
Supplementary Material

A Proofs of Lemmas

In this section, we present several new lemmas which are required to prove Theorem 2, and provide
proofs. We also provide proofs for Lemmas 1, 2, and 3.
Lemma 4. Let distribution Q over random variables X,Y,D satisfy A.1–A.4. Then for all y P Y ,
qpyq ą 0. That is, all labels have nonzero probability under Q.

Proof of Lemma 4. Proof by contradiction. Let y P Y with qpyq “ 0.

qpyq “
ÿ

dPR
qpdqqpy|D “ dq

“
ÿ

dPR
γyqpy|D “ dq

“
ÿ

dPR

1

r
qpy|D “ dq

“
1

r

ÿ

dPR
qpy|D “ dq .

Since qpy|D “ dq ě 0 for all d P R, we see that if qpyq “ 0, then qpy|D “ dq “ 0 for all d P R.

Then rQY |Dsy,d “ 0 for all d P R. Then there is a row (row y) in the matrix QY |D in which every
entry is 0, so QY |D cannot be full row rank k. This violates assumption A.2. Then by contradiction
we have shown qpyq ą 0.

Lemma 5. Let distributionQ over random variablesX,Y,D satisfy Assumptions A.1–A.4. Let x P X
such that qpxq ą 0. Then if x P Ay for some y P Y , we have that qpy|X “ xq “ 1, and for all y1 P

Yztyu, qpy1|X “ xq “ 0. The converse is also true: if qpy|X “ xq “ 1 for some y P Y and
qpy1|X “ xq “ 0 @y1 P Yztyu, then we know that x P Ay .

Proof of Lemma 5. We prove directions one at a time.

Forward direction. Assume x P Ay .

qpxq “
ÿ

y2PY
qpy2qqpx|Y “ y2q

“ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1qqpx|Y “ y1q

“ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1q p0q

“ qpyqqpx|Y “ yq.

Recalling qpx|yq ą 0 (by A.4) and qpyq ą 0 (by Lemma 4), we know that qpxq “ qpyqqpx|Y “ yq ą

0. Then qpy|X “ xq “
qpyqqpx|Y “ yq

qpxq
“
qpxq

qpxq
“ 1. Because probabilities sum to 1, qpy|X “

xq`
ř

y1PYztyu

qpy1|X “ xq “ 1. Then because qpy|X “ xq “ 1, we have :
ř

y1PYztyu

qpy1|X “ xq “ 0.

Then for all y1 P Yztyu, it must be that qpy1|X “ xq “ 0. Then we have shown qpy|X “ xq “ 1,
and for all y1 P Yztyu, qpy1|X “ xq “ 0.

Converse. Assume qpy|X “ xq “ 1 and for all y1 P Yztyu, qpy1|X “ xq “ 0. We recall that

qpxq ą 0. Also, qpyq ą 0 by Lemma 4. Then qpx|Y “ yq “
qpy|X “ xqqpxq

qpyq
“

p1qqpxq

qpyq
ą 0. Let

y1 P Yztyu. Then qpx|Y “ y1q “
qpy1|X “ xqqpxq

qpy1q
“

p0qqpxq

qpy1q
“ 0. Then because qpx|Y “ yq ą 0

and @y1 P Yztyu, qpx|Y “ y1q “ 0, we see that x P Ay .

17

Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Then,
the matrix QD|Y , defined as an r ˆ k matrix whose elements are rQD|Y si,j “ QpD “ i|Y “ jq,
and in which each column is a conditional distribution over the domains given a label, has linearly
independent columns. Furthermore, QD|Y can be computed directly from only QY |D.

Proof of Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.

Each rQD|Y sd,y “ qpd|Y “ yq “
qpy|D “ dqqpdq

qpyq
“
qpy|D “ dqγd

qpyq
“
qpy|D “ dq

rqpyq
.

Since each yth column of QD|Y is a probability distribution that sums to 1, and rqpyq is constant
down each yth column, we can obtain QD|Y by simply taking QJ

Y |D, in which each rQJ
Y |Dsd,y “

rQY |Dsy,d “ qpy|D “ dq, and normalizing the columns so they sum to 1.

The matrix QY |D has linearly independent rows by Assumption A.2. Then QJ
Y |D has linearly

independent columns. Scaling these columns by a nonzero value does not change their linear
independence, so the columns of QD|Y are also linearly independent.

Then matrix QD|Y has linearly independent columns, and can be computed by taking QJ
Y |D and

normalizing its columns.

Lemma 7. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Let
d P R, x P X , y P Y . Then qpd|X “ x, Y “ yq “ qpd|Y “ yq.

Proof of Lemma 7.

qpd|X “ x, Y “ yq “
qpx|D “ d, Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
pdpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
ppx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
qpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“ qpd|Y “ yq.

Lemma 1. We restate this lemma, first presented in Sec. 4, for convenience. Let the distributionQ over
random variables X,Y,D satisfy Assumptions A.1–A.4. Then the matrix QY |D and fpxq “ qpd|xq

uniquely determine qpy|xq for all y P Y and x P X such that qpxq ą 0.

Proof of Lemma 1. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.
Let x P X with qpxq ą 0, and y P Y . Assume we know QY |D and rfpxqsd “ qpd|X “ xq. Notice
that, for all x P X , d P R,

qpd|X “ xq “
ÿ

y1PY
qpd|X “ x, Y “ y1qqpy1|X “ xq.

Now using Lemma 7,

qpd|X “ xq “
ÿ

y1PY
qpd|Y “ y1qqpy1|X “ xq.

Define the vector-valued function g : X Ñ Rk such that rgpxqsy “ qpy|X “ xq for all x P

suppQpXq. QD|Y is a matrix of shape r ˆ k, with rQD|Y si,j “ QpD “ i|Y “ jq. It can be
computed from QY |D and has linearly independent columns—both facts shown in Lemma 6.

18

Then rfpxqsd “ qpd|X “ xq “ QD|Y rd, :sgpxq, a product between the dth row vector of QD|Y and
the column vector gpxq. Then fpxq “ QD|Y gpxq.

This system is a linear system with r ě k equations. Recalling that QD|Y has k linearly independent
columns, we can select any k linearly independent rows of QD|Y to solve the equation for the true,
unique solution for the unknown vector gpxq. Another way to describe this is with the pseudo-inverse:
gpxq “ pQD|Y q:fpxq. Then we have rgpxqsy “ qpy|X “ xq for all y P Y .

Lemma 2. We restate this lemma, first presented in Sec. 4, for convenience. Let the distribution Q
over random variables X,Y,D satisfy Assumptions A.1–A.4. Then for all y P Y , and x P X such
that qpx, dq ą 0. the matrix QY |D and qpy|xq uniquely determine qpy|x, dq.

Proof of Lemma 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.
Let x P X , d P R with qpx, dq ą 0, and y P Y .

Assume we know matrix QY |D and qpy1|X “ xq, @y1 P Y . We can compute QD|Y from QY |D via
Lemma 6.

qpy|X “ x,D “ dq “
qpy, x, dq

qpx, dq

“
qpd|X “ x, Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq
.

Using Lemma 7, qpd|X “ x, Y “ yq “ qpd|Y “ yq. We apply this property.

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq

“
qpd|Y “ yqqpy|X “ xq

qpd|X “ xq
.

The denominator qpd|X “ xq is constant across all values of y, so we can write that qpy|X “ x,D “

dq 9 qpd|Y “ yqqpy|X “ xq and normalize to find the probability:

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xq

ř

y1PY
qpd|Y “ y1qqpy1|X “ xq

.

We know qpd|Y “ yq as rQD|Y sd,y, and every qpd|Y “ y1q, where y1 P Yztyu, as rQD|Y sd,y1 . We
also know qpy|X “ xq and every qpy1|X “ xq where y1 P Yztyu, by the precondition assumptions.
Then we can compute qpy|X “ x,D “ dq.

Lemma 3. We restate this lemma, first presented in Sec. 4, for convenience. Let the distribution
Q over random variables X,Y,D satisfy Assumptions A.1–A.4. Then for all x, x1 in anchor sub-
domain, i.e., x, x1 P Ay for a given label y P Y , we have fpxq “ fpx1q. Further, for any y P Y , if
x P Ay, x

1 R Ay , then fpxq ‰ fpx1q.

Proof of Lemma 3. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.
Recall f : Rp Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all x P

suppQpXq. Also let us recall that QD|Y is defined as an r ˆ k matrix whose elements rQD|Y si,j “

QpD “ i|Y “ jq, and each column is a conditional distribution over the domains given a label. It
has linearly independent columns by Lemma 6.

First recognize that for all d P R, x P X such that qpxq ą 0,

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd, y2|X “ xq.

“
ÿ

y2PY
qpd|Y “ y2, X “ xqqpy2|X “ xq.

19

Using Lemma 7, qpd|X “ x, Y “ yq “ qpd|Y “ yq. We apply this property.

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq.

Then we can write fpxq “
ř

y2PY
qpy2|X “ xqQD|Y r:, y2s, where QD|Y r:, y2s is the y2th column of

QD|Y . Now we could also rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J.

We now prove two key components of the lemma. Let y P Y . Let x P Ay such that qpxq ą 0.

Points in same anchor sub-domain map together. Let x1 P Ay such that qpx1q ą 0. We now seek
to show that fpxq “ fpx1q. Recall that x, x1 P Ay. By Lemma 5, qpy|X “ xq “ qpy|X “ x1q “ 1.
Also by lemma 5, @y2 P Yztyu, qpy2|X “ xq “ qpy2|X “ x1q “ 0. Then for all y2 P Y ,
qpy2|X “ xq “ qpy2|X “ x1q.

Therefore, @d P R,

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq

“
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ x1q

“ qpd|X “ x1q “ rfpx1qsd.

Then fpxq “ fpx1q.

Point outside of the anchor sub-domain does not map with points in the anchor sub-domain .
Let x0 R Ay such that qpx0q ą 0. We now seek to show that fpxq ‰ fpx0q. Because x0 R Ay with
qpx0q ą 0, and becauseAy contains all x such that qpxq ą 0, qpy|X “ xq “ 1, and qpy1|X “ xq “ 0
for all y1 P Yztyu, then by Lemma 5, it must be that one of the following cases is true:

• Case 1: qpy|X “ x0q ‰ 1

• Case 2: qpy1|X “ x0q ą 0 for some y1 P Yztyu.

In all circumstances, there exists some y2 P Y : qpy2|x0q ‰ qpy2|xq. Then,

rQpY “ 1|X “ xq...QpY “ k|X “ xqs
J

‰ rQpY “ 1|X “ x0q...QpY “ k|X “ x0qs
J
.

Because QD|Y has linearly independent columns (shown in Lemma 6), we now know that

fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

‰ QD|Y rQpY “ 1|X “ x0q ... QpY “ k|X “ x0qs
J

“ fpx0q .

So fpxq ‰ fpx0q.

20

B Proof of Theorem 2

Theorem 2. We restate this theorem, first presented in Sec. 4, for convenience. Let the distribution Q
over random variablesX,Y,D satisfy Assumptions A.1–A.4. Assuming access to the joint distribution
qpx, dq, and knowledge of the number of true classes k, we show that the following quantities are
identifiable: (i) QY |D, (ii) qpy|X “ xq , for all x P X that lies in the support (i.e. qpxq ą 0); and
(iii) qpy|X “ x,D “ dq , for all x P X and d P R such that qpx, dq ą 0.

Proof of Theorem 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.

Recall f : X Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all
x P suppQpXq. It is known because we know the marginal qpx, dq. Let y P Y . Then by Lemma 3, f
sends every x P Ay (and no other x R Ay) to the same value. We overload notation to denote this
as fpAyq. Then QpfpXq “ fpAyqq “ QpX P Ayq ě ϵ. Then in the marginal distribution of fpXq

with respect to distribution Q, there is a distinct point mass on each fpAyq, with mass at least ϵ.

Because we know the marginal qpx, dq, we know the marginal qpxq, so we can obtain the distribution
of fpXq with respect to distribution Q. If we analyze the marginal distribution of fpXq with respect
to distribution Q, and recover all point masses with mass at least ϵ, we can recover no more than
O p1{ϵq such points. We set m P Z` so that the number of points we recovered is m´ 1.

We denote a mapping ψ : Rr Ñ rms. This mapping sends each value of fpxq corresponding to a
point mass with mass at least ϵ to a unique index in t1, ...,m´ 1u. It sends any other value in Rp to
m. We note that the ordering of the point masses might have pm´ 1q! permutations.

Notice that the point mass on each fpAyq must be recovered among these m´ 1 masses. Recall that
for all y P Y , fpxq “ fpAyq if and only if x P Ay . Then for all y P Y , ψpfpxqq “ ψpfpAyqq if and
only if x P Ay , because ψ does not send any other value in Rr besides fpAyq to ψpfpAyqq.

For convenience, we now define a mapping c : X Ñ rms such that c “ ψ ˝ f . We will also abuse
notation here to denote cpAyq “ ψpfpAyqq. Then cpXq is a discrete, finite random variable that
takes values in rms. As c is a pushforward function on X , cpXq satisfies the label shift assumption
because X does (i.e., when conditioning on Y , the distribution of cpXq is domain-invariant).

We might now define a matrix QcpXq|D in which each entry rQcpXq|Dsi,d “ QpcpXq “ i|D “ dq.
We recall that we know the number of true classes k. Then we know that there is a (possibly unique)
unknown decomposition of the following form:

qpcpXq|dq “
ÿ

yPY
qpcpXq|Y “ y,D “ dqqpy|D “ dq

Using the label shift property,

qpcpXq|dq “
ÿ

yPY
qpcpXq|Y “ yqqpy|D “ dq.

To express this decomposition in matrix form, we write QcpXq|D “ QcpXq|Y QY |D. Now we make
observations about the unknown QcpXq|Y . For all y P Y ,

Qpcpxq “ cpAyq|Y “ yq “ QpX P Ay|Y “ yq ą 0 .

Qpcpxq “ cpAyq|Y ‰ yq “ QpX P Ay|Y ‰ yq “ 0 .

Then for each y P Y , the row of QcpXq|Y with row index cpAyq is positive in the yth column, and zero
everywhere else. Restated, for each y P Y , there is some row with positive entry exactly in yth column.
This is precisely the anchor word assumption for a discrete, finite random variable. We already
know that QY |D is full row-rank, so because QcpXq|Y satisfies the anchor word assumption, we can
identify QY |D up to permutation of rows by Theorem 1. In other words, when we set the constraint
that the recovered QcpXq|Y must have k columns and satisfy anchor word and the recovered QY |D

must have k rows and be full row-rank, any solution to the decomposition QcpXq|D “ QcpXq|Y QY |D

must identify the ground truth QY |D, up to permutation of its rows.

21

C Minimizing Cross-Entropy Loss yields Domain Discriminator

In this section we reason about our choice of cross entropy loss to estimate the domain discriminator.
We show that in population, when optimizing over a sufficiently powerful class of functions, the
minimizer of the cross entropy loss is the conditional distribution over domains given input X .

Define the vector-valued function z : R Ñ Rr such that zpDq is a one-hot random vector of length r,
such that rzpDqsi “ 1, iff D “ i. Then we write the cross-entropy objective in expectation over the
input random variable X and target random variable D as:

L “ EpX,Dq„Q

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

“ EXED|X

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

where the second line follows by splitting the expectations using the law of iterative expectations.
For ease of notation we denote conditioning on X “ x as just conditioning on X . We now move the
inner expectation into the summation over the domain random variable and pull the terms that do not
depend on D outside this inner expectation:

L “ EX

«

´

i“r
ÿ

i“1

ED|X rrzpDqsi logprfpXqsiqs

ff

“ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqED|X rrzpDqsis

ff

Since rZpDqsi is a random variable which is 1 when D “ i conditioned on X , and 0 otherwise, the
inner expectation can be simplified as follows: ED|X rrzpDqsis “ 1ˆQpD “ i|Xq`0ˆp1´QpD “

i|Xqq, giving

L “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq

ff

In order to learn a distribution, we constrain our search space to the subset of functions from
Rp Ñ r0, 1sr that project to a simplex ∆r´1. We now look to find the minimizer of the above
equation from within this subset for each value of X . This corresponds to minimizing each term that
contributes to the outer expectation over X , leading to the overall minimizer of the cross-entropy loss.

We formulate this objective along with the Lagrange constraint modeling the sum of components of
fpXq adding to 1. Note that we do not add the constraint of each component of fpXq lying between
0 and 1, but it is easy to see that the resulting solution satisfies this constraint.

J “ min
rfpXqs1...rfpXqsr

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq ` λ

˜

i“r
ÿ

i“1

rfpXqsi ´ 1

¸

Setting partial derivative with respect to rfpXqsi to 0, we get ´
QpD “ i|Xq

rf‹pXqsi
`λ “ 0 and rf‹pXqsi “

1
λQpD “ i|Xq, where we use f‹ to denote the minimizer.

The last piece is to solve for the Lagrange multiplier λ. This can be achieved by applying Karush-
Kuhn-Tucker (KKT) conditions which suppose that the optimal solution lies on the constraint surface.
This gives,

ři“r
i“1rf‹pXqsi “ 1 which implies

ři“r
i“1

1
λQpD “ i|Xq “ 1. Since sum over domains

QpD|Xq “ 1, we get λ “ 1.

Plugging this in, we finally get rf‹pXqsi “ QpD “ i|Xq. Thus, the optimal f˚ obtained by
minimizing the cross entropy objective will in fact recover the oracle domain discriminator. As
mentioned, it is clear that the resulting solution satisfies the required conditions of valid probability
distributions.

22

„

0.17 0.65
0.83 0.35

ȷ

(a) α : 0.5, κ : 3

„

0.37 0.06
0.63 0.94

ȷ

(b) α : 3, κ : 5

„

0.42 0.25
0.58 0.75

ȷ

(c) α : 10, κ : 7

Figure 3: Example QY |D matrices sampled for FieldGuide-2 with 2 classes and 2 domains. Each
column represents the distribution across classes pdpyq for a given domain. At small α, each pdpyq is
likelier to be “sparse” (our definition is an informal one meaning not that there are many zero entries,
but instead that the distribution is heavily concentrated in a few classes). At large α, pdpyq tends
toward a uniform distribution in which classes are represented evenly.

D Additional Experimental Details

Our code is available at https://github.com/acmi-lab/Latent-Label-Shift-DDFA. Here
we present the full generation procedure for semisynthetic example problems, and discuss the
parameters.

1. Choose a Dirichlet concentration parameter α ą 0, maximum condition number κ ě 1
(with respect to 2-norm), and domain count r ě k.

2. For each y P rks, sample pdpyq „ Dirpα
k 1kq.

3. Populate the matrix QY |D with the computed pdpyqs. If condpQY |Dq ą k, return to step 2
and re-sample.

4. Distribute examples across domains according to QY |D, for each of train, test, and valid
sets. This procedure entails creating a quota number of examples for each (class, domain)
pair, and drawing datapoints without replacement to fill each quota. We must discard excess
examples from some classes in the dataset due to class imbalance in the QY |D matrix. Due
to integral rounding, domains may be slightly imbalanced.

5. Conceal true class information and return pxi, diq pairs.

It is important to note the role of κ and α in the above formulation. Although they are unknown
parameters to the classification algorithm, they affect the sparsity of the QY |D and difficulty of the
problem. Small α encourages high sparsity in pdpyq, and large α causes pdpyq to tend towards a
uniform distribution. We observe an example of the effects of α in Fig. 3. κ has a strong effect on
the difficulty of the problem. Consider the case when k “ 2. When κ “ 1, the only potential QY |D

matrices are I2 up to row permutation (which means that domains and classes are exactly correlated,
so the domain indicates the class and the problem is supervised). In the other limit, if κ Ñ `8,
we may generate QY |D matrices that are nearly singular, breaking needed assumptions for domain
discriminator output to uniquely identify true class of anchor subdomains. κ also helps control the
class imbalance (if a row of QY |D is small, indicating that the class is heavily under-represented
across all domains, the condition number will increase).

D.1 FieldGuide-2 and FieldGuide-28 Datasets

The dataset and description is available at https://sites.google.com/view/fgvc6/
competitions/butterflies-moths-2019. From this data we create two datasets FieldGuide-2
and FieldGuide-28. For FieldGuide-28 we select the 28 classes which have 1000 datapoints in the
training file. Since the test set provided in the website does not have annotations, we manually cre-
ate a test set by sampling 200 datapoints from training file of each of the 28 classes. Therefore, we
finally have 22400 training points and 5600 testing points. The FieldGuide-2 dataset is created by
considering two classes from the created FieldGuide-28 dataset.

D.2 Hyperparameters and Implementation Details: SCAN baseline

In all cases, we initialize the SCAN [72] network with the clustering head attached, sample data
according to the QY |D matrix, and predict classes. With the Hungarian algorithm, implemented in

23

https://github.com/acmi-lab/Latent-Label-Shift-DDFA
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019

[16, 74], we compute the highest true accuracy among any permutation of these labels (denoted “Test
acc”).

• CIFAR-10 and CIFAR-20 Datasets [43] We use ResNet-18 [35] backbone with
weights trained by SCAN-loss and obtained from the SCAN repo https://github.com/
wvangansbeke/Unsupervised-Classification. We use the same transforms present
in the repo for test data.

• ImageNet-50 Dataset [19] We use ResNet-50 backbone with weights trained by SCAN-
loss and obtained from the SCAN repo. We use the same transforms present in the repo for
test data.

• FieldGuide-2 and FieldGuide-28 Datasets For each of the two datasets, we pretrain a
different SCAN baseline network (including pretext and SCAN-loss steps) on all available
data from the dataset. The backbone for each is ResNet-18. For training the pretext task,
we use the same transform strategy used in the repo for CIFAR-10 data (with mean and std
values as computed on the FieldGuide-28 dataset, and crop size 224). For training SCAN,
we resize the smallest image dimension to 256, perform a random horizontal flip and random
crop to size 224. We also normalize. For validation we resize smallest image dimension to
256, center crop to 224, and normalize.
Hyperparameters used in training SCAN representations on both instances of the FieldGuide
dataset were chosen as follows: starting with the recommended choices of hyperparameters
for ImageNet (as was present in the SCAN repo), we made minimal changes to these only
to avoid model degeneracy (training loss collapse).

D.3 Hyperparameters and Implementation Details: DDFA (RI)

This is the DDFA procedure with random initialization of the domain discriminator. The bulk of this
procedure is described in Section 6, but for completeness we reiterate here.

We train ResNet-50 [35] (with random initialization and added dropout) based on the implementation
from https://github.com/kuangliu/pytorch-cifar on images xi with domain indices di as
the label, choose best iteration by valid loss, pass all training and validation data through pf , and
cluster pushforward predictions pfpxiq into m ě k clusters with Faiss K-Means [42]. We compute the
pQcpXq|D matrix and run NMF to obtain pQcpXq|Y , pQY |D. To make columns sum to 1, we normalize
columns of pQcpXq|Y , multiply each column’s normalization coefficient over the corresponding row
of pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D.

Some NMF algorithms only output solutions satisfying the anchor word property [4, 44, 30]. We
found the strict requirement of an exact anchor word solution to lead to low noise tolerance. We
therefore use the Sklearn implementation of standard NMF [15, 69, 59].

We predict class labels with Algorithm 2. With the Hungarian algorithm, implemented in [16, 74],
we compute the highest true accuracy among any permutation of these labels (denoted “Test acc”).
With the same permutation, we reorder rows of pQY |D, then compute the average absolute difference
between corresponding entries of pQY |D and QY |D (denoted “QY |D err”).

In order to make hyperparameter choices for final experiments, such as the choice of the NMF solver,
clustering algorithm, and learning rate, we primarily consulted CIFAR-10 and CINIC-10 (similar
to an extension of CIFAR-10) [17] final test task accuracy, and validation loss on other datasets
(likely leading to an overfitting of our hyperparameter choices to CIFAR-10 and associated tasks).
We applied the intuitions developed on these datasets when choosing hyperparameters for other
datasets, instead of performing a test accuracy-driven sweep for each other dataset. Final runs used
the following fixed hyperparameters:

Common Hyperparameters

• Hardware: A single NVIDIA RTX A6000 GPU was used for each experiment (on this
hardware, trial length varies < 1 hour to 24 hours, depending on the dataset).

• Architecture: ResNet-50 with added dropout
• Faiss KMeans number of iterations (niter): 100

24

https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/kuangliu/pytorch-cifar

• Faiss Kmeans number of clustering redos (nredo): 5
• Learning Rate: 0.001
• Learning Rate Decay: Exponential, parameter 0.97
• SKlearn NMF initialization: random

Dataset-Specific Hyperparameters

• CIFAR-10 Dataset Training Epochs: 100. Number of Clusters (m): 30
• CIFAR-20 Dataset Training Epochs: 100. Number of Clusters (m): 60
• ImageNet-50 Dataset DDFA (RI) was not evaluated for this dataset due to poor performance

of the domain discriminator without an appropriate pre-seed in early trials.
• FieldGuide-2 Dataset Training Epochs: 100. Number of Clusters (m): 10
• FieldGuide-28 Dataset DDFA (RI) was not evaluated for this dataset due to poor perfor-

mance of the domain discriminator without an appropriate pre-seed in early trials.

D.4 Hyperparameters and Implementation Details: DDFA (SI) and DDFA (SPI)

This is the DDFA procedure with SCAN initialization of the domain discriminator. DDFA (SI) uses
the SCAN pretext + SCAN loss pretraining steps, while DDFA (SPI) uses only the SCAN pretext step.

The procedure is identical to the standard DDFA procedure, except that SCAN [72] pre-trained
weights or SCAN [72] contrastive pre-text weights are used to initialize the domain discriminator
before it is fine-tuned on the domain discrimination task. Hyperparameters used also differ. When
SCAN pretrained weights are available, we use those. When they are not, we train SCAN ourselves.

Like SCAN (RI), we used CIFAR-10 and CINIC-10 final test accuracy to choose hyperparameters and
make algorithm decisions. For other datasets, we consulted only validation domain discrimination
loss. One exception to this rule was that preliminary low final DDFA (SI) performance on FieldGuide
suggested that we should focus on instead evaluating DDFA (SPI) to avoid allowing the SCAN failure
mode to negatively affect the domain discriminator pretrain representation. Final evaluation runs
used the following fixed hyperparameters:

Common Hyperparameters

• Hardware: A single NVIDIA RTX A6000 GPU was used for each experiment (on this
hardware, trial length varies < 1 hour to 24 hours, depending on the dataset).

• Faiss KMeans number of iterations (niter): 100
• Faiss Kmeans number of clustering redos (nredo): 5
• Learning Rate: 0.00001
• Learning Rate Decay: Exponential, parameter 0.97
• SKlearn NMF initialization: random

Dataset-Specific Hyperparameters

• CIFAR-10 Dataset
Architecture: ResNet-18
Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-10
(from SCAN repo).
Training Epochs: 25
Number of Clusters (m): 10
Transforms used: Same as SCAN repo.

• CIFAR-20 Dataset
Architecture: ResNet-18
Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-20
(from SCAN repo).

25

Training Epochs: 25
Number of Clusters (m): 20
Transforms used: Same as SCAN repo.

• ImageNet-50 Dataset
Architecture: ResNet-50
Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of ImageNet-50
(from SCAN repo).
Training Epochs: 25
Number of Clusters (m): 50
Transforms used: Same as SCAN repo.

• FieldGuide-2 Dataset
Architecture: ResNet-18
Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-2 (trained by us).
Training Epochs: 30
Number of Clusters (m): 2
Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate
mean, std, and crop size 224.
Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,
normalize
Learning rate used for SCAN: 0.001 (other hyperparameters were same as in SCAN repo
for CIFAR-10)

• FieldGuide-28 Dataset
Architecture: ResNet-18
Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-28 (trained by us).
Training Epochs: 60
Number of Clusters (m): 28
Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate
mean, std, and crop size 224.
Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,
normalize
Learning rate used for SCAN: 0.01 (other hyperparameters were same as in SCAN repo for
CIFAR-10)

26

E Additional Experimental Results

Here we present additional experimental results. We also investigated evaluations on the Waterbirds
dataset, but although DDFA showed some reasonable results, we did not find SCAN hyperparameters
that lead to a successful SCAN baseline. Accordingly, we do not include these results as they do not
present a reasonable comparison.

Table 2: Results on CIFAR-10. Each entry is produced with the averaged result of 3 different random
seeds, formatted as mean ˘ standard deviation. With DDFA (RI) we refer to DDFA with randomly
initialized backbone. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note
that in DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for
generating label marginals in each domain, κ is the maximum allowed condition number of the
generated QY |D matrix, r is number of domains. “Test acc” is classification accuracy, under the best
permutation of the recovered classes, and “QY |D err” is the average entry-wise absolute error in the
recovered QY |D.

r Approaches α : 0.5, κ : 4 α : 3, κ : 4 α : 10, κ : 8

Test acc QY |D err Test acc QY |D err Test acc QY |D err

10 SCAN 0.808 ˘ 0.007 0.066 ˘ 0.002 0.823 ˘ 0.007 0.050 ˘ 0.003 0.815 ˘ 0.005 0.036 ˘ 0.002
DDFA (RI) 0.759 ˘ 0.035 0.033 ˘ 0.003 0.564 ˘ 0.042 0.054 ˘ 0.003 0.296 ˘ 0.027 0.075 ˘ 0.005
DDFA (SI) 0.867 ˘ 0.089 0.029 ˘ 0.014 0.728 ˘ 0.068 0.047 ˘ 0.008 0.584 ˘ 0.022 0.058 ˘ 0.002

15 SCAN 0.823 ˘ 0.021 0.061 ˘ 0.004 0.817 ˘ 0.017 0.052 ˘ 0.003 0.821 ˘ 0.007 0.036 ˘ 0.000
DDFA (RI) 0.750 ˘ 0.057 0.040 ˘ 0.009 0.538 ˘ 0.072 0.058 ˘ 0.010 0.329 ˘ 0.034 0.070 ˘ 0.011
DDFA (SI) 0.921 ˘ 0.040 0.023 ˘ 0.010 0.849 ˘ 0.078 0.026 ˘ 0.013 0.709 ˘ 0.053 0.038 ˘ 0.007

20 SCAN 0.813 ˘ 0.017 0.064 ˘ 0.002 0.814 ˘ 0.008 0.049 ˘ 0.004 0.804 ˘ 0.012 0.035 ˘ 0.001
DDFA (RI) 0.722 ˘ 0.094 0.034 ˘ 0.013 0.510 ˘ 0.071 0.060 ˘ 0.014 0.251 ˘ 0.049 0.071 ˘ 0.013
DDFA (SI) 0.898 ˘ 0.010 0.025 ˘ 0.001 0.901 ˘ 0.025 0.016 ˘ 0.005 0.765 ˘ 0.038 0.034 ˘ 0.004

25 SCAN 0.800 ˘ 0.015 0.067 ˘ 0.002 0.821 ˘ 0.008 0.047 ˘ 0.002 0.814 ˘ 0.017 0.036 ˘ 0.001
DDFA (RI) 0.683 ˘ 0.093 0.057 ˘ 0.025 0.527 ˘ 0.068 0.050 ˘ 0.013 0.310 ˘ 0.066 0.065 ˘ 0.010
DDFA (SI) 0.968 ˘ 0.004 0.018 ˘ 0.004 0.918 ˘ 0.006 0.018 ˘ 0.004 0.775 ˘ 0.048 0.029 ˘ 0.006

Table 3: Full results on CIFAR-20. Each entry is produced with the averaged result of 3 different
random seeds, formatted as mean ˘ standard deviation. With DDFA (RI) we refer to DDFA with
randomly initialized backbone. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN.
Note that in DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used
for generating label marginals in each domain, κ is the maximum allowed condition number of the
generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.454 ˘ 0.016 0.059 ˘ 0.002 0.421 ˘ 0.010 0.051 ˘ 0.001 0.436 ˘ 0.009 0.038 ˘ 0.001
DDFA (RI) 0.520 ˘ 0.064 0.041 ˘ 0.005 0.357 ˘ 0.020 0.043 ˘ 0.003 0.187 ˘ 0.008 0.051 ˘ 0.003
DDFA (SI) 0.852 ˘ 0.015 0.015 ˘ 0.000 0.548 ˘ 0.062 0.026 ˘ 0.003 0.354 ˘ 0.096 0.036 ˘ 0.007

25 SCAN 0.458 ˘ 0.055 0.059 ˘ 0.004 0.455 ˘ 0.011 0.048 ˘ 0.001 0.440 ˘ 0.023 0.037 ˘ 0.001
DDFA (RI) 0.525 ˘ 0.033 0.042 ˘ 0.006 0.310 ˘ 0.020 0.051 ˘ 0.006 0.182 ˘ 0.002 0.053 ˘ 0.003
DDFA (SI) 0.819 ˘ 0.013 0.021 ˘ 0.002 0.707 ˘ 0.022 0.022 ˘ 0.004 0.502 ˘ 0.024 0.030 ˘ 0.002

30 SCAN 0.456 ˘ 0.012 0.059 ˘ 0.001 0.441 ˘ 0.023 0.050 ˘ 0.001 0.437 ˘ 0.010 0.037 ˘ 0.001
DDFA (RI) 0.506 ˘ 0.104 0.045 ˘ 0.009 0.256 ˘ 0.007 0.058 ˘ 0.005 0.088 ˘ 0.016 0.076 ˘ 0.006
DDFA (SI) 0.845 ˘ 0.041 0.020 ˘ 0.006 0.688 ˘ 0.023 0.027 ˘ 0.003 0.531 ˘ 0.034 0.029 ˘ 0.002

27

Table 4: Results on ImageNet-50. Each entry is produced with the averaged result of 3 different
random seeds, formatted as mean ˘ standard deviation. With DDFA (SI) we refer to DDFA’s
backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN for clustering.
α is the Dirichlet parameter used for generating label marginals in each domain, κ is the maximum
allowed condition number of the generated QY |D matrix, r is number of domains. “Test acc” is
classification accuracy, under the best permutation of the recovered classes, and “QY |D err” is the
average entry-wise absolute error in the recovered QY |D.

r Approaches α : 0.5, κ : 200 α : 3, κ : 205 α : 10, κ : 210

Test acc QY |D err Test acc QY |D err Test acc QY |D err

50 SCAN 0.751 ˘ 0.058 0.011 ˘ 0.002 0.753 ˘ 0.036 0.010 ˘ 0.001 0.738 ˘ 0.010 0.009 ˘ 0.000
DDFA (SI) 0.745 ˘ 0.021 0.011 ˘ 0.002 0.569 ˘ 0.059 0.016 ˘ 0.002 0.380 ˘ 0.126 0.021 ˘ 0.002

60 SCAN 0.752 ˘ 0.028 0.011 ˘ 0.001 0.765 ˘ 0.030 0.010 ˘ 0.001 0.743 ˘ 0.008 0.008 ˘ 0.000
DDFA (SI) 0.790 ˘ 0.057 0.009 ˘ 0.002 0.693 ˘ 0.032 0.013 ˘ 0.002 0.585 ˘ 0.028 0.017 ˘ 0.002

Table 5: Full results on FieldGuide-2. Each entry is produced with the averaged result of 3 different
random seeds, formatted as mean ˘ standard deviation. With DDFA (RI) we refer to DDFA with
randomly initialized backbone. With DDFA (SPI) we refer to DDFA initialized with pretext training
adopted by SCAN. Note that in DDFA (SPI), we do not leverage SCAN for clustering. α is the
Dirichlet parameter used for generating label marginals in each domain, κ is the maximum allowed
condition number of the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 3 α : 3, κ : 5 α : 10, κ : 7

Test acc QY |D err Test acc QY |D err Test acc QY |D err

2 SCAN 0.588 ˘ 0.007 0.382 ˘ 0.059 0.580 ˘ 0.008 0.158 ˘ 0.094 0.597 ˘ 0.011 0.139 ˘ 0.022
DDFA (SPI) 0.950 ˘ 0.049 0.089 ˘ 0.039 0.685 ˘ 0.165 0.229 ˘ 0.079 0.658 ˘ 0.068 0.290 ˘ 0.046

3 SCAN 0.604 ˘ 0.027 0.324 ˘ 0.022 0.582 ˘ 0.007 0.200 ˘ 0.085 0.587 ˘ 0.006 0.113 ˘ 0.056
DDFA (SPI) 0.915 ˘ 0.042 0.125 ˘ 0.072 0.763 ˘ 0.073 0.219 ˘ 0.125 0.571 ˘ 0.102 0.265 ˘ 0.095

5 SCAN 0.582 ˘ 0.015 0.320 ˘ 0.054 0.590 ˘ 0.016 0.219 ˘ 0.090 0.585 ˘ 0.010 0.139 ˘ 0.036
DDFA (SPI) 0.863 ˘ 0.087 0.204 ˘ 0.129 0.794 ˘ 0.077 0.235 ˘ 0.084 0.588 ˘ 0.092 0.324 ˘ 0.057

7 SCAN 0.573 ˘ 0.028 0.306 ˘ 0.010 0.594 ˘ 0.028 0.183 ˘ 0.010 0.580 ˘ 0.007 0.102 ˘ 0.006
DDFA (SPI) 0.911 ˘ 0.016 0.087 ˘ 0.082 0.696 ˘ 0.123 0.284 ˘ 0.108 0.592 ˘ 0.056 0.325 ˘ 0.047

10 SCAN 0.597 ˘ 0.014 0.304 ˘ 0.060 0.590 ˘ 0.003 0.155 ˘ 0.029 0.589 ˘ 0.004 0.099 ˘ 0.009
DDFA (SPI) 0.844 ˘ 0.075 0.225 ˘ 0.081 0.756 ˘ 0.049 0.116 ˘ 0.015 0.587 ˘ 0.063 0.157 ˘ 0.091

28

Table 6: Results on FieldGuide-28. Each entry is produced with the averaged result of 3 different
random seeds, formatted as mean ˘ standard deviation. With DDFA (SPI) we refer to DDFA
initialized with pretext training adopted by SCAN. Note that in DDFA (SPI), we do not leverage
SCAN for clustering. α is the Dirichlet parameter used for generating label marginals in each domain,
κ is the maximum allowed condition number of the generated QY |D matrix, r is number of domains.
“Test acc” is classification accuracy, under the best permutation of the recovered classes, and “QY |D

err” is the average entry-wise absolute error in the recovered QY |D.

r Approaches α : 0.5, κ : 12 α : 3, κ : 20 α : 10, κ : 28

Test acc QY |D err Test acc QY |D err Test acc QY |D err

28 SCAN 0.254 ˘ 0.002 0.050 ˘ 0.000 0.251 ˘ 0.013 0.043 ˘ 0.001 0.251 ˘ 0.009 0.032 ˘ 0.001
DDFA (SPI) 0.549 ˘ 0.051 0.032 ˘ 0.002 0.363 ˘ 0.056 0.036 ˘ 0.002 0.295 ˘ 0.028 0.036 ˘ 0.002

37 SCAN 0.239 ˘ 0.013 0.053 ˘ 0.001 0.265 ˘ 0.020 0.041 ˘ 0.001 0.250 ˘ 0.014 0.031 ˘ 0.001
DDFA (SPI) 0.705 ˘ 0.063 0.031 ˘ 0.003 0.551 ˘ 0.036 0.031 ˘ 0.001 0.348 ˘ 0.033 0.034 ˘ 0.002

42 SCAN 0.277 ˘ 0.026 0.050 ˘ 0.001 0.264 ˘ 0.010 0.042 ˘ 0.000 0.258 ˘ 0.012 0.031 ˘ 0.001
DDFA (SPI) 0.684 ˘ 0.030 0.033 ˘ 0.001 0.492 ˘ 0.062 0.036 ˘ 0.003 0.388 ˘ 0.042 0.034 ˘ 0.002

47 SCAN 0.242 ˘ 0.013 0.051 ˘ 0.001 0.271 ˘ 0.005 0.041 ˘ 0.001 0.243 ˘ 0.004 0.032 ˘ 0.000
DDFA (SPI) 0.747 ˘ 0.041 0.030 ˘ 0.005 0.506 ˘ 0.070 0.036 ˘ 0.003 0.354 ˘ 0.046 0.036 ˘ 0.003

(0,0,1)

(0,1,0)(1,0,0)

Convex polytope

Image of anchor subdomain

Figure 4: This figure illustrates the case with 3 domains and 3 classes. The oracle domain discrimi-
nator maps points from a high-dimensional input space to a k “ 3 vertex convex polytope (shaded
red) embedded in ∆r´1, r “ 3 (shaded yellow). The anchor subdomains map to the vertices of this
polytope.

F Discussion of Convex Polytope Geometry

The geometric properties of topic modeling for finite, discrete random variables has been explored
in depth in related works ([38, 22, 14]). The observation that columns in QX|D are convex combi-
nations of columns in QX|Y leads to a perspective on identification of the matrix decomposition as
identification of the convex polytope in Rm which encloses all of the columns of QX|D (the corners
of which correspond to columns of QX|Y under certain identifiability conditions).

Here, we briefly discuss an interesting but somewhat different application of convex polytope
geometry. Instead of a convex polytope in Rm with corners as columns of QX|Y , we concern
ourselves with the convex polytope in Rr with corners as columns in QD|Y , which must enclose all
values taken by the oracle domain discriminator fpxq for x P X , qpxq ą 0.

Let us assume that Assumptions A.1–A.4 are satisfied. We recall the oracle domain discriminator
f which is defined such that rfpxqsd “ qpd|X “ xq. Let x P X “ Rp. Now, since the r values
qpd|X “ xq for d P t1, 2, ..., ru together constitute a categorical distribution, each of these r values
lie between 0 and 1, and also their sum adds to 1. Therefore the vector fpxq lies on the simplex ∆r´1.
We now express fpxq as a convex combination of the k columns of QD|Y . We denote these column
vectors QD|Y r:, ys for each y P Y “ rks. Note that each such vector also lies in the ∆r´1 simplex.

29

As an intermediate step in the proof of Lemma 3 given in App. A, we showed that each fpxq is a
linear combination of these columns of QD|Y with coefficients qpy|X “ xq for all y P Y . That is,
we can rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs

J

Since the coefficients in the linear combination are probabilities which, taken together, form a
categorical distribution, they lie between 0 and 1 and sum to 1. Thus, for all x P X with qpxq ą 0,
fpxq can be expressed as a convex combination of the columns of QD|Y . Therefore, for any x with
qpxq ą 0, fpxq lies inside the k´vertex convex polytope with corners as the columns of QD|Y

(which are linearly independent by Lemma 6). This polytope is embedded in ∆r´1.

Now consider x in an anchor sub-domain, that is x P Ay for some y P Y . We know that if qpxq ą 0,
qpy|X “ xq “ 1, qpy1|X “ xq “ 0 for all y1 ‰ y (Lemma 5). Since the qpy|X “ xq are now one-
hot, we have that fpxq “ QD|Y r:, ys for x P Ay . In words, this means that fpAyq is precisely the yth
column of QD|Y . It follows that the domain discriminator maps each of the k anchor sub-domains
exactly to a unique vertex of the polytope. The situation is described in Fig. 4.

We could now recover the columns of QD|Y , up to permutation, with the following procedure:

1. Push all x P X through f .
2. Find the minimum volume convex polytope that contains the resulting density of points

on the simplex. The vectors that compose the vertices of this polytope are the columns of
QD|Y , up to permutation.

Note that from Assumption A.4, we are guaranteed to have a region of the input space with at least
ϵ ą 0 mass that gets mapped to each of the vertices when carrying out step (i). Therefore, our
discovered minimum volume polytope must enclose all of these vertices. Since no mass will exist
outside of the true polytope, requiring a minimum volume polytope will ensure that the recovered
polytope fits the true polytope’s vertices precisely (as any extraneous volume outside of the true
polytope must be eliminated). Then step (ii) recovers QD|Y , up to permutation of columns. Having
recovered QD|Y , we can use Lemmas 1 and 2 to recover qpy|x, dq.

This procedure is a geometric alternative to the clustering approach outlined in Algorithm 1. In
practice, fitting a convex hull around the outputs of a noisy, non-oracle estimated domain discriminator
may be computationally expensive, and noise may lead this sensitive procedure to fail to recover the
true vertices.

G Ablation Study on Number of Clusters

We conduct an ablation on the choice of m, the parameter indicating how many clusters to find in the
qpd|xq space. We use the CIFAR-20 dataset with 20 domains and employ DDFA (SI) and SCAN
models, following the same hyperparameters as outlined in App. D, except for modifying the choice
of m for DDFA (SI). Results are obtained as the average of 3 random seeds.

The number of true classes is 20 in CIFAR-20. As seen in Fig. 5, whenm is chosen to be 10, violating
the typical constraint that m ě k, we can still solve for the solution, but we get poor performance,
seeing a drop in accuracy as much as 20% from a better-chosen value of m. Choosing m directly
equal to or larger (up to 50) than k provides the best performance, with a slope-off in performance at
very large m, although the effect is very slight for the alpha = 0.5 setting.

The trend is roughly mirrored in Fig. 6, which shows how the reconstruction error changes over the
same variation in m. Under all settings, using m “ 10 ă k clusters provides a poor reconstruction,
while the best reconstruction is found with m equal to k. Performance degrades as m grows very
large, although the effect is very slight for the alpha = 0.5 setting.

Intuitively, these results show that breaking the m ě k condition not only violates the theoretical
identifiability, but also leads to poorer empirical performance; choosing very large m can also lead to
degraded performance, likely due to propagation of inaccuracies in the finite-sample estimation of
the pQcpXq|D matrix.

30

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of clusters m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Test accuracy vs. number of clusters m, on CIFAR20 with 20 domains, across problem settings (alpha)
alpha 0.5: DDFA (SI)
alpha 0.5: SCAN
alpha 3: DDFA (SI)
alpha 3: SCAN
alpha 10: DDFA (SI)
alpha 10: SCAN

Figure 5: Test accuracy of DDFA (SI) approach and SCAN baseline on CIFAR20 with 20 domains,
while modifying the number of clusters m for DDFA (SI). The choice of α roughly modifies the
difficulty of the problem, where small α is easier. We note that typically we require choice of m ě k.
We portray one datapoint where this constraint is violated, and m “ 10. Black dots indicate tested
values of m, and lines are plotted only to show the trend. Larger accuracy is better. Mean ˘ std
reported.

H Ablation Study with a Naïve Feature Space

One might ask whether the semantic meaning of the domain discrimination space is necessary in
DDFA; might we exchange the domain discrimination step in Algorithm 1 for a naive step in which
we simply pass the input through an arbitrary feature extractor and then proceed to clustering in this
space?

The first remark we make is that the domain discriminator does not purely provide a clustering
representation; its semantic meaning is also important for the computation of the final domain-
adjusted pdpy|xq prediction, as a reliable estimate of qpd|xq, in conjunction with the estimate of the
QY |D matrix, allow us to estimate pdpy|xq via Algorithm 2. Without this semantic meaning, our
class prediction can be based only on a coarse prediction at the level of the cluster, not the individual
datapoint.

However, if we are still determined to use an alternate representation, it is indeed possible to do so.
We illustrate a variant of DDFA using a naïve representation in Algorithms 3 and 4, and then evaluate
this procedure on CIFAR-20 as an ablative study on DDFA. We compare naïve results with standard
DDFA results, and with a traditional SCAN baseline, in Table 7.

Naïve Representation Variant of DDFA The only major changes from the original DDFA for
Algorithm 3 are the removal of the need to train any pf domain discriminator, the use of the arbitrary
representation space ϕ before clustering, and the reliance on the output of the clustering discretization
function c as well as pQcpXq|Y (which are both discarded in the original procedure). We need c and
pQcpXq|Y because in Algorithm 4 we will use them for domain-adjusted class prediction.

Algorithm 4 includes significant changes from the DDFA procedure. Since we do not have the
estimate of qpd|xq to use, we cannot directly reason about how different locations in the representation
space induced by ϕ correspond to different probabilities of class labels. However, because we have
pQcpXq|Y and pQY |D, two outputs of the NMF decomposition in Algorithm 3, we can calculate a

31

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of clusters m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Q
Y|

D
 e

rr

QY|D err vs. number of clusters m, on CIFAR20 with 20 domains, across problem settings (alpha)

alpha 0.5: DDFA (SI)
alpha 0.5: SCAN
alpha 3: DDFA (SI)
alpha 3: SCAN
alpha 10: DDFA (SI)
alpha 10: SCAN

Figure 6: Element-wise average absolute QY |D reconstruction error of DDFA (SI) approach and
SCAN baseline on CIFAR-20 with 20 domains, while modifying the number of clusters m for DDFA
(SI). The choice of α roughly modifies the difficulty of the problem, where small α is easier. We note
that typically we require choice of m ě k. We portray one datapoint where this constraint is violated,
and m “ 10. Black dots indicate tested values of m, and lines are plotted only to show the trend.
Smaller error is better. Mean ˘ std reported.

Algorithm 3 DDFA (Naïve) Training

input k ě 1, r ě k, tpxi, diquiPrns „ qpx, dq, A naive representation function ϕ from Rp Ñ Rr

1: Push all txiuiPrns through ϕ.
2: Train clustering algorithm on the n points tϕpxiquiPrns, obtain m clusters.
3: cpxiq Ð Cluster id of ϕpxiq

4: pqpcpXq “ a|D “ bq Ð

ř

iPrns Ircpxiq“a, di“bs
ř

jPrns Irdj“bs

5: Populate pQcpXq|D as r pQcpXq|Dsa,b Ð pqpcpXq “ a|D “ bq

6: pQcpXq|Y , pQY |D Ð NMF p pQcpXq|Dq

output pQcpXq|Y , pQY |D, clustering discretization function c

coarse prediction over labels y for each cluster, and then assign the same prediction to each point in
that cluster. To obtain the closed-form for this coarse prediction ppdpy|cpxqq used in Algorithm 4, we
use the following derivation:

ppdpy|cpxqq “ pqpy|d, cpxqq “
pqpcpxq|y, dqpqpy, dq

pqpd, cpxqq

“
pqpcpxq|y, dqpqpy, dq

ř

y2PY
pqpcpxq|y2, dqpqpy2, dq

32

Algorithm 4 DDFA (Naïve) Prediction

input pQcpXq|Y , pQY |D, clustering discretization function c, px1, d1q „ qpx, dq

1: Pass x1 through c to get cluster id cpx1q.
2: pqpcpx1q|Y “ y2q Ð r pQcpXq|Y scpx1q,y2 for all y2

3: pqpy2|D “ d1q Ð r pQY |Dsy2,d1 for all y2

4: pqpy|cpXq “ cpx1q, D “ d1q Ð
pqpcpx1q|Y “ yqpqpy|D “ d1q

ř

y2PY
pqpcpx1q|Y “ y2qpqpy2|D “ d1q

5: ypred Ð argmaxyPrks pqpy|cpXq “ cpx1q, D “ d1q

output : pqpy|cpXq “ cpx1q, D “ d1q “ ppd1 py|cpx1qq, ypred

By label shift, qpcpxq|y, dq “ qpcpxq|yq, then

ppdpy|cpxqq “ pqpy|d, cpxqq “
pqpcpxq|yqpqpy, dq

ř

y2PY
pqpcpxq|y2qpqpy2, dq

“
pqpcpxq|yqpqpy|dqpqpdq

ř

y2PY
pqpcpxq|y2qpqpy2|dqpqpdq

“
pqpcpxq|yqpqpy|dqp1{rq

ř

y2PY
pqpcpxq|y2qpqpy2|dqp1{rq

“
pqpcpxq|yqpqpy|dq

ř

y2PY
pqpcpxq|y2qpqpy2|dq

Combining Algorithms 3 and 4 allows us to empirically evaluate the behavior of an ablation on DDFA
which does not use any domain discriminator. For a reasonable comparison, we need a meaningful
naïve representation space. We use a SCAN pretrain backbone for ResNet-18, and remove the last
linear layer in the ResNet-18 backbone in order to expose a 512-dimension representation space.
Since clustering in high-dimensional spaces often performs poorly, we also map this 512-dimension
representation down to only r (the number of domains) dimensions using two different common
dimensionality reduction methods: Independent Component Analysis (ICA) [40] and Principal
Component Analysis (PCA) [75]. These smaller-dimension clustering problems provide a closer
comparison to the dimensionality of the clustering problem in the DDFA (SI) procedure, for which
we employ m clusters. Note: we use ICA and PCA implementations from scikit-learn [59].

SCAN, DDFA (RI), and DDFA (SI) experiment details are the same as explained in App. D; in fact,
these are the same trials as in Sec. 6.

In general, we can see that the Naïvely ablated DDFA procedure performs worse than DDFA (SI)
approaches in all problem settings, over both metrics of interest. However, it usually outperforms
DDFA (RI). The ICA and PCA variants of the Naïve ablation generally underperform the Naïve
ablation.

33

Table 7: Extended Results on CIFAR-20. Each entry is produced with the averaged result of 3 different
random seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA
(SI) we refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI) and DD (SI), we
do not leverage SCAN for clustering. With Naïve we refer to an ablation in which DDFA’s domain
discriminator is replaced with the SCAN pretrained backbone, with its final linear layer removed so
that its output is a 512-dimension unsupervised representation space. With Naïve (ICA) and Naïve
(PCA) we refer to similar ablations in which the activations from the second-to-last layer of SCAN
network are mapped to r-dimensional space with ICA and PCA respectively. α is the Dirichlet
parameter used for generating label marginals in each domain, κ is the maximum allowed condition
number of the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.454 ˘ 0.016 0.059 ˘ 0.002 0.421 ˘ 0.010 0.051 ˘ 0.001 0.436 ˘ 0.009 0.038 ˘ 0.001
DDFA (RI) 0.520 ˘ 0.064 0.041 ˘ 0.005 0.357 ˘ 0.020 0.043 ˘ 0.003 0.187 ˘ 0.008 0.051 ˘ 0.003
DDFA (SI) 0.852 ˘ 0.015 0.015 ˘ 0.000 0.548 ˘ 0.062 0.026 ˘ 0.003 0.354 ˘ 0.096 0.036 ˘ 0.007
Naïve 0.594 ˘ 0.018 0.045 ˘ 0.004 0.417 ˘ 0.034 0.047 ˘ 0.003 0.311 ˘ 0.011 0.045 ˘ 0.003
Naïve (ICA) 0.311 ˘ 0.025 0.073 ˘ 0.005 0.221 ˘ 0.003 0.068 ˘ 0.006 0.190 ˘ 0.012 0.060 ˘ 0.001
Naïve (PCA) 0.402 ˘ 0.007 0.060 ˘ 0.003 0.279 ˘ 0.013 0.056 ˘ 0.006 0.184 ˘ 0.016 0.052 ˘ 0.004

25 SCAN 0.458 ˘ 0.055 0.059 ˘ 0.004 0.455 ˘ 0.011 0.048 ˘ 0.001 0.440 ˘ 0.023 0.037 ˘ 0.001
DDFA (RI) 0.525 ˘ 0.033 0.042 ˘ 0.006 0.310 ˘ 0.020 0.051 ˘ 0.006 0.182 ˘ 0.002 0.053 ˘ 0.003
DDFA (SI) 0.819 ˘ 0.013 0.021 ˘ 0.002 0.707 ˘ 0.022 0.022 ˘ 0.004 0.502 ˘ 0.024 0.030 ˘ 0.002
Naïve 0.547 ˘ 0.074 0.049 ˘ 0.007 0.457 ˘ 0.035 0.043 ˘ 0.002 0.324 ˘ 0.038 0.040 ˘ 0.004
Naïve (ICA) 0.262 ˘ 0.021 0.078 ˘ 0.003 0.214 ˘ 0.028 0.064 ˘ 0.003 0.183 ˘ 0.009 0.061 ˘ 0.000
Naïve (PCA) 0.356 ˘ 0.019 0.061 ˘ 0.005 0.216 ˘ 0.020 0.061 ˘ 0.005 0.189 ˘ 0.008 0.053 ˘ 0.003

30 SCAN 0.456 ˘ 0.012 0.059 ˘ 0.001 0.441 ˘ 0.023 0.050 ˘ 0.001 0.437 ˘ 0.010 0.037 ˘ 0.001
DDFA (RI) 0.506 ˘ 0.104 0.045 ˘ 0.009 0.256 ˘ 0.007 0.058 ˘ 0.005 0.088 ˘ 0.016 0.076 ˘ 0.006
DDFA (SI) 0.845 ˘ 0.041 0.020 ˘ 0.006 0.688 ˘ 0.023 0.027 ˘ 0.003 0.531 ˘ 0.034 0.029 ˘ 0.002
Naïve 0.512 ˘ 0.015 0.052 ˘ 0.004 0.453 ˘ 0.010 0.043 ˘ 0.002 0.338 ˘ 0.012 0.038 ˘ 0.001
Naïve (ICA) 0.280 ˘ 0.065 0.074 ˘ 0.008 0.183 ˘ 0.013 0.071 ˘ 0.004 0.146 ˘ 0.018 0.062 ˘ 0.004
Naïve (PCA) 0.383 ˘ 0.020 0.059 ˘ 0.004 0.254 ˘ 0.027 0.059 ˘ 0.008 0.186 ˘ 0.022 0.048 ˘ 0.003

34

	Proofs of Lemmas
	Proof of Theorem 2
	Minimizing Cross-Entropy Loss yields Domain Discriminator
	Additional Experimental Details
	FieldGuide-2 and FieldGuide-28 Datasets
	Hyperparameters and Implementation Details: SCAN baseline
	Hyperparameters and Implementation Details: DDFA (RI)
	Hyperparameters and Implementation Details: DDFA (SI) and DDFA (SPI)

	Additional Experimental Results
	Discussion of Convex Polytope Geometry
	Ablation Study on Number of Clusters
	Ablation Study with a Naïve Feature Space

