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In this supplementary material, we provide further details of training and implementation of our
method (Appendix A). Then, we present additional experimental results including the sensitivity
of our distortion-aware losses, effect of disentangled geometric distortion on the adaptation task,
distortion-aware mIoU(%), and class-wise segmentation performance (Appendix B). Finally, we
provide further qualitative results where DaDA clearly shows improved prediction performance in
the presence of unknown radial distortion across domains (Appendix C).

A Further Implementation Details

A.1 Network Architectures

We adopted DeepLab-V2 [1] with ResNet-101 backbone as the base semantic segmentation ar-
chitecture M . We used the ImageNet [2] pre-trained weights to initialize the backbone. For the
discriminator DM , we followed the architectures of AdaptSeg [10] and AdvEnt [11]. For our relative
distortion learning (RDL), we designed the deformation field generator G with 5 fully-convolutional
layers with kernel 4×4 and stride of 2, where each layer has 32, 64, 128, 256, and 512 channels,
respectively. Each convolution layer is followed by an instance norm and a leaky ReLU with 0.2 of
the negative slope parameter. Subsequently, two additional convolutional layers with kernel 3×3
are added to extract the flow field u, where each convolutional layer has 256 and 2 channels; and
is followed by a leaky ReLU and a hyperbolic tangent activation, respectively. For the distortion-
aware discriminator DG, we used the same architecture as the one used in PatchGAN [4] to classify
distortion style. In training DG, we applied the one-sided label smoothing [8] where the positive
labels are smoothed to 0.9 instead of 1.0. Such a smoothing technique forbids the discriminator from
overwhelming the generator G by penalizing the overconfidence of the discriminator [3].

A.2 Training Details

The training procedure of our distortion-aware domain adaptation is summarized in Algorithm 1. To
implement our relative distortion learning jointly with the segmentation adaptation, we added the
proposed distortion-aware discriminator and deformation field generator G to the based adaptation
implementations. Our baseline adaptation methods, AdaptSeg [10] and AdvEnt [11] were imple-
mented using the authors’ official releases. We also directly used the official release of IntraDA [7],
IAST [6], and ProDA [12] following the training procedure of self-supervised learning phases. Note
that only ProDA [12] requires modified ASPP (astrous spatial pyramid pooling) layer of DeepLab-V2,
and we followed its official implementation.
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Algorithm 1: Distortion-aware Domain Adaptation (DaDA)
Input: training dataset: (IS ,YS ,IT ); pre-trained segmentation model with source-only dataset: M0

Output: adapted segmentation model: M∗

1 Initialize M with M0;
2 for m← 0 to epochs do
3 for i← 0 to len(IT ) do
4 Get source images I(i)S and target images I(i)T ;
5 Generate forward and inverse deformation fields: (ΦS→T

(i), Φ(i)
T→S)←G(I(i)S ,I(i)T ,∇I(i)S ,∇I(i)T );

6 Generate transformed images and labels: I(i)S→T ← I
(i)
S ◦ ΦS→T

(i), I(i)T→S ← I
(i)
T ◦ ΦT→S

(i),
Y

(i)
S→T ← Y

(i)
S ◦ Φ(i)

S→T ;
7 Update the model M with (I(i)S→T ,Y (i)

S→T ,I(i)T ) using losses Lseg , Lent and Ladv_M ;
8 Generate reconstructed source and target images: I ′S

(i) ← I
(i)
S→T ◦ Φ

(i)
T→S ,

I ′T
(i) ← I

(i)
T→S ◦ ΦS→T

(i);
9 Update the model G with (I(i)S ,I(i)S→T , I ′S

(i),I ′T
(i),Φ(i)

S→T ,Φ(i)
T→S ,M ) using losses Lrecon, Lsem,

and Ladv_G

10 M∗ ←M

Figure 6: A summary of performance statistics of adaptation models under different random
seeds.

Our DaDA framework typically needs 15∼17K iterations with a batch size of 4 until convergence
(i.e., excluding source-only and self-supervised learning). This is about 20 epochs of the target
dataset Woodscape and FDD. Both source and target images are randomly cropped and resized
along with randomized horizontal flipping and photometric jittering. Specifically, the crop height is
randomly selected from [341,950] for GTAV, [341,1000] for Cityscapes, [386,942] for Woodscape,
and [430,1503] for FDD; and the images are resized to 768 × 768. At the test stage, we used
the validation set of Woodscape and FDD with their original size 1280 × 966 and 1920 × 1080,
respectively. We also did not use multi-scale inputs for evaluation. We conducted our experiments
using PyTorch v1.8.0, CUDA v11.1, CuDNN v8.0.5; and all experiments were done on a single
NVIDIA A100 GPU.

To test the stability and consistency of the adaptation methods over random seeds, we ran experiments
with exactly the same configurations and hyperparameters, but with five different random seeds.
Tab.4 and Fig.6 summarize the prediction performance of the model with different random seeds.
Here we note clear improvements by our proposed method in all adaptation tasks in Fig.6.
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Table 4: Performance statistics obtained from models trained with five different random seeds.
Method Task avg. std.

AdaptSeg [10] Cityscapes→Woodscape 45.90 0.301
AdaptSeg+RA Cityscapes→Woodscape 49.84 0.431
AdaptSeg+RDL Cityscapes→Woodscape 50.50 0.253
AdaptSeg+RA+RDL Cityscapes→Woodscape 52.09 0.403
AdvEnt [11] GTAV→FDD 36.80 0.318
AdvEnt+RA GTAV→FDD 38.07 0.405
AdvEnt+RDL GTAV→FDD 39.46 0.394
AdvEnt+RA+RDL GTAV→FDD 40.22 0.418

Table 5: The influence of β1 (Lrecon) and β2 (Lsem) in relative distortion learning.
Cityscapes→Woodscape

β2 ↓
β1 → 1.0 10.0 100.0 150.0

1.0 49.69 50.71 50.07 49.84
10.0 49.68 50.74 50.88 49.68
100.0 50.70 50.64 50.50 50.43
150.0 50.68 50.54 50.10 50.61

GTAV→Woodscape

β2 ↓
β1 → 1.0 10.0 100.0 150.0

0.1 36.11 36.35 36.87 36.32
1.0 36.47 36.58 37.36 36.81

10.0 36.21 36.50 37.21 36.98
100.0 36.36 36.96 36.82 36.16

Table 6: The influence of β3 for the adversarial loss (Ladv_G) in relative distortion learning.
Cityscapes→Woodscape

β3 1.0 10.0 100.0 150.0

mIoU(%) 50.04 50.88 50.75 50.02

GTAV→Woodscape

β3 1.0 10.0 100.0 150.0

mIoU(%) 36.81 36.85 37.36 36.93

B Additional Experimental Results

B.1 Hyperparameter Search and Sensitivity

To select hyperparameters for our distortion-aware loss functions, we first performed experiments
with a few reasonable choices of the weight values β1(Lrecon) and β2(Lsem). Here, we report the
results in mIoU(%) from AdaptSeg+RDL on both Cityscapes→Woodscape and GTAV→Woodscape
tasks. Tab.5 shows that our add-on adaptation method (+RDL) maintains strong accuracy under
different settings of β1 and β2. We also investigated the sensitivity of the weight value β3 of the
adversarial loss Ladv_G. Tab.6 shows that RDL is not sensitive to β3 in a vast range.

B.2 Effect of Disentangled Geometric Distortion

To clarify the effect of geometric distortion on the adaptation tasks, we performed an additional
experiment where the geometric distortion is isolated from other factors in distributional shifts (e.g.,
visual domain gaps). To be more specific, we took the Cityscapes dataset as source and its distorted
counterpart as target (CityscapesFishEye) including fisheye-like images similar to IT in Fig.1 of
the manuscript. The distorted images are synthetically generated based on the equidistance fisheye
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Table 7: Comparisons with the baseline adaptation methods on Cityscapes→ CityscapesFish-
Eye adaptation task. All the methods are based on DeepLab-V2 with ResNet-101 as the backbone
for a fair comparison.

Method mIoU(%) gain
Oracle (trained on target) 69.82
Source Only (trained on source) 35.69
AdatSeg [10] 47.16
AdaptSeg+RDL 57.89 +10.73
Adaptseg+RA 54.02
AdaptSeg+RA+RDL 55.58 +1.56
AdvEnt [7] 46.67
AdvEnt+RDL 57.04 +10.37
AdvEnt+RA 54.55
AdvEnt+RA+RDL 55.82 +1.27

Table 8: Performance gain achieved by adding DaDA increases as dist increases.

Cityscapes→Woodscape
Method dist=0.0 dist=0.2 dist=0.4 dist=0.6 dist=0.8 gain@0.0 gain@0.2 gain@0.4 gain@0.6 gain@0.8
AdaptSeg [10] 46.33 46.27 46.11 43.89 38.22
AdaptSeg+DaDA 52.59 52.55 52.78 52.08 48.42 +6.26 +6.28 +6.67 +8.19 +10.20
AdvEnt [7] 45.26 45.19 44.97 42.54 37.44
AdvEnt+DaDA 52.64 52.60 53.14 53.41 50.65 +7.38 +7.41 +8.17 +10.87 +13.21

GTAV→Woodscape
Method dist=0.0 dist=0.2 dist=0.4 dist=0.6 dist=0.8 gain@0.0 gain@0.2 gain@0.4 gain@0.6 gain@0.8
AdaptSeg [10] 35.94 35.92 35.68 33.95 30.46
AdaptSeg+DaDA 37.73 37.74 37.80 36.95 34.25 +1.78 +1.82 +2.12 +3.00 +3.79
AdvEnt [7] 34.70 34.67 34.54 32.94 28.94
AdvEnt+DaDA 37.62 37.61 37.85 37.60 34.81 +2.92 +2.94 +3.31 +4.66 +5.87

camera projection model [5]. Results from Tab.7 clearly show that our relative distortion learning
(RDL) contributes to significant improvements in the adaptation performance up to +10.73% when
only geometric distortion is presented in the distributional shifts. This is obvious to observe since
the baseline methods (i.e., AdaptSeg [10], AdvEnt [11]) do not consider the geometric distortion in
domain shifts while our approach features distortion-aware adaptation based on relative distortion
learning (RDL). Remarkably, +RDL achieves the largest gain over the based method and such results
are echoed in the Cityscapes→ FDD task in Tab.1 of the manuscript.

B.3 Distortion-aware mIoU(%)

To quantitatively demonstrate the effectiveness of DaDA on the performance of predicting distorted
image areas, we proposed a distortion-aware mIoU(%) metric in the main manuscript (see Section 4.4
and Fig.5.). Here we provide further details of the performance gain achieved by adding DaDA in
Tab.8. We observed that performance gain achieved by adding DaDA increases as dist increases.
This indicates that DaDA effectively addresses domain shifts in distortion and improves the prediction
performance for the distorted image regions. Note that these results are echoed in Fig.7 and Fig.8 as
well as the qualitative results in the main manuscript.

B.4 Class-wise Semantic Segmentation Performance

In Tab.9 and Tab.10, we present class-wise performance of the segmentation adaptation methods. For
Wooesapce, unlike common 19-class definition in semantic segmentation, we report the results on
17 classes since there are mismatches between Cityscapes and GTAV; and Woodscape (i.e., merged
“building” and “wall” classes to “construction” class; and “vegetation” and “terrain” classes to “nature”
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Table 9: Comparisons with the baseline adaptation methods on Cityscapes→Woodscape and
GTAV→Woodscape tasks. We report mIoUs(%) with respect to 17 classes. All the methods are
based on DeepLab-V2 with ResNet-101 as the backbone for a fair comparison.
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mIoU gain
Oracle 96.62 72.91 88.69 53.19 28.67 34.70 39.22 86.48 95.99 62.11 55.88 89.99 64.86 59.94 86.68 60.92 62.50 67.02

Cityscapes→Woodscape
Source Only 82.21 11.02 70.19 4.64 8.90 15.48 11.12 62.96 82.82 28.24 20.99 32.76 18.53 18.58 15.19 31.72 35.29 32.39
AdaptSeg[10] 89.70 39.58 79.14 17.13 17.67 19.61 21.74 79.72 91.57 38.15 41.31 53.54 36.44 32.90 43.98 38.71 46.68 46.33
AdaptSeg+RA 90.56 45.45 79.76 24.33 22.42 23.32 28.35 79.34 88.01 48.01 41.76 59.67 48.45 37.05 49.14 43.39 48.46 50.44 +4.11
AdaptSeg+RDL 90.77 35.28 80.47 21.44 21.87 23.93 25.31 80.71 90.77 45.19 40.39 70.15 49.26 40.17 55.47 43.75 50.05 50.88 +4.55
AdaptSeg+RA+RDL 92.11 44.79 80.91 19.45 21.69 22.88 26.90 80.23 90.72 44.30 40.53 76.73 54.68 47.42 55.83 44.51 50.41 52.59 +6.26
AdvEnt[11] 89.16 31.96 77.43 24.02 18.18 19.87 16.15 77.03 90.56 28.44 33.28 58.70 43.41 39.22 49.93 33.08 39.03 45.26
AdvEnt+RA 91.18 49.67 80.53 26.41 22.49 23.12 20.18 78.73 90.58 43.34 38.81 67.07 48.65 44.61 48.09 41.09 45.69 50.60 +5.34
AdvEnt+RDL 91.32 38.48 81.23 21.86 21.55 22.94 16.23 78.40 90.79 47.26 40.28 74.36 51.33 52.23 55.49 38.18 44.02 50.94 +5.68
AdvEnt+RA+RDL 91.91 45.05 81.37 22.68 21.81 22.71 22.10 78.61 89.88 48.51 40.13 73.19 56.02 53.83 64.21 37.89 44.90 52.64 +7.38

GTAV→Woodscape
Source Only 68.89 11.30 66.24 16.18 10.34 17.03 12.19 58.34 67.87 38.02 15.78 36.70 16.74 6.30 10.76 25.65 20.07 29.32
AdaptSeg[10] 83.32 18.90 77.44 17.37 15.80 20.68 12.42 68.46 84.88 41.63 19.77 65.66 29.63 15.82 7.73 21.10 10.31 35.94
AdaptSeg+RA 83.96 26.88 77.90 19.58 18.19 21.72 14.70 71.31 85.75 41.62 16.81 64.31 26.20 16.19 10.65 30.40 7.04 36.88 +0.94
AdaptSeg+RDL 83.87 20.00 76.90 17.29 14.53 21.01 13.61 71.35 84.06 42.68 15.73 68.30 27.35 14.72 7.10 31.40 25.17 37.36 +1.42
AdaptSeg+RA+RDL 84.31 29.42 77.52 25.88 16.49 22.36 14.86 68.73 83.46 40.81 18.03 67.90 29.75 19.24 9.79 31.33 13.50 37.72 +1.78
AdvEnt[11] 77.41 18.85 73.56 18.51 14.42 19.96 11.06 65.39 80.10 39.97 12.64 55.28 31.86 22.01 10.45 26.83 11.63 34.70
AdvEnt+RA 80.68 23.54 76.48 21.25 17.68 19.24 12.41 66.51 82.01 40.50 10.24 66.82 35.69 25.82 16.53 30.42 17.11 36.64 +1.94
AdvEnt+RDL 83.97 21.51 77.28 20.09 15.22 18.35 10.21 65.75 83.56 40.59 11.48 67.69 38.65 25.48 19.28 27.49 17.03 36.39 +1.69
AdvEnt+RA+RDL 82.53 18.70 72.55 15.82 18.13 20.56 14.34 65.29 80.07 41.72 21.17 70.24 38.55 28.19 12.50 29.43 19.80 37.62 +2.92

Table 10: Comparisons with the baseline adaptation methods on Cityscapes→ FDD and GTAV
→ FDD tasks. We report mIoUs(%) with respect to 12 classes. All the methods are based on
DeepLab-V2 with ResNet-101 as the backbone for a fair comparison.
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Oracle 99.02 59.44 86.53 87.91 24.99 39.48 29.05 85.70 96.68 40.09 61.32 88.91 61.59

Cityscapes→ FDD
Source Only 95.16 10.51 53.46 1.49 11.84 3.28 3.47 67.04 93.87 3.33 15.21 58.44 34.76
AdaptSeg[10] 94.23 6.09 57.41 3.02 12.71 11.49 7.63 73.48 94.41 14.84 26.88 66.64 39.07
AdaptSeg+RA 94.60 8.41 54.79 5.14 11.00 13.27 9.00 73.71 92.01 21.06 21.81 68.23 39.42 +0.35
AdaptSeg+RDL 94.86 9.77 55.84 4.39 11.09 14.73 6.71 75.07 92.94 21.48 40.28 69.04 41.35 +2.28
AdaptSeg+RA+RDL 95.58 17.33 56.87 4.28 12.45 10.68 6.40 74.18 93.16 19.57 34.32 68.06 41.07 +2.00
AdvEnt[11] 95.06 7.92 53.99 2.47 11.80 11.75 4.33 73.73 93.03 6.86 33.53 71.96 38.87
AdvEnt+RA 96.84 16.57 56.21 2.41 11.44 16.10 4.56 73.65 93.79 13.70 43.60 70.11 41.58 +2.71
AdvEnt+RDL 96.87 15.94 58.94 1.15 9.48 14.22 5.05 74.31 92.91 16.88 49.76 73.64 42.43 +3.56
AdvEnt+RA+RDL 96.27 20.37 58.81 1.41 10.72 14.44 5.53 71.3 93.86 24.68 39.80 70.61 42.32 +3.45

GTAV→ FDD
Source Only 62.82 1.27 37.99 0.78 12.27 4.90 1.97 66.79 85.14 21.18 21.45 61.99 32.13
AdaptSeg[10] 89.35 3.30 45.34 0.54 13.36 10.06 5.26 69.06 85.02 26.63 32.34 62.53 36.90
AdaptSeg+RA 89.34 5.65 42.92 1.54 11.97 12.26 5.61 68.34 84.21 25.08 36.23 63.52 37.22 +0.32
AdaptSeg+RDL 90.84 6.87 50.12 1.20 13.01 12.71 6.65 67.72 89.48 27.52 44.05 61.33 39.29 +2.39
AdaptSeg+RA+RDL 95.33 14.20 56.05 3.50 12.68 11.94 6.42 73.67 93.57 20.26 30.36 67.72 39.64 +2.74
AdvEnt[11] 89.16 3.98 45.92 0.97 12.26 11.35 2.87 70.71 86.64 25.84 31.00 66.26 37.25
AdvEnt+RA 89.87 4.77 42.27 1.61 12.86 11.95 5.37 71.05 85.80 28.20 45.72 65.50 38.75 +1.50
AdvEnt+RDL 92.14 4.85 54.32 0.94 13.61 12.67 4.53 69.88 91.33 30.60 37.05 67.28 39.93 +2.68
AdvEnt+RA+RDL 93.91 7.42 44.17 1.44 13.38 14.87 4.02 72.02 87.05 30.70 54.17 67.24 40.87 +3.62

class). For FDD, we use 12 classes, where incompatible classes are merged or excluded similar to
Woodscape (i.e., merged “construction” and “nature”; “truck” and “bus” into “car”).

5



C Additional Qualitative Results

Here we provide further qualitative comparisons of our distortion-aware domain adaptation (DaDA)
with the based adaptation methods. In Fig.7 and 8, we observed clear qualitative improvements over
the based adaptation methods. Optical distortion gradually increases towards the image periphery,
and such distortion makes the based adaptation methods fail in large areas of objects and background
far from the image center. Fig.7 and 8 show that DaDA fixes such false predictions of large areas
of background (e.g., road and sky) close to the image periphery. DaDA also improves pixel-wise
prediction of objects under severe distortion (e.g., car, person, and bus) by diminishing domain
gaps at the input- and the output feature-level. Fig.9 also demonstrates that DaDA shows stronger
and finer boundary of class-wise activation visualizations [9] under severe radial distortion across
domains. In addition, we observe that DaDA rectifies large areas of false class-wise activation (e.g.,
false activation of person on the ground, around target classes, and nowhere).
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Cityscapes→Woodscape

Cityscapes→ FDD

Figure 7: Qualitative Results. Each row tests Woodscape or FDD images along with corresponding
Ground-Truth and presents prediction results from the baseline adaptation and our distortion-aware
adaptation approach (DaDA).
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GTAV→Woodscape

GTAV→ FDD

Figure 8: Qualitative Results. Each row tests Woodscape or FDD images along with corresponding
Ground-Truth and presents prediction results from the baseline adaptation and our distortion-aware
adaptation approach (DaDA).
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“Car, Bus and Sidewalk” Class Activation Visualizations

“Person” Class Activation Visualizations

Figure 9: Class-wise activation visualization using Grad-Cam [9].
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