �/n that in the base case step, every entry of the
matrix Ê[e(Xu)e(Xv)T ] for every pair of leaves u 6= v is within additive error O(

p
log(n/�)/m)

of its expectation. It follows from this and Lemma 28 that if ↵ = (1/CM )(|�2|2 � |�2|4) for CM

a sufficiently large constant depending only on M , ✏ is sufficiently small with respect to ↵, and
m = ⌦M (log(n/�)) then in the base case the algorithm computes neighbors correctly. Observe
that at each layer, if the algorithm has correctly reconstructed T in all previous layers then the sets
Su for all nodes u in this layer are deterministic functions of T , and hence so are the queries the
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algorithm makes to Ê. By a similar application of the union bound and Hoeffding’s inequality as
well as Theorem 22 and the assumption that d is sufficiently large with respect to M it follows that
the algorithm succeeds at all subsequent layers as well.

Note that provided we take ✏ > 0 is sufficiently small, we can show the base case of the argument
will still succeed by using the triangle inequality, and the inductive step in the argument will succeed
because of Theorem 22.

Finally, in the case that �2(M) = 0, we let ' be a generalized eigenvector such that M' 6= 0 but
M

2
' = 0. Note that such a vector must exist because, 0 is an eigenvalue of algebraic multiplicity

q � 1 as M is ergodic and �2 = 0, and because our assumption on M rules out the case that M is
rank one, so it’s Jordan normal form must have at least one Jordan block with size at least 2 and this
corresponds to the existence of such a generalized eigenvector '. Now observe for such a ' that if
u, v are siblings in T at depth ` then

h',E[e(Xu)e(Xv)
T ]'i = hM',⇧`�1M'i

which by Lemma 28 is lower bounded by a constant C 0
M

> 0, while if u, v are not siblings,

h',E[e(Xu)e(Xv)
T ]'i = 0.

Setting ↵ = C
0
M
/2 and defining the remaining constants similarly to above ensures the algorithm

succeeds, by the same argument.

Note that in both the case �2(M) 6= 0 and �2(M) = 0, the algorithm is implemented by taking the
expectation of certain functions over the samples, so it is straightforwardly implementable with SQ
queries by replacing the empirical expectation with the VSTAT oracle.
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