A Proof of (1)

Lemma 2 (Optimization comparison lemma [35]). Suppose

$$
\begin{equation*}
x^{*} \in \underset{x}{\operatorname{argmin}} \varphi_{1}(x)+\varphi_{0}(x) \quad \text { and } \quad y^{*} \in \underset{x}{\operatorname{argmin}} \varphi_{2}(x)+\varphi_{0}(x) . \tag{10}
\end{equation*}
$$

for φ_{1} and φ_{2} differentiable and φ_{0} convex.

Proof. The (sub)differentiability assumptions and the optimality of $x_{\varphi_{1}}$ and $x_{\varphi_{2}}$ imply that $0 \in \partial \varphi_{2}$ and $u=0+\nabla\left(\varphi_{1}-\varphi_{2}\right)\left(x_{\varphi_{1}}\right)$ for some $u \in x_{\varphi_{2}}$. The gradient growth condition implies

$$
\begin{equation*}
\nu_{\varphi_{2}}\left(\left\|x_{\varphi_{1}}-x_{\varphi_{2}}\right\|_{2}\right) \leq\left\langle x_{\varphi_{1}}-x_{\varphi_{2}}, u-0\right\rangle=\left\langle x_{\varphi_{1}}-x_{\varphi_{2}}, \nabla\left(\varphi_{2}-\varphi_{1}\right)\left(x_{\varphi_{1}}\right)\right\rangle . \tag{11}
\end{equation*}
$$

Lemma 3 (Learning guarantee for $\hat{\theta}_{n}(\lambda)$). Given, F_{n} satisfies Assumption 1 or 2 and any distribution \mathcal{D}, let $S=\left\{z_{i}\right\}_{i=1}^{n}$ where $S \sim \mathcal{D}^{n}$. Then the the empirical minimizer $\hat{\theta}_{n}(\lambda)$ of $F_{n}(\theta, \lambda, z)$ satisfies

$$
\mathbb{E}\left[F\left(\hat{\theta}_{n}(\lambda)\right)-F\left(\theta^{*}(\lambda)\right)\right] \leq \frac{4 L^{2}}{\mu n}
$$

Proof. Given F_{n} is μ-strongly convex this follows from Claim 6.2 in [29].
A. 1 Proof of (6b): Closeness of $\hat{\theta}_{n}(\lambda)$ and $\hat{\theta}_{n,-U}(\lambda)$

Suppose we have deleted m users in a set U. Define $\tilde{F}_{n,-U}=\frac{n-m}{n} F_{n,-U}$ where $F_{n,-U}=$ $\frac{1}{n-m} \sum_{i \notin U} f\left(z_{i}, \theta, \lambda\right)$ and note that $\tilde{F}_{n,-U}$ and $F_{n,-U}$ have the same minimizers. We will work with $\tilde{F}_{n,-U}$. By the optimizer comparison lemma 2 and strong convexity of F_{n}

$$
\begin{aligned}
\mu\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2}^{2} & \leq\left\langle\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda), \nabla F_{n}\left(z, \hat{\theta}_{n}(\lambda), \lambda\right)-\nabla \tilde{F}_{n,-U}\left(z, \hat{\theta}_{n}(\lambda), \lambda\right)\right\rangle \\
& =\frac{1}{n} \sum_{i \in U}\left\langle\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda), \nabla \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)\right\rangle \\
& \leq \frac{1}{n}\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2} \sum_{i \in U}\left\|\nabla \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)\right\|_{2} \\
& \leq \frac{1}{n}\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2} \cdot m L
\end{aligned}
$$

Dividing both sides by $\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2}$ and rearranging gives the desired bound of

$$
\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2} \leq \frac{m L}{\mu n}
$$

A.1. 1 Proof of (6b): Closeness of $\hat{\theta}_{n,-U}(\lambda)$ and $\bar{\theta}_{n,-U}(\lambda)$

We define:

- $\psi_{1}=\tilde{F}_{n,-U}(z, \theta, \lambda)$
- $\psi_{2}=\left\langle\nabla \tilde{F}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right), \hat{\theta}_{n}(\lambda)-\theta\right\rangle+\left\langle\hat{\theta}_{n}(\lambda)-\theta, \nabla_{\theta}^{2} \tilde{F}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right)\left[\hat{\theta}_{n}(\lambda)-\theta\right]\right\rangle$
- $\psi_{3}=\left\langle\nabla \tilde{F}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right), \hat{\theta}_{n}(\lambda)-\theta\right\rangle+\left\langle\hat{\theta}_{n}(\lambda)-\theta, \nabla_{\theta}^{2} \tilde{F}_{n}\left(\hat{\theta}_{n}(\lambda)\right)\left[\hat{\theta}_{n}(\lambda)-\theta\right]\right\rangle$
- $\hat{\theta}_{n,-U}(\lambda)=\operatorname{argmin} \psi_{1}(\theta)$,
- $\tilde{\theta}_{n,-U}(\lambda)=\operatorname{argmin} \psi_{3}(\theta)$

The optimizer comparison theorem and strong convexity of F_{n} implies the following upper bound:

$$
\begin{aligned}
\frac{\mu}{2}\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2}^{2} & \leq\left\langle\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda), \nabla\left(\psi_{3}-\psi_{1}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\rangle \\
& \leq\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2}\left\|\nabla\left(\psi_{3}-\psi_{1}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2}
\end{aligned}
$$

Dividing both sides by $\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2}$ gives

$$
\begin{aligned}
\frac{\mu}{2}\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2} \leq & \left\|\nabla_{\theta}\left(\psi_{3}-\psi_{2}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta}\left(\psi_{2}-\psi_{1}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
\leq & \left\|\nabla_{\theta}\left(\psi_{3}-\psi_{2}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2}+\left\|\nabla_{\theta}\left(\psi_{2}-\psi_{1}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
\leq & \left\|\nabla_{\theta}^{2} \tilde{F}_{n}\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta}^{2} \tilde{F}_{n,-U}\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2}\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2} \\
& +\left\|\nabla_{\theta}\left(\psi_{2}-\psi_{1}\right)\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
\leq \leq & \frac{m^{2} C L}{\mu n^{2}}+\left\|\nabla_{\theta} \psi_{2}\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta} \psi_{1}\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
& \stackrel{(1)}{\leq} \frac{m^{2} C L}{\mu n^{2}}+\frac{M}{2}\left\|\hat{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|_{2}^{2} \\
\leq & \frac{m^{2} C L}{\mu n^{2}}+\frac{M}{2} \cdot \frac{m^{2} L^{2}}{\mu^{2} n^{2}}
\end{aligned}
$$

Inequality (1) follows from smoothness of the objective function. Dividing both sides by $\frac{\mu}{2}$, gives the desired bound of

$$
\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2} \leq \frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}
$$

For the non-smooth version of our algorithm, the same proof holds where we define

$$
\begin{aligned}
& \text { • } \psi_{1}=\tilde{\ell}_{n,-U}(z, \theta, \lambda) \\
& \text { • } \psi_{2}=\left\langle\nabla \tilde{\ell}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right), \hat{\theta}_{n}(\lambda)-\theta\right\rangle+\left\langle\hat{\theta}_{n}(\lambda)-\theta, \nabla_{\theta}^{2} \tilde{\ell}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right)\left[\hat{\theta}_{n}(\lambda)-\theta\right]\right\rangle+\pi(\theta) \\
& \text { • } \psi_{3}=\left\langle\nabla \tilde{\ell}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right), \hat{\theta}_{n}(\lambda)-\theta\right\rangle+\left\langle\hat{\theta}_{n}(\lambda)-\theta, \nabla_{\theta}^{2} \tilde{\ell}_{n}\left(\hat{\theta}_{n}(\lambda)\right)\left[\hat{\theta}_{n}(\lambda)-\theta\right]\right\rangle+\pi(\theta) \\
& \text { - } \hat{\theta}_{n,-U}(\lambda)=\operatorname{argmin} \psi_{1}(\theta) \\
& \text { - } \tilde{\theta}_{n,-U}(\lambda)=\operatorname{argmin} \psi_{3}(\theta) \\
& \begin{aligned}
\frac{\mu}{2}\left\|\hat{\theta}_{n,-U}(\lambda)-\tilde{\theta}_{n,-U}(\lambda)\right\|_{2} \leq & \left\|\nabla_{\theta}^{2} \tilde{\ell}_{n}\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta}^{2} \tilde{\ell}_{n,-U}\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2}\left\|\hat{\theta}_{n}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|_{2} \\
& +\left\|\nabla_{\theta} \psi_{2}\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta} \psi_{1}\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
& \leq \frac{m^{2} C L}{\mu n^{2}}+\left\|\nabla_{\theta} \psi_{2}\left(\hat{\theta}_{n,-U}(\lambda)\right)-\nabla_{\theta} \psi_{1}\left(\hat{\theta}_{n,-U}(\lambda)\right)\right\|_{2} \\
& \leq \frac{m^{2} C L}{\mu n^{2}}+\frac{M}{2}\left\|\hat{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|_{2}^{2} \\
& \leq \frac{m^{2} C L}{\mu n^{2}}+\frac{M}{2} \cdot \frac{m^{2} L^{2}}{\mu^{2} n^{2}}
\end{aligned}
\end{aligned}
$$

A. 2 Comparisons between batch and streaming algorithm

We show that the batch and streaming version of the algorithms are equivalent.
Case 1: π is smooth. The bounds we have proved are for the minizmier of φ_{3}, namely

$$
\begin{aligned}
\tilde{\theta}_{n,-U}(\lambda) & =\hat{\theta}_{n}(\lambda)-\nabla_{\theta}^{2} \tilde{F}\left(\hat{\theta}_{n}(\lambda)\right)^{-1} \nabla \tilde{F}_{n,-U}\left(\hat{\theta}_{n}(\lambda)\right) \\
& =\hat{\theta}_{n}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \sum_{i \in U} \nabla \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)
\end{aligned}
$$

Now suppose 1 datapoint (user j) requests to be deleted. Then the streaming and batch algorithms agree, as the update becomes

$$
\tilde{\theta}_{n,-i}(\lambda)=\hat{\theta}_{n}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \nabla \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)
$$

Now suppose the algorithms are consistent for all deletion requests in the set U. When an additional user j requests to delete their data the streaming algorithm returns

$$
\begin{aligned}
\tilde{\theta}_{n,-(U \cup\{j\})}(\lambda) & =\tilde{\theta}_{n,-U}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \nabla \ell\left(z_{j}, \hat{\theta}_{n}(\lambda)\right) \\
& =\hat{\theta}_{n}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \sum_{i \in U} \nabla \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right) \\
& +\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \nabla \ell\left(z_{j}, \hat{\theta}_{n}(\lambda)\right) \\
& =\hat{\theta}_{n}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \nabla \sum_{i \in(U \cup\{j\})} \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)
\end{aligned}
$$

which matches the batch version of the deletion algorithm. This inductive arguments show both batch and streaming algorithms are the same.

Case 2: π is not smooth. When π is not smooth, the minimizer of φ_{3} satisfies

$$
\tilde{\theta}_{n,-(U \cup\{j\})}(\lambda)=\tilde{\theta}_{n,-U}(\lambda)+\frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} F\left(z_{i}, \hat{\theta}_{n}(\lambda), \lambda\right)\right)^{-1} \nabla \ell\left(z_{j}, \hat{\theta}_{n}(\lambda)\right)+\lambda \nabla \pi\left(\tilde{\theta}_{n,-(U \cup\{j\})}(\lambda)\right)
$$

When 1 datapoint (user j) requests to be deleted, the streaming and batch algorithms agree given $U=\emptyset$. Now suppose the algorithms are consistent for all deletion requests in the set U. When an additional user j requests to delete their data the streaming algorithm returns an estimator that satisfies

$$
\begin{aligned}
\bar{\theta}_{n,-(U \cup\{j\})}(\lambda) & =\bar{\theta}_{n,-U}(\lambda)+\frac{1}{n} H_{\ell}^{-1} \nabla \ell\left(z_{j}, \hat{\theta}_{n}(\lambda)\right)+\lambda H_{\ell}^{-1} \nabla\left(\bar{\theta}_{n,-(U \cup\{j\})}(\lambda)\right) \\
& =\hat{\theta}_{n}(\lambda)+\frac{1}{n} H_{\ell}^{-1} \nabla \sum_{i \in(U \cup\{j\})} \ell\left(z_{i}, \hat{\theta}_{n}(\lambda)\right)+\lambda H_{\ell}^{-1} \nabla\left(\bar{\theta}_{n,-(U \cup\{j\})}(\lambda)\right)
\end{aligned}
$$

which matches the batch version of the deletion algorithm. This inductive arguments show both batch and streaming algorithms are the same.

A. 3 Proof of excess empirical risk

Second, we prove the excess empirical risk of our unlearning algorithm (1).
Proof.

$$
\begin{aligned}
\mathbb{E}\left[F_{n}\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F_{n}\left(\theta^{*}(\lambda)\right)\right] & =\mathbb{E}\left[F_{n}\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F_{n}\left(\hat{\theta}_{n}(\lambda)\right)+F_{n}\left(\hat{\theta}_{n}(\lambda)\right)-F_{n}\left(\theta^{*}(\lambda)\right)\right] \\
& =\mathbb{E}\left[F_{n}\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F_{n}\left(\hat{\theta}_{n}(\lambda)\right)\right]+\mathbb{E}\left[F_{n}\left(\hat{\theta}_{n}(\lambda)\right)-F_{n}\left(\theta^{*}(\lambda)\right)\right] \\
& \stackrel{(1)}{\leq} \mathbb{E}\left[L\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|\right]+\frac{4 L^{2}}{\mu n}
\end{aligned}
$$

where (1) comes from Lemma 3 given that F_{n} satisfies Assumption 1 or 2.
Next we upper bound $\mathbb{E}\left[\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|\right]$:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|\right] & =\mathbb{E}\left[\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n,-U}(\lambda)+\hat{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|\right] \\
& =\mathbb{E}\left[\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|\right]+\mathbb{E}\left[\left\|\hat{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n}(\lambda)\right\|\right] \\
& \stackrel{(2}{\leq} \mathbb{E}\left[\left\|\tilde{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|\right]+\frac{m L}{\mu n} \\
& \leq \mathbb{E}\left[\left\|\bar{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n,-U}(\lambda)+\sigma\right\|\right]+\frac{m L}{\mu n} \\
& \leq \mathbb{E}\left[\left\|\bar{\theta}_{n,-U}(\lambda)-\hat{\theta}_{n,-U}(\lambda)\right\|\right]+\mathbb{E}[\|\sigma\|]+\frac{m L}{\mu n} \\
& \stackrel{(3)}{\leq} \frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}+\sqrt{d} c+\frac{m L}{\mu n} \\
& \leq \frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}+\frac{\sqrt{d} \sqrt{2 \ln (1.25 / \delta)}}{\epsilon}\left(\frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}\right)+\frac{m L}{\mu n}
\end{aligned}
$$

where (2) comes from Lemma 1 and (3) comes from Jensen's inequality and Lemma 1 (Equation 6b).
Now we substitute this back into our earlier bound:

$$
\begin{aligned}
\mathbb{E}\left[F_{n}\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F_{n}\left(\theta^{*}(\lambda)\right)\right] & \leq L\left(\frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}+\frac{\sqrt{d} \sqrt{2 \ln (1.25 / \delta)}}{\epsilon}\left(\frac{2 m^{2} C L}{\mu^{2} n^{2}}+\frac{M m^{2} L^{2}}{\mu^{3} n^{2}}\right)+\frac{m L}{\mu n}\right)+\frac{4 L^{2}}{\mu n} \\
& \left.\leq \frac{2 m^{2} C L^{2}}{\mu^{2} n^{2}}+\frac{M m^{2} L^{3}}{\mu^{3} n^{2}}+\frac{\sqrt{d} \sqrt{2 \ln (1.25 / \delta)}}{\epsilon}\left(\frac{2 m^{2} C L^{2}}{\mu^{2} n^{2}}+\frac{M m^{2} L^{3}}{\mu^{3} n^{2}}\right)+\frac{m L^{2}}{\mu n}\right)+\frac{4 L^{2}}{\mu n} \\
& \leq\left(1+\frac{\sqrt{d} \sqrt{2 \ln (1.25 / \delta)}}{\epsilon}\right)\left(\frac{2 m^{2} C L^{2}}{\mu^{2} n^{2}}+\frac{M m^{2} L^{3}}{\mu^{3} n^{2}}\right)+\frac{4 m L^{2}}{\mu n} \\
& \leq\left(1+\frac{\sqrt{d} \sqrt{2 \ln (1.25 / \delta)}}{\epsilon}\right)\left(\frac{(2 C \mu+M L) m^{2} L^{2}}{\mu^{3} n^{2}}\right)+\frac{4 m L^{2}}{\mu n}
\end{aligned}
$$

Finally, we prove that our unlearning algorithm (1) results in (ϵ, δ)-certifiable removal of datapoint $\mathbf{z} \in U \subseteq S$.

Proof. We use a similar technique to the proof of the differential privacy guarantee for the Gaussian mechanism ([9]).
Let $\hat{\theta}_{n}(\lambda)$ be the output of learning algorithm A trained on dataset S and $\tilde{\theta}_{n,-U}(\lambda)$ be the output of unlearning algorithm M run on the sequence of delete requests $U, \hat{\theta}_{n}(\lambda)$, and the data statistics $T(S)$. We also note the output of M before adding noise as $\bar{\theta}_{n,-U}(\lambda)$. Finally, we denote $\hat{\theta}_{n,-U}(\lambda)$ as the output of A trained on the dataset $S \backslash U$.
We note that in Algorithm 1 that $\tilde{\theta}_{n,-U}(\lambda)$ is simply $\tilde{\theta}_{n,-U}(\lambda)=\bar{\theta}_{n,-U}(\lambda)+\sigma$. The noise σ is sampled from $\mathcal{N}\left(0, c^{2} I\right)$ with $c=\left\|\hat{\theta}_{n,-U}(\lambda)-\bar{\theta}_{n,-U}(\lambda)\right\|_{2} \cdot \frac{\sqrt{2 \ln (1.25 / \delta)}}{\epsilon}$. Where $\| \hat{\theta}_{n,-U}(\lambda)-$ $\bar{\theta}_{n,-U}(\lambda) \|_{2} \leq \frac{2 m^{2} C L}{n^{2} \mu^{2}}+\frac{m^{2} M L^{2}}{n^{2} \mu^{3}}$ (6b). Following the same proof for the DP gaurantee of the Gaussian mechanism as Dwork et al. [9] (Theorem A.1) given the noise is sampled from the previously described Gaussian distribution we get for any Θ :

$$
\begin{aligned}
& P\left(\hat{\theta}_{n,-U} \in \Theta\right) \leq e^{\epsilon} P\left(\tilde{\theta}_{n,-U} \in \Theta\right)+\delta, \quad \text { and } \\
& P\left(\tilde{\theta}_{n,-U} \in \Theta\right) \leq e^{\epsilon} P\left(\hat{\theta}_{n,-U} \in \Theta\right)+\delta
\end{aligned}
$$

resulting in (ϵ, δ)-unlearning.

B Proof of Algorithm 1 Deletion Capacity

The upper bound on the excess risk (Theorem 1) implies that we can delete at least:

$$
m_{\epsilon, \delta, \gamma}^{A, M}(d, n) \geq c \cdot \frac{n \sqrt{\epsilon}}{(d \log (1 / \delta))^{\frac{1}{4}}}
$$

where c depends on the properties of function $F(z, \theta, \lambda)$. We specifically derive the value of c below by substituting our deletion capacity bound as m into the empirical excess risk upper bound:

$$
\begin{equation*}
\mathbb{E}\left[F\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F\left(\theta^{*}(\lambda)\right)\right]=O\left(\frac{(2 C \mu+M L) L^{2} m^{2}}{\mu^{3} n^{2}} \frac{\sqrt{d} \sqrt{\ln (1 / \delta)}}{\epsilon}+\frac{4 m L^{2}}{\mu n}\right) \tag{12}
\end{equation*}
$$

Plugging in the deletion capacity bound $m=c \cdot \frac{n \sqrt{\epsilon}}{(d \log (1 / \delta))^{\frac{1}{4}}}$ into the excess risk bound (12) then

$$
\begin{aligned}
\frac{(2 C \mu+M L) L^{2} m^{2}}{\mu^{3} n^{2}} \frac{\sqrt{d} \sqrt{\ln (1 / \delta)}}{\epsilon}+\frac{4 m L^{2}}{\mu n} & =\frac{c^{2}(2 C \mu+M L) L^{2}}{\mu^{3}}+\frac{4 L^{2} c}{\mu} \frac{n \sqrt{\epsilon}}{(d \log (1 / \delta))^{\frac{1}{4}}} \\
& \leq c\left(\frac{c(2 C \mu+M L) L^{2}}{\mu^{3}}+\frac{4 L^{2}}{\mu}\right)
\end{aligned}
$$

Therefore,

$$
c \leq \gamma\left(\frac{\mu^{3}}{(2 C \mu+M L) L^{2}}+\frac{\mu}{4 L^{2}}\right) \quad \Longrightarrow \quad \mathbb{E}\left[F\left(\tilde{\theta}_{n,-U}(\lambda)\right)-F\left(\theta^{*}(\lambda)\right)\right] \leq \gamma
$$

given $c \leq 1$. Note that the third line follows from the fact that $\frac{\sqrt{\epsilon}}{(d \log (1 / \delta))^{\frac{1}{4}}} \leq 1$ given $\epsilon \leq 1$ and $\delta \leq 0.005$.

C Extension of non-smooth regularizer to [28]

Given a function $F(z, \theta, \lambda)$ with a non-smooth regularizer $\pi(\theta)$ which satisfies Assumption 2, the algorithm from Sekhari et al. [28] can use non-smooth regularizers with the same deletion capacity,
generalization, and unlearning guarantees as Algorithm 1. This follows from fact that the removal mechanism introduced by Sekhari et al. [28] minimizes ψ_{2} in Appendix A.1. Therefore the optimizer comparison theorem can be applied and the distnace between the estimator and the leave-U-out estimator can be upper bounded by the same terms (more precisely, we can upper bound thist distance by $\frac{m^{2} M L^{2}}{n^{2} \mu^{3}}$).

D Dataset Details

MNIST We consider digit classification from the MNIST dataset which contains 60000 images of digits from 1-9. We select only digits 3 and 8 to simplify the task to binary classification. We flatten the original images which are 28×28 into a a vector of 784 pixels. Additionally, we allow for either random sampling or adaptive sampling where the probability of sampling a 3 is set to 10% and the probability of sampling an 8 is set to 90%.

SVHN We consider digit recognition from street signs from the SVHN dataset which contains 60000 images of street sign images that contain digits from 1-9. We select only digits 3 and 8 to simplify the task to binary classification. We flatten the original images which are 28×28 into a a vector of 784 pixels. Additionally, we allow for either random sampling or adaptive sampling where the probability of sampling a 3 is set to 10% and the probability of sampling an 8 is set to 90%.

Warfarin Dosing Warfarin is a prescription drug used to treat symptoms stemming from blood clots (e.g. deep vein thrombosis) and to help reduce the incidence of stroke and heart attack in at-risk patients. It is an anticoagulant which inhibits blood clotting but overdosing leads to excessive bleeding. The appropriate dosage for a patient dependent on demographic and physiologic factors resulting in high variance between patients. We focus on predicting small or large dosages for patients (defined as $>30 \mathrm{mg} /$ week) from a dataset released by the International Warfarin Pharmacogenetics Consortium [8] which contains both demographic and physiological measurements for patients. The dataset contains 5528 examples each with 62 features.

E Additional Experiments

Logistic Regression with Smooth Regularizers We present the test accuracy results for the remaining values of $\lambda=\left\{10^{-4}, 10^{-5}, 10^{-6}\right\}$.

Figure 4: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models in our ℓ_{2} logistic regression setup for $\lambda=10^{-4}$ for random vs adaptive sampling.

Figure 5: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models in our ℓ_{2} logistic regression setup for $\lambda=10^{-5}$ for random vs adaptive sampling.

Figure 6: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models in our ℓ_{2} logistic regression setup for $\lambda=10^{-6}$ for random vs adaptive sampling.

Logistic Regression with Non-Smooth Regularizers We present the test accuracy results for the remaining values of $\lambda=\left\{10^{-4}, 10^{-5}, 10^{-6}\right\}$.

Figure 7: IJ vs. RT for non-smooth regularizers. Comparing the test accuracy of the unlearned models in our ℓ_{1} logistic regression setup for $\lambda \in\left\{10^{-4}, 10^{-5}, 10^{-6}\right\}$.

Non-Conxex: Logistic Regression with Differentially Private Feature Extractor We present the test accuracy results for the remaining values of $\lambda=\left\{10^{-4}, 10^{-5}, 10^{-6}\right\}$.

Figure 8: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned models in our DP feature extractor $+\ell_{2}$ setup for $\lambda=10^{-4}$.

Figure 9: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned models in our DP feature extractor $+\ell_{2}$ setup for $\lambda=10^{-5}$.

Figure 10: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned models in our DP feature extractor $+\ell_{2}$ setup for $\lambda=10^{-6}$.

E. 1 Runtimes

Figure 11: IJ vs. RT vs. TA for smooth regularizers on MNIST. Demonstrating runtime improvements across different hyperparameter settings of $10^{-4}, 10^{-5}, 10^{-6}$.

Figure 12: IJ vs. RT vs. TA for non-convex settings on SVHN. Demonstrating runtime improvements across different hyperparameter settings of $10^{-4}, 10^{-5}, 10^{-6}$.

Figure 13: IJ vs. RT for non-smooth settings on Warfarin. Demonstrating runtime improvements across different hyperparameter settings of $10^{-4}, 10^{-5}, 10^{-6}$.

