
A Proof of (1)

Lemma 2 (Optimization comparison lemma [35]). Suppose

x∗ ∈ argmin
x

φ1(x) + φ0(x) and y∗ ∈ argmin
x

φ2(x) + φ0(x). (10)

for φ1 and φ2 differentiable and φ0 convex.

Proof. The (sub)differentiability assumptions and the optimality of xφ1
and xφ2

imply that 0 ∈ ∂φ2

and u = 0 +∇(φ1 − φ2)(xφ1
) for some u ∈ xφ2

. The gradient growth condition implies

νφ2
(∥xφ1

− xφ2
∥2) ≤ ⟨xφ1

− xφ2
, u− 0⟩ = ⟨xφ1

− xφ2
,∇(φ2 − φ1)(xφ1

)⟩. (11)

Lemma 3 (Learning guarantee for θ̂n(λ)). Given, Fn satisfies Assumption 1 or 2 and any distribution
D, let S = {zi}ni=1 where S ∼ Dn. Then the the empirical minimizer θ̂n(λ) of Fn(θ, λ, z) satisfies

E[F (θ̂n(λ))− F (θ∗(λ))] ≤ 4L2

µn

Proof. Given Fn is µ-strongly convex this follows from Claim 6.2 in [29].

A.1 Proof of (6b): Closeness of θ̂n(λ) and θ̂n,−U (λ)

Suppose we have deleted m users in a set U . Define F̃n,−U = n−m
n Fn,−U where Fn,−U =

1
n−m

∑
i̸∈U f(zi, θ, λ) and note that F̃n,−U and Fn,−U have the same minimizers. We will work

with F̃n,−U . By the optimizer comparison lemma 2 and strong convexity of Fn

µ∥θ̂n(λ)− θ̂n,−U (λ)∥22 ≤ ⟨θ̂n(λ)− θ̂n,−U (λ),∇Fn(z, θ̂n(λ), λ)−∇F̃n,−U (z, θ̂n(λ), λ)⟩
= 1

n

∑
i∈U ⟨θ̂n(λ)− θ̂n,−U (λ),∇ℓ(zi, θ̂n(λ))⟩

≤ 1
n∥θ̂n(λ)− θ̂n,−U (λ)∥2

∑
i∈U ∥∇ℓ(zi, θ̂n(λ))∥2

≤ 1
n∥θ̂n(λ)− θ̂n,−U (λ)∥2 ·mL

Dividing both sides by ∥θ̂n(λ)− θ̂n,−U (λ)∥2 and rearranging gives the desired bound of

∥θ̂n(λ)− θ̂n,−U (λ)∥2 ≤ mL

µn

A.1.1 Proof of (6b): Closeness of θ̂n,−U (λ) and θ̄n,−U (λ)

We define:

• ψ1 = F̃n,−U (z, θ, λ)

• ψ2 = ⟨∇F̃n,−U (θ̂n(λ)), θ̂n(λ)− θ⟩+ ⟨θ̂n(λ)− θ,∇2
θF̃n,−U (θ̂n(λ))[θ̂n(λ)− θ]⟩

• ψ3 = ⟨∇F̃n,−U (θ̂n(λ)), θ̂n(λ)− θ⟩+ ⟨θ̂n(λ)− θ,∇2
θF̃n(θ̂n(λ))[θ̂n(λ)− θ]⟩

• θ̂n,−U (λ) = argminψ1(θ),

• θ̃n,−U (λ) = argminψ3(θ)

The optimizer comparison theorem and strong convexity of Fn implies the following upper bound:

µ
2 ∥θ̂n,−U (λ)− θ̃n,−U (λ)∥22 ≤ ⟨θ̂n,−U (λ)− θ̃n,−U (λ),∇(ψ3 − ψ1)(θ̂n,−U (λ))⟩

≤ ∥θ̂n,−U (λ)− θ̃n,−U (λ)∥2∥∇(ψ3 − ψ1)(θ̂n,−U (λ))∥2

13

Dividing both sides by ∥θ̂n,−U (λ)− θ̃n,−U (λ)∥2 gives
µ
2 ∥θ̂n,−U (λ)− θ̃n,−U (λ)∥2 ≤ ∥∇θ(ψ3 − ψ2)(θ̂n,−U (λ))−∇θ(ψ2 − ψ1)(θ̂n,−U (λ))∥2

≤ ∥∇θ(ψ3 − ψ2)(θ̂n,−U (λ))∥2 + ∥∇θ(ψ2 − ψ1)(θ̂n,−U (λ))∥2
≤ ∥∇2

θF̃n(θ̂n,−U (λ))−∇2
θF̃n,−U (θ̂n,−U (λ))∥2∥θ̂n(λ)− θ̂n,−U (λ)∥2

+ ∥∇θ(ψ2 − ψ1)(θ̂n,−U (λ))∥2
≤ m2CL

µn2 + ∥∇θψ2(θ̂n,−U (λ))−∇θψ1(θ̂n,−U (λ))∥2
1⃝
≤ m2CL

µn2 + M
2 ∥θ̂n,−U (λ)− θ̂n(λ)∥22

≤ m2CL
µn2 + M

2 · m2L2

µ2n2

Inequality 1⃝ follows from smoothness of the objective function. Dividing both sides by µ
2 , gives the

desired bound of

∥θ̂n,−U (λ)− θ̃n,−U (λ)∥2 ≤ 2m2CL

µ2n2
+
Mm2L2

µ3n2

For the non-smooth version of our algorithm, the same proof holds where we define

• ψ1 = ℓ̃n,−U (z, θ, λ)

• ψ2 = ⟨∇ℓ̃n,−U (θ̂n(λ)), θ̂n(λ)− θ⟩+ ⟨θ̂n(λ)− θ,∇2
θ ℓ̃n,−U (θ̂n(λ))[θ̂n(λ)− θ]⟩+ π(θ)

• ψ3 = ⟨∇ℓ̃n,−U (θ̂n(λ)), θ̂n(λ)− θ⟩+ ⟨θ̂n(λ)− θ,∇2
θ ℓ̃n(θ̂n(λ))[θ̂n(λ)− θ]⟩+ π(θ)

• θ̂n,−U (λ) = argminψ1(θ),

• θ̃n,−U (λ) = argminψ3(θ)

µ
2 ∥θ̂n,−U (λ)− θ̃n,−U (λ)∥2 ≤ ∥∇2

θ ℓ̃n(θ̂n,−U (λ))−∇2
θ ℓ̃n,−U (θ̂n,−U (λ))∥2∥θ̂n(λ)− θ̂n,−U (λ)∥2

+ ∥∇θψ2(θ̂n,−U (λ))−∇θψ1(θ̂n,−U (λ))∥2
≤ m2CL

µn2 + ∥∇θψ2(θ̂n,−U (λ))−∇θψ1(θ̂n,−U (λ))∥2

≤ m2CL
µn2 + M

2 ∥θ̂n,−U (λ)− θ̂n(λ)∥22
≤ m2CL

µn2 + M
2 · m2L2

µ2n2

A.2 Comparisons between batch and streaming algorithm

We show that the batch and streaming version of the algorithms are equivalent.

Case 1: π is smooth. The bounds we have proved are for the minizmier of φ3, namely

θ̃n,−U (λ) = θ̂n(λ)−∇2
θF̃ (θ̂n(λ))

−1∇F̃n,−U (θ̂n(λ))

= θ̂n(λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1

∑
i∈U ∇ℓ(zi, θ̂n(λ))

Now suppose 1 datapoint (user j) requests to be deleted. Then the streaming and batch algorithms
agree, as the update becomes

θ̃n,−i(λ) = θ̂n(λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1∇ℓ(zi, θ̂n(λ)).

Now suppose the algorithms are consistent for all deletion requests in the set U . When an additional
user j requests to delete their data the streaming algorithm returns

θ̃n,−(U∪{j})(λ) = θ̃n,−U (λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1∇ℓ(zj , θ̂n(λ))

= θ̂n(λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1

∑
i∈U ∇ℓ(zi, θ̂n(λ))

+ 1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1∇ℓ(zj , θ̂n(λ))

= θ̂n(λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1∇

∑
i∈(U∪{j}) ℓ(zi, θ̂n(λ))

which matches the batch version of the deletion algorithm. This inductive arguments show both batch
and streaming algorithms are the same.

14

Case 2: π is not smooth. When π is not smooth, the minimizer of φ3 satisfies

θ̃n,−(U∪{j})(λ) = θ̃n,−U (λ) +
1
n (

1
n

∑n
i=1 ∇2

θF (zi, θ̂n(λ), λ))
−1∇ℓ(zj , θ̂n(λ)) + λ∇π(θ̃n,−(U∪{j})(λ))

When 1 datapoint (user j) requests to be deleted, the streaming and batch algorithms agree given
U = ∅. Now suppose the algorithms are consistent for all deletion requests in the set U . When
an additional user j requests to delete their data the streaming algorithm returns an estimator that
satisfies

θ̄n,−(U∪{j})(λ) = θ̄n,−U (λ) +
1
nH

−1
ℓ ∇ℓ(zj , θ̂n(λ)) + λH−1

ℓ ∇(θ̄n,−(U∪{j})(λ))

= θ̂n(λ) +
1
nH

−1
ℓ ∇

∑
i∈(U∪{j}) ℓ(zi, θ̂n(λ)) + λH−1

ℓ ∇(θ̄n,−(U∪{j})(λ))

which matches the batch version of the deletion algorithm. This inductive arguments show both batch
and streaming algorithms are the same.

A.3 Proof of excess empirical risk

Second, we prove the excess empirical risk of our unlearning algorithm (1).

Proof.

E[Fn(θ̃n,−U (λ))− Fn(θ
∗(λ))] = E[Fn(θ̃n,−U (λ))− Fn(θ̂n(λ)) + Fn(θ̂n(λ))− Fn(θ

∗(λ))]

= E[Fn(θ̃n,−U (λ))− Fn(θ̂n(λ))] + E[Fn(θ̂n(λ))− Fn(θ
∗(λ))]

1⃝
≤ E[L∥θ̃n,−U (λ)− θ̂n(λ)∥] + 4L2

µn

where 1⃝ comes from Lemma 3 given that Fn satisfies Assumption 1 or 2.

Next we upper bound E[∥θ̃n,−U (λ)− θ̂n(λ)∥]:

E[∥θ̃n,−U (λ)− θ̂n(λ)∥] = E[∥θ̃n,−U (λ)− θ̂n,−U (λ) + θ̂n,−U (λ)− θ̂n(λ)∥]
= E[∥θ̃n,−U (λ)− θ̂n,−U (λ)∥] + E[∥θ̂n,−U (λ)− θ̂n(λ)∥]
2⃝
≤ E[∥θ̃n,−U (λ)− θ̂n,−U (λ)∥] + mL

µn

≤ E[∥θ̄n,−U (λ)− θ̂n,−U (λ) + σ∥] + mL
µn

≤ E[∥θ̄n,−U (λ)− θ̂n,−U (λ)∥] + E[∥σ∥] + mL
µn

3⃝
≤ 2m2CL

µ2n2 + Mm2L2

µ3n2 +
√
dc+ mL

µn

≤ 2m2CL
µ2n2 + Mm2L2

µ3n2 +
√
d
√

2ln(1.25/δ)
ϵ (2m

2CL
µ2n2 + Mm2L2

µ3n2) + mL
µn

where 2⃝ comes from Lemma 1 and 3⃝ comes from Jensen’s inequality and Lemma 1 (Equation 6b).

Now we substitute this back into our earlier bound:

E[Fn(θ̃n,−U (λ))− Fn(θ
∗(λ))] ≤ L(2m

2CL
µ2n2 + Mm2L2

µ3n2 +
√
d
√

2ln(1.25/δ)
ϵ (2m

2CL
µ2n2 + Mm2L2

µ3n2) + mL
µn) + 4L2

µn

≤ 2m2CL2

µ2n2 + Mm2L3

µ3n2 +
√
d
√

2ln(1.25/δ)
ϵ (2m

2CL2

µ2n2 + Mm2L3

µ3n2) + mL2

µn) + 4L2

µn

≤ (1 +
√
d
√

2ln(1.25/δ)
ϵ)(2m

2CL2

µ2n2 + Mm2L3

µ3n2) + 4mL2

µn

≤ (1 +
√
d
√

2ln(1.25/δ)
ϵ)((2Cµ+ML)m2L2

µ3n2) + 4mL2

µn

15

Finally, we prove that our unlearning algorithm (1) results in (ϵ, δ)-certifiable removal of datapoint
z ∈ U ⊆ S.

Proof. We use a similar technique to the proof of the differential privacy guarantee for the Gaussian
mechanism ([9]).

Let θ̂n(λ) be the output of learning algorithm A trained on dataset S and θ̃n,−U (λ) be the output
of unlearning algorithm M run on the sequence of delete requests U , θ̂n(λ), and the data statistics
T (S). We also note the output of M before adding noise as θ̄n,−U (λ). Finally, we denote θ̂n,−U (λ)
as the output of A trained on the dataset S\U .

We note that in Algorithm 1 that θ̃n,−U (λ) is simply θ̃n,−U (λ) = θ̄n,−U (λ) + σ. The noise σ is

sampled from N (0, c2I) with c = ∥θ̂n,−U (λ) − θ̄n,−U (λ)∥2 ·
√

2ln(1.25/δ)
ϵ . Where ∥θ̂n,−U (λ) −

θ̄n,−U (λ)∥2 ≤ 2m2CL
n2µ2 + m2ML2

n2µ3 (6b). Following the same proof for the DP gaurantee of the
Gaussian mechanism as Dwork et al. [9] (Theorem A.1) given the noise is sampled from the
previously described Gaussian distribution we get for any Θ:

P (θ̂n,−U ∈ Θ) ≤ eϵP (θ̃n,−U ∈ Θ) + δ, and

P (θ̃n,−U ∈ Θ) ≤ eϵP (θ̂n,−U ∈ Θ) + δ

resulting in (ϵ, δ)-unlearning.

B Proof of Algorithm 1 Deletion Capacity

The upper bound on the excess risk (Theorem 1) implies that we can delete at least:

mA,M
ϵ,δ,γ (d, n) ≥ c · n

√
ϵ

(dlog(1/δ))
1
4

where c depends on the properties of function F (z, θ, λ). We specifically derive the value of c below
by substituting our deletion capacity bound as m into the empirical excess risk upper bound:

E[F (θ̃n,−U (λ))− F (θ∗(λ))] = O

(
(2Cµ+ML)L2m2

µ3n2

√
d
√

ln(1/δ)

ϵ + 4mL2

µn

)
(12)

Plugging in the deletion capacity bound m = c · n
√
ϵ

(dlog(1/δ))
1
4

into the excess risk bound (12) then

(2Cµ+ML)L2m2

µ3n2

√
d
√

ln(1/δ)

ϵ + 4mL2

µn = c2(2Cµ+ML)L2

µ3 + 4L2c
µ

n
√
ϵ

(dlog(1/δ))
1
4

≤ c
(

c(2Cµ+ML)L2

µ3 + 4L2

µ

)
Therefore,

c ≤ γ(µ3

(2Cµ+ML)L2 + µ
4L2) =⇒ E[F (θ̃n,−U (λ))− F (θ∗(λ))] ≤ γ

given c ≤ 1. Note that the third line follows from the fact that
√
ϵ

(dlog(1/δ))
1
4
≤ 1 given ϵ ≤ 1 and

δ ≤ 0.005.

C Extension of non-smooth regularizer to [28]

Given a function F (z, θ, λ) with a non-smooth regularizer π(θ) which satisfies Assumption 2, the
algorithm from Sekhari et al. [28] can use non-smooth regularizers with the same deletion capacity,

16

generalization, and unlearning guarantees as Algorithm 1. This follows from fact that the removal
mechanism introduced by Sekhari et al. [28] minimizes ψ2 in Appendix A.1. Therefore the optimizer
comparison theorem can be applied and the distnace between the estimator and the leave-U-out
estimator can be upper bounded by the same terms (more precisely, we can upper bound thist distance
by m2ML2

n2µ3).

D Dataset Details

MNIST We consider digit classification from the MNIST dataset which contains 60000 images of
digits from 1-9. We select only digits 3 and 8 to simplify the task to binary classification. We flatten
the original images which are 28× 28 into a a vector of 784 pixels. Additionally, we allow for either
random sampling or adaptive sampling where the probability of sampling a 3 is set to 10% and the
probability of sampling an 8 is set to 90%.

SVHN We consider digit recognition from street signs from the SVHN dataset which contains 60000
images of street sign images that contain digits from 1-9. We select only digits 3 and 8 to simplify
the task to binary classification. We flatten the original images which are 28 × 28 into a a vector
of 784 pixels. Additionally, we allow for either random sampling or adaptive sampling where the
probability of sampling a 3 is set to 10% and the probability of sampling an 8 is set to 90%.

Warfarin Dosing Warfarin is a prescription drug used to treat symptoms stemming from blood
clots (e.g. deep vein thrombosis) and to help reduce the incidence of stroke and heart attack in
at-risk patients. It is an anticoagulant which inhibits blood clotting but overdosing leads to excessive
bleeding. The appropriate dosage for a patient dependent on demographic and physiologic factors
resulting in high variance between patients. We focus on predicting small or large dosages for patients
(defined as > 30mg/week) from a dataset released by the International Warfarin Pharmacogenetics
Consortium [8] which contains both demographic and physiological measurements for patients. The
dataset contains 5528 examples each with 62 features.

E Additional Experiments

Logistic Regression with Smooth Regularizers We present the test accuracy results for the
remaining values of λ = {10−4, 10−5, 10−6}.

Figure 4: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models
in our ℓ2 logistic regression setup for λ = 10−4 for random vs adaptive sampling.

17

Figure 5: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models
in our ℓ2 logistic regression setup for λ = 10−5 for random vs adaptive sampling.

Figure 6: IJ vs. RT and TA for smooth regularizers. Comparing both the test accuracy of the unlearned models
in our ℓ2 logistic regression setup for λ = 10−6 for random vs adaptive sampling.

Logistic Regression with Non-Smooth Regularizers We present the test accuracy results for the
remaining values of λ = {10−4, 10−5, 10−6}.

Figure 7: IJ vs. RT for non-smooth regularizers. Comparing the test accuracy of the unlearned models in our ℓ1
logistic regression setup for λ ∈ {10−4, 10−5, 10−6}.

Non-Conxex: Logistic Regression with Differentially Private Feature Extractor We present the
test accuracy results for the remaining values of λ = {10−4, 10−5, 10−6}.

Figure 8: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned models
in our DP feature extractor + ℓ2 setup for λ = 10−4.

18

Figure 9: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned models
in our DP feature extractor + ℓ2 setup for λ = 10−5.

Figure 10: IJ vs. TA and RT for non-convex training. Comparing both the test accuracy of the unlearned
models in our DP feature extractor + ℓ2 setup for λ = 10−6.

E.1 Runtimes

Figure 11: IJ vs. RT vs. TA for smooth regularizers on MNIST. Demonstrating runtime improvements across
different hyperparameter settings of 10−4, 10−5, 10−6.

Figure 12: IJ vs. RT vs. TA for non-convex settings on SVHN. Demonstrating runtime improvements across
different hyperparameter settings of 10−4, 10−5, 10−6.

19

Figure 13: IJ vs. RT for non-smooth settings on Warfarin. Demonstrating runtime improvements across
different hyperparameter settings of 10−4, 10−5, 10−6.

20

	Introduction
	Related Work
	Methods and Results
	Unlearning models obtained via regularized empirical risk minimization
	Deletion Capacity

	Experiments
	Unlearning hyperparameter-tuned models
	Discussion
	Acknowledgements
	Proof of (1)
	Proof of (6b): Closeness of n() and n, -U()
	Proof of (6b): Closeness of n,-U() and n, -U()

	Comparisons between batch and streaming algorithm
	Proof of excess empirical risk

	Proof of Algorithm 1 Deletion Capacity
	Extension of non-smooth regularizer to sekhari2021remember
	Dataset Details
	Additional Experiments
	Runtimes

