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Abstract

We study the problem of deleting user data from machine learning models trained
using empirical risk minimization (ERM). Our focus is on learning algorithms
which return the empirical risk minimizer and approximate unlearning algorithms
that comply with deletion requests that come in an online manner. Leveraging
the infintesimal jacknife, we develop an online unlearning algorithm that is both
computationally and memory efficient. Unlike prior memory efficient unlearning al-
gorithms, we target ERM trained models that minimize objectives with non-smooth
regularizers, such as the commonly used ℓ1, elastic net, or nuclear norm penalties.
We also provide generalization, deletion capacity, and unlearning guarantees that
are consistent with state of the art methods. Across a variety of benchmark datasets,
our algorithm empirically improves upon the runtime of prior methods while main-
taining the same memory requirements and test accuracy. Finally, we open a new
direction of inquiry by proving that all approximate unlearning algorithms intro-
duced so far fail to unlearn in problem settings where common hyperparameter
tuning methods, such as cross-validation, have been used to select models.

1 Introduction

The right to be forgotten (RtbF) is considered a fundamental human right in many legal systems [27,
21, 5]. The proliferation of techniques that employ user data to do things such as training and
validating machine learning across a variety of organizations has led to reconsideration of how to
interpret RtbF. The European Union’s General Data Protection Regulation (GDPR), California’s
Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy Protection Act (CPPA) are
all examples of new pieces of legislation which attempt to codify the RtbF by requiring companies
and organizations to delete a user’s data by request [34].

But what does it mean to delete a user’s data? User data, for example, can be recovered from trained
machine learning models [31] and hyperparameter tuning procedures [25]. This suggests that data
deletion should require organizations to take action on the models and algorithms derived from the
data as well. This interpretation is consistent with the Federal Trade Commission’s recent action
ordering companies to delete the data from users who deleted their account as well as the models
and algorithms derived from the users’ data [7]. Forcing organizations to comply with each deletion
request by retraining, however, comes with potentially significant monetary and time costs. Thus, it
is worth asking if these costs can be managed while still maintaining model performance.

The cost concerns associated with RtbF compliance have prompted several recent works which
formalize and study the problem of unlearning [6]. The aim of these works is to develop techniques
which delete user data from models that are inexpensive in both computation and memory while
maintaining reasonable performance. Most unlearning algorithms proposed so far focus on unlearning
models obtained via empirical risk minimization [14, 28, 4, 23, 20]. However, several of these
methods are memory intensive [4, 15], requiring organizations to store several states of the model
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while training. We build on recent works [14, 28] which show that for models derived from minimizing
convex and sufficiently smooth ERM objectives, a Newton update to the current model can be applied
in order to approximately unlearn in certain data directions. We show a different Newton estimate
based on the classical infinitesimal jacknife developed in the robust statistics literature [17, 10]
results in a more computationally efficient unlearning algorithm in the online setting. While the
current legislation only requires companies to satisfy delete requests in 30 days there are scenarios
where immediate (online) delete requests are necessary such as the UK Biobank [12]. We also show
how to utilize the proximal infinitesimal jackknife [35] to unlearn in settings when the model was
trained using an ERM objective that is not smooth. Finally, we present an important and concerning
failure mode of all approximate unlearning algorithms.

Our principal contributions are three-fold.

• Computationally efficient online algorithm. We develop an online unlearning algorithm to
unlearn a sequence of m datapoints from a model θ̂n(λ) that approximately minimizes a smooth
and convex ERM objective that requires O(d2) storage and has running time O(md2). To
unlearn m datapoints in an online manner, the algorithms developed in prior works (e.g. [14,
28]) requires a similar storage, but have a longer O(md3) running time. By avoiding the
cost of computing and inverting a different Hessian at each deletion request we improve on
the computational requirements of previous memory efficient unlearning algorithms, while
maintaining the same generalization, unlearning and deletion capacity guarantees. We empirically
demonstrate significant computational savings without sacrificing test set accuracy on multiple
datasets.

• Accommodating non-smooth regularizers. We provide a generalization of our unlearning algo-
rithm based on the proximal Newton method that can be used to efficiently delete data from
models that minimize objective functions with non-smooth penalties. We provide state-of-the art
unlearning, deletion capacity and generalization guarantees for our new unlearning method. We
empirically demonstrate significant computational savings without sacrificing test set accuracy in
predicting Warfarin dosages.

• Failure modes. Most data processing pipelines are not as simple as writing down an objective
function and running an algorithm out-of-the-box which returns the approximate empirical risk
minimizer. A more common practice is to tune hyperparameters using techniques such as cross-
validation. We reveal a fundamental limitation of all (approximate) data removal processes
developed so far when hyperparameter tuning takes place.

2 Related Work

Given the increasing concerns around privacy of user data, recent research on machine unlearning
studies how we can efficiently delete datapoints used to train models without retraining from scratch.
This work was first initiated by Cao and Yang [6] whose definition requires the outputs of an
unlearning algorithm to be identical to the outputs of the model produced by retraining. Since then,
several works have provided different definitions of machine unlearning which can be separated as
exact unlearning ([4, 32, 15, 11]) or approximate unlearning ([14, 28, 12, 9, 23]).

Our work is focused on satisfying approximate unlearning definitions inspired by differential pri-
vacy [9] defined by [14] as (ϵ, δ)-certified removal or by [28] as (ϵ, δ)-unlearning. This definition
requires the output distribution of the unlearning algorithm to be similar to that obtained by retraining
from scratch using the original training set with the requested datapoints removed from it. We
focus on this definition because algorithms for exact unlearning such as statistical query learning [6],
SISA [4], and its adaptive variant [15] have high computational and memory cost.

Prior algorithms developed for approximate unlearning use a variety of techniques: perturbed gradient
descent [23, 33], Newton style updates [14, 28], and projected residual updates [16]. The perturbed
gradient descent and projected residual update methods provide theoretical error guarantees for the
empirical training loss but fail to provide any generalization guarantees. In addition, while these
methods reduce the computation burden associated with exact unlearning, their high memory costs
are still similar to exact unlearning methods.

Given these issues, Newton update unlearning algorithms were proposed to efficiently satisfy approx-
imate unlearning. Our work is closest to [14, 28] who use Newton updates to efficiently delete data
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for generalized linear models. Sekhari et al. [28] improve upon Guo et al. [14] in multiple ways: (i)
by not requiring full access to the training dataset, providing (ii) generalization guarantees, and (iii)
removing the requirement for randomization in the learning algorithm itself (which often reduces
utility). Yet the algorithm developed by [28] targets the batch setting which is unrealistic in practice
and they provide no empirical results demonstrating the efficacy of their algorithm. If implemented in
an online way, their algorithm would suffer a much larger computational cost given the requirement to
compute and invert a new Hessian for each delete request. Finally, neither of these algorithms provide
theoretical guarantees for the commonly used models that are obtained from objective functions with
non-smooth penalties.

We address several of these issues using the (proximal) infinitesimal jacknife [13, 17, 10]. Our
algorithm can handle online delete requests selected in an adaptively adversarial manner (a failure
mode of many previous algorithms pointed out by Gupta et al. [15]) making it more practical for
real world use. Furthermore, we provide generalization and deletion capacity guarantees similar
to Sekhari et al. [28] for both smooth and non-smooth regularizers. To do so, we leverage similar
guarantees found in approximate cross-validation literature [35]. Finally, inspired by recent working
showing that hyperparameter tuning can leak user data [25] we demonstrate that all approximate
unlearning algorithms introduced so far fail to unlearn in settings where hyperparameter tuning has
taken place to choose a model.

3 Methods and Results

Learning Consider the objective function comprised of a loss function ℓ, a regularizer π and
regularization parameter λ ∈ Λ ⊆ [0,∞]. The goal of learning is to find a parameter θ∗(λ) which
minimizes the population risk

F (z, θ, λ) ≜ Ez∼D[ℓ(z, θ)] + λπ(θ)

Given the distribution D is often inaccessible, practitioners often instead find a model θ̂n(λ) which
(at least approximately) minimizes the empirical risk

Fn(z, θ, λ) ≜ 1
n

∑n
i=1 ℓ(zi, θ) + λπ(θ, ) (1)

corresponding to a given dataset S = (z1, . . . zn).

Unlearning Having used a dataset S to train and publish a model θ̂n(λ), a set of m users in the
training set U ⊂ S might request that their datapoints be deleted and that any models produced
using their data be removed. To comply with this request, an organization might find the minimizer
θn,−U (λ) of the leave-U -out objective

Fn,−U (z, θ, λ) ≜ 1
n−m

∑
z∈S\U ℓ(z, θ) + λπ(θ). (2)

While reoptiminzing the leave-one-out objective from scratch constitutes a baseline for the problem
of unlearning, the computational cost makes complying with every data delete request in this way
undesirable. Training from scratch satisfies the notion of unlearning [28] formalized in Definition 1.

Definition 1 ((ϵ, δ)-unlearning [28]). Let S be a fixed training set and A : S → θ be an algorithm
that trains on S and outputs a model θ ∈ Θ. For an ϵ > 0 and set of delete requests U ⊆ S, we say
that a removal mechanism M is (ϵ, δ)-unlearning for learning algorithm A if ∀ T ⊆ Θ and S ⊆ Z ,
the following two conditions are satisfied:

P (M(U,A(S), T (S)) ∈ T ) ≤ eϵP (M(∅, A(S\U), T (S\U)) ∈ T ) + δ, and
P (M(∅, A(S\U), T (S\U)) ∈ T ) ≤ eϵP (M(U,A(S), T (S)) ∈ T ) + δ

Finally, we point out that like most previously proposed unlearning algorithms, we do not require
T (S) to contain the entire training set, but instead propose unlearning algorithms for which T (S) is
independent of n.
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3.1 Unlearning models obtained via regularized empirical risk minimization

We recommend use of the following proximal operator to comply with delete requests

proxH
λπ(v) ≜ argmin

θ∈Rd

∥v − θ∥2H + λπ(θ), (3)

which allows us to handle objective functions that incorporate non-smooth regularizers, such as the
ℓ1, elastic net or nuclear norm penalty. More specifically, having deleted the datapoints in the set U ,
we propose Algorithm 1 to delete the data of an additional user j.

Algorithm 1 Infinitesimal Jacknife (IJ) Online Unlearning Algorithm

Input: |U | = m, Hessian of loss or objective, θ̃n,−U (λ), θ̄Nn,−U (λ) θ̂n(λ), and delete request j
Set: Hℓ =

1
n

∑n
i=1 ∇2

θℓ(zi, θ̂n), Hf = 1
n

∑n
i=1 ∇2

θf(zi, θ̂n, λ), θ̄
N
n,−∅(λ) = θ̃n,−∅(λ) = θ̂n(λ)

If π is not smooth:
Compute:

θ̄n,−(U∪{j})(λ) = proxHℓ

λπ

(
θ̄Nn,−U (λ) +

1
nH

−1
ℓ ∇ℓ(zj , θ̂n(λ))

)
(4a)

c = (m+1)2(2CLµ+ML)
µ2n2

√
2 ln(1.25/δ)

ϵ (4b)

Store: θ̄Nn,−(U∪{j})(λ) = θ̄Nn,−U (λ) +
1
nH

−1
ℓ ∇ℓ(zj , θ̂n(λ))

Else compute:

θ̄n,−(U∪{j})(λ) = θ̃n,−U (λ) +
1
nH

−1
f ∇ℓ(zj , θ̂n(λ)) (5a)

c = (2m+1)(2CLµ+ML)
µ2n2

√
2 ln(1.25/δ)

ϵ (5b)

Sample: σ ∼ N (0, cI)

Return: θ̃n,−(U∪{j})(λ) := θ̄n,−(U∪{j})(λ) + σ

Guarantees While we give guarantees for functions that are strongly convex, we rely on standard
reductions from the convex setting to the strongly convex setting (i.e. based on defining a objective
function F (θ) = F̃ (θ) + (µ/2)∥θ∥2 when F̃ is convex). Furthermore, similar to Guo et al. [14, 3.3]
our methods can be used for unlearning in the non-convex setting when the deep learning model
applies a simple convex model to a differentially private feature extractor [1].
Assumption 1 (Smooth regularizer). For any z ∈ Z , the objective function F (θ, z, λ) is µ-strongly
convex and L-Lipschitz with M -smooth Hessian. The loss has C-Lipschitz Hessians.
Assumption 2 (Non-smooth regularizer). For any z ∈ Z , the loss function ℓ(θ, z) is µ-strongly
convex and L-Lipschitz with M -smooth and C-Lipschitz Hessians. The regularizer π(θ) is convex.

With either of these assumptions, it’s possible to show that the denoised output of Algorithm 1 is
O(m2/n2) close to the exact unlearned model. We formalize this proximity result in the follow-
ing Lemma 1.
Lemma 1 (Proximity to the baseline estimator). Suppose F satisfies Assumption 1 or Assumption 2.
Let S be the dataset of size n sampled from D and U ⊆ S denote the set of m delete requests.
Consider θ̄n,−U (λ), i.e. the output of Algorithm 1 without noise term σ added and the model
θ̂n,−U (λ) obtained by minimizing the leave-U-out objective Fn,−U . Then,

∥θ̂n(λ)− θ̂n,−U (λ)∥2 ≤ mL
µn , and (6a)

∥θ̂n,−U (λ)− θ̄n,−U (λ)∥2 ≤ 2m2CL
n2µ2 + m2ML2

n2µ3 . (6b)

Lemma 1 implies adding the noise term σ ∝ O(m2/n2) will result in the desired unlearning
guarantee. The following Theorem 1 outlines this guarantee as well as the proximity of the unlearnt
model to the test loss minimizer. The proof is contained in Appendix A.1.
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Theorem 1 (Unlearning and generalization guarantees). Suppose the loss function satisfies Assump-
tion 1 or Assumption 2 and consider any learning algorithm that returns a model O(1/n2) close to
the empirical risk minimizer θ̂n(λ) trained on any dataset S ∼ D of size n. Then the output θ̃n,−U (λ)
of Algorithm 1, where |U | = m, satisfies the test error bound

E[F (θ̃n,−U (λ))− F (θ∗(λ))] ≤ O

(
(2m2CL2µ+ML3m2

µ3n2 ·
√
d
√

ln(1/δ)

ϵ + 4mL2

µn

)
.

Furthermore, the unlearning Algorithm 1 results in (ϵ, δ)-unlearning of ∀z ∈ U ⊆ S.

3.1.1 Deletion Capacity

Sekhari et al. [28] introduce the notion of deletion capacity which formalizes how many samples
can be deleted from a the model parameterized by the original empirical risk minimizer θ̂n(λ) while
maintaining reasonable guarantees on the test loss. We restate the definition here.
Definition 2 (Deletion capacity [28]). Let ϵ, δ, γ > 0 and S be a dataset of size n drawn i.i.d From
D, and let F (θ, z, λ) be an objective function. For a learning algorithm and removal mechanism
M that satisfies (ϵ, δ)-unlearning of all z ∈ U , where U is the set of delete requests, the deletion
capacity mA,M

ϵ,δ,γ (d, n) is defined as the maximum number of samples that can be unlearned while still
ensuring the excess population risk is γ. Specifically,

mA,M
ϵ,δ,γ (d, n) ≜ max

{
m |E

[
maxU⊆S:|U |≤m F (M(A(S), S, U)− F (θ(λ)∗)

]
≤ γ

}
where the expectation is with respect to S ∼ D and output of the learning algorithm A and removal
mechanism M .

Sekhari et al. [28] provide both an upper bound and lower bound on the deletion capacity of unlearning
algorithms. We recount both bounds and show our algorithm achieves the same bounds.
Theorem 2 (Deletion capacity upper bound [28]). Let δ ≤ 0.005 and ϵ = 1. There exists a 4-Lipschitz
and 1-strongly convex loss function f, and a distribution D such that for any learning algorithm A
and removal mechanism M that satisfies (ϵ, δ)-unlearning and has access to all undeleted samples
S\U , then the deletion capacity is:

mA,M
ϵ,δ,γ (d, n) ≤ cn,

where the constant c depends on the Lipschitz constants L, M , strongly convex constant µ, and
boundedness constant C from Assumptions 1 or 2 and c < 1.
Theorem 3 (Deletion capacity lower bound [28]). Let ϵ, δ > 0 and γ = 0.01, S be a dataset of size n
drawn i.i.d from D, and F (θ, z, λ) be an objective function satisfying Assumption 1 or Assumptions 2.
Consider a learning algorithm A that returns the empirical risk minimizer and unlearning algorithm
M . Then the deletion capacity is:

mA,M
ϵ,δ,0.01(d, n) ≥ c · n

√
ϵ

(dlog(1/δ))
1
4

(7)

where the constant c depends on the Lipschitz constants L, C, and M .
Theorem 4 (Deletion capacity from unlearning via DP [28]). There exists a polynomial time learning
algorithm A and removal mechanism M of the form M(U,A(S), T (S)) = A(S) such that the
deletion capacity is:

mA,M
ϵ,δ,0.01(d, n) ≥ Ω̃

(
nϵ√

d log(eϵ/δ)

)
where the constant in Ω-notation depends on the properties of the loss function f .

As an extensions of a result developed by Bassily et al. [2, Section C], Sekhari et al. [28] show that
any unlearning algorithm that ignores the samples U can’t improve upon the DP lower bound. This
motivates the study of algorithms specifically designed for unlearning which leverage samples from
U instead of algorithms based on DP. In Appendix B, we provide details showing that our Algorithm 1
achieves the lower bound (7), where the constant c depends on the Lipschitz constants L, M , strongly
convex constant µ, and boundedness constant C.
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Comparison to previous results We compare our method to Sekhari et al. [28] and Guo et al.
[14] who propose optimizing a second-order Taylor approximation (TA) to the leave-U -out objective
function (2) for batch removal of U . This results in the Newton-like removal mechanism (8).

θ̃n,−U (λ) = θ̂n(λ) +
1

n−m

(
1

n−m

∑
z∈S\U ∇2

θF (z, θ̂n(λ), λ)
)−1 ∑

z∈U ∇ℓ(z, θ̂n(λ)). (8)

Comparison of Assumptions. On the one hand, our Assumption 1 is slightly more restrictive than
that of Sekhari et al. [28] given we require boundedness of the Hessian loss to obtain our unlearning,
generalization and deletion capacity guarantees. Notably, this assumption does not rule out any of the
most common convex objective functions (e.g. least squares, logistic, hinge, or cross entropy loss
functions). On the other hand, our technique allows for non-smooth regularizers which are common
in modern machine learning pipelines.

Comparison of Computation. Algorithm 1 entails calculating and inverting the full Hessian Hf

or Hℓ and storing it (memory cost O(d2) and computation cost O(d3)). It also entails storing the
gradient of each point evaluated on the full data model θ̂n(λ), as well as the current model θ̃n,−U (λ).
In the setting where π is not smooth, θ̄n,−U (λ) must be stored. During runtime, Algorithm 1
requires matrix-vector multiplication and vector addition (as well as proximal step in the non-smooth
setting). For unlearning in settings where deletion requests come in a online manner, our technique
is computationally more efficient. This is because removal mechanism (8) requires computing and
inverting a different Hessian that depends on the user requesting the deletion. Therefore, outside
simple settings, complying with such requests involves a computational cost of O(md3) to remove
m datapoints.

Comparison of unlearning, generalization and deletion capacity. As summarized above, the general-
ization, unlearning and deletion capacity results for our removal mechanism are essentially equivalent
to the unlearning, generalization, and deletion capacity results of [28].
Remark 1 (Extending Sekhari et al. [28] to non-smooth regularizers). Following from the equivalence
we show between the batch and online setting in Appendix A.2, we can extend our use of the proximal
operator to (8) which would extend the results of Sekhari et al. [28] to non-smooth regularizers.
Similar unlearning, deletion capacity and generalization results are obtained. We provide details
in Appendix C.

4 Experiments

In this section we will refer to retraining from scratch as RT, the Algorithm (8) as TA and our
Algorithm 1 as IJ. We empirically demonstrate the benefits of our algorithm over both RT and TA in
three different settings: (i) smooth regularizers where we train a logistic regression model with an ℓ2
penalty to predict between the digit 3 and 8 from the MNIST dataset [19], (ii) non-smooth regularizers
where we train a logistic regression model with an ℓ1 penalty to predict whether an individual was
prescribed a Warfarin dosage of > 30 mg/week from a dataset released by the International Warfarin
Pharmacogenetics Consortium [8], and (iii) non-convex training where we apply a logistic regression
model with an ℓ2 penalty to predict street digits signs 3 and 8 from SVHN [24] on representations
extracted from a differentially private feature extractor with ϵ = 0.1 (similar to the setup of Guo et al.
[14]). For all algorithms, we tune λ over the set {10−3, 10−4, 10−5, 10−6}. In the Appendix D, we
provide further details about each dataset and the code to produce our models is attached separately.

We present results in the main paper for λ = 1−3 and provide other results in Appendix E. All models
are trained on a single NVIDIA Tesla T4 GPU and 16 2.10GHz Xeon(R) Silver 4110 CPU cores. We
focus our evaluation on total runtime in seconds and test set accuracy as the number of delete requests
increases. Given that the current window for complying with delete requests for GDPR is one month,
the runtime savings on our plots occur at month X where X is provided by the y-axis. We note that the
"Right to Be Forgotten" is a much broader right and our experimental findings demonstrate that this
can be satisfied much more efficiently for convex problems. For all results, we provide the average
over three different runs and provide standard error bars.

Logistic Regression with Smooth Regularizers In this experiment we simulate an online data
deletion setup using the MNIST dataset. For simplicity, we restrict the problem to binary classification
by predicting between 3s and 8s. This is the same setup used by Guo et al. [14] to evaluate their

6



Figure 1: IJ vs. RT & TA for smooth regularizers. Comparing both the runtime and test accuracy of the
unlearned models in our ℓ2 logistic regression setup for predicting 3’s and 8’s on MNIST. For GDPR, the y-axis
of the runtime graph denotes the runtime at month X under the current one month delete request window.

approximate unlearning algorithm. We flatten the MNIST image into a 1-D vector and train an
ℓ2 regularized logistic regression model for each algorithm. We evaluate the impact of a deleting
a sequence of 5000 datapoints (approximately 40% of the total dataset) both randomly and in an
adaptively chosen manner. In these experiments we consider noise at c = 0.01.

On average, IJ was 2611x faster than RT and 2045x faster than TA (Figure 1). We find that this
improvement in runtime comes at very minimal cost to the test performance of the model returned by
our algorithm compared to the test performance of TA (Figure 1). Furthermore, we observe that these
results also hold when the delete requests are chosen adaptively (Figure 1). As discussed previously,
the main savings in computation for our algorithm comes from only inverting the hessian once while
TA requires a hessian inversion for every delete request.

Figure 2: IJ vs. RT for non-smooth regularizers. Comparing both the runtime and test accuracy of the unlearned
models in our ℓ1 logistic regression setup for predicting warfarin dosage. For GDPR, the y-axis of the runtime
graph denotes the runtime at month X under the current one month delete request window.

Logistic Regression with Non-Smooth Regularizers This experiment showcases the performance
of our proximal Newton algorithm on a problem with a non-smooth regularizer. We focus on
predicting warfarin dosing from patient demographic and physiological data because it a practical
setting where ℓ1 regularization has been demonstrated to be preferred [30]. Given that TA does
not naturally support non-smooth regularizers we only compare IJ to RT. In these experiments we
consider a logistic regression objective, ℓ1 regularizer, and noise level of c = 0.01. On average, IJ
was 30x faster than RT (Figure 2). This improvement in runtime only comes at small cost to the test
accuracy of the model returned by our algorithm compared to the test performance of TA (Figure 2).

Non-Convex: Logistic Regression with Differentially Private Feature Extractor We demon-
strate the ability to use our unlearning algorithm in non-convex settings. Similar to Guo et al. [14]
we train a differentially private feature extractor with ϵ = 0.1 on street digit signs from SVHN to
extract representations which a logistic regression model can be applied on top of. Similar to previous
experiments, we pick digits 3 and 8 for simplicity and observe significant speedups using IJ. On
average, IJ was 15036x faster than RT and 17x faster than TA and these speedups come at a marginal
cost to the test accuracy of our algorithm even as the number of delete requests increase (Figure 3).
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Figure 3: IJ vs. TA and RT for non-convex training. Comparing both the runtime and test accuracy of the
unlearned models in our DP feature extractor + ℓ2 logistic regression setup for predicting digits in photos of
street signs from SVHN. For GDPR, the y-axis of the runtime graph denotes the runtime at month X under the
current one month delete request window.

5 Unlearning hyperparameter-tuned models

One of the most common techniques for hyperparameter tuning is cross-validation. Here datapoints
are used to validate and select models using the following cross-validation error objective

CV(λ) = 1
n

∑n
i=1 ℓ(zi, θ̂n,−i(λ)). (9)

Specifically, the model selection pipeline oftentimes entails selecting λ ∈ Λ that minimizes the CV
error (9). Given each datapoint is used to select models, one might hope it is possible to unlearn
models using Algorithm 1 when CV is used to select the model. However, as the following proposition
illustrates, the (ϵ, δ)-unlearning guarantees of Theorem 1 no longer apply when CV has taken place.
Proposition 1. Suppose cross-validation is used to select λ ∈ Λ and the empirical risk minimizer
θ̂n(λ) is returned. Consider a delete request by user i and the model returned by unlearning
procedure (8) or (1), which we denote θ̃n,−i(λ). Then it is possible ∥θ̃n,−i(λ)− θ̂n,−i(λ

′)∥ = o(1/n)

where θ̂n,−i(λ
′) is the model selected after deleting user i and performing cross-validation again to

select λ′ ∈ Λ before returning the empricial risk minizer.

Proof of Proposition 1. Suppose ℓ(z, θ) = 1
2 (z − θ)2, π(θ) = θ2 and Λ = {0,∞}. Note that

θ̂n(λ) =
1

1+λ z̄ where z̄ = 1
n

∑n
i=1 zi is the sample average. Consider a dataset consisting of n− 1

points (group A) with value − 1
n and a remaining point (group B) with value n with n ≥ 2, and

suppose the user in group B requests to delete their data. Performing cross-validation on this dataset
will entail computing two kinds of sample averages, one where we have deleted a point from group
A, z̄−iA = 1

n−1 (−
n−2
n + n), and one where we have deleted the point from group B, z̄−iB = − 1

n .
Recall the CV error

CV(λ) = 1
2n

∑n
i=1(zi − θ̂n,−i(λ))

2 = n−1
2n ( 1

1+λ
1

n−1 (n− n−2
n )− 1

n )
2 + 1

2n (n+ 1
1+λ

1
n )

2

When minimized over the set Λ = {0,∞}, λ = ∞ is optimal for any n ≥ 2. This results in estimator
θ̂n(λ) = θ̂n(∞) = 0. The leave-one-out approximation is the same for estimators (1) and (8),
given ∇2

θF (z, θ, λ)
−1 = 1

1+λ . Subsequently, θ̃n,−i(λ) = θ̂n(λ) +
1
n

1
1+λ (θ̂n(λ)− zi) results in the

approximation θ̃n,−i(∞) = 0. On the other hand, having deleted the datapoint from group B, we
have a new sample mean z̄ = − 1

n and CV error, given by

CV(λ) = 1
2n

∑n
i=1(zi − θ̂n,−i(λ))

2 = 1
2n (−

1
n + 1

1+λ
1
n )

2

is minimized by λ = 0. This results in leave-one-out minimizer θ̂n,−i(0) = − 1
n .

An implication of Proposition 1 is that Algorithm 1 as well as the algorithms proposed by [28, 14] do
not unlearn models when cross-validation is used to selected hyperparameters. This is because the
noise term σ ∝ O(m2/n2) is no longer sufficient to guarantee datapoint i is unlearned. This means
that organizations which train their models using cross-validation and use approximate unlearning
algorithms could still be leaking information about the data which they delete.
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6 Discussion

A main contribution of our study is the development of an efficient online/batch data deletion
algorithm for non-smooth problems. The only previous work proposing a low-memory online
algorithm is Guo et al. [14]. However, Marchant et al. [20] show that this algorithm is susceptible
to poisoning attacks rendering it highly inefficient. While exact unlearning algorithms such as
SISA and retraining naturally work in an online setting, our work is the first to make this work for
approximate unlearning algorithms. Further development of data deletion algorithms should focus
more minimizing computational cost on the streaming batch setting to ensure practical use. Also,
while the current form of GDPR legislation allows quite a bit of time for companies to comply (30
days), we believe that showing a tool can provide the same empirical performance and theoretical
guarantees with immediate deletion is beneficial toward encouraging companies to complying with
GDPR requests more swiftly (and might encourage lawmakers to necessitate faster compliance).
When individuals request to delete their data, it is sometimes because they are concerned about the
risk of potential harm if their data remains available; this risk is potentially compounded the longer it
takes for the data to be deleted. By showing it can be done quickly, companies may be encouraged to
act more expeditiously and less harm might occur.

The infinitesimal jacknife has been previously been used to perform cross-validation. We note
deep connections between the approximate cross-validation algorithms and approximate machine
unlearning algorithms. The algorithm developed by [28], for example, can be viewed as an analog of
the approximate cross-validation algorithm proposed by [3, 26]. Additionally, the model selection
error bounds provided in the approximate cross-validation literature for example in [35] are very
similar to the generalization guarantees proved in our work and [28] where we are concerned with
the error introduced by our approximation to the unlearning baseline. We believe further connections
could be exploited to provide unlearning algorithms when hyperparameter tuning has taken place.

In this work and in several others we consider a definition of data deletion that is parameterized by
two values ϵ and δ. As is the case with differential privacy, it is currently unclear what the impact of
satisfying different levels of ϵ means practically. Developing auditing algorithms [32] similar to those
recently seen in the DP community [18, 22] can help provide more transparency on the meaning of
the (ϵ, δ)-unlearning guarantee.

Finally, we return to the broader question we posed at the beginning: what does it mean to delete
data from a machine learning pipeline? Most existing work focuses on data deletion in the model
training process. Yet, the machine learning and data analysis pipeline is much broader than just model
training. As evidenced in Section 5, the lack of research on data deletion in model selection could
potentially result in information being leaked from previously proposed unlearning algorithms. Given
this result, it is likely that all unlearning algorithms (both exact and inexact) still leak information
about deleted data in other stages of the machine learning pipeline such as exploratory data analysis
and feature selection. We encourage the community to explore definitions of data deletion which
encompass the entire machine learning pipeline.
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