
A Harmonic Space Proofs

Proposition 3. If F is a discrete O(d) bundle over a connected graph and r :=

maxγv→u,γ′
v→u

||Pγ
v→u −Pγ′

v→u||, then we have λF0 ≤ r2/2.

Proof. We first note that on a discrete O(d) bundle the degree operator Dv = dvI since by orthogo-
nality F⊤

v⊴eFv⊴e = I. We can use the Rayleigh quotient to characterize λF0 as

λF0 = min
x∈Rnd

⟨x,∆Fx⟩
||x||2

.

Fix v ∈ V and choose a minimal path γv→u for all u ∈ V . For an arbitrary non-zero zv , consider the
signal zu = P γ

v→uzv and we set z̃u
√
du = zu.

||Fu⊴e
zu√
du

−Fw⊴e
zw√
dw

||2 = ||z̃u− (F⊤
u⊴eFw⊴e)z̃w||2 = ||P γ

v→uz̃v− (F⊤
u⊴eFw⊴e)P

γ
v→wz̃v||2,

where we have again used that the maps are orthogonal. Since (F⊤
u⊴eFw⊴e)P

γ
v→w = Pγ′

v→u we find
that the right hand side can be bound from above by r2||z̃v||2. Therefore, by using Definition 14 we
finally obtain

λF0 = min
x∈Rnd

⟨x,∆Fx⟩
||x||2

≤ ⟨z,∆Fz⟩
||z||2

=
1

2

∑
u∼w||Fu⊴e

zu√
du

−Fw⊴e
zw√
dw

||2

||z||2
≤ r2

2

∑
u∼w||z̃v||2

||z||2
.

Since the transport maps are all orthogonal we get

||z||2 =
∑
u

du||Pγ
v→uz̃v||2 =

∑
u

du||z̃v||2 =
∑
u∼w

||z̃v||2.

We conclude that

λF0 ≤ r2

2

∑
u∼w||z̃v||2

||z||2
=
r2

2
.

Proposition 4. If F is a discrete O(d) bundle over a connected graph and x ∈ H0(G,F), then for
any cycle γ based at v ∈ V we have xv ∈ ker(Pγ

v→v − I).

Proof. Assume that x ∈ H0(G,F) and consider v ∈ V and any cycle based at v denoted by
γv→v = (v0 = v, v1, . . . , vL = v). According to the Hodge Theorem we have that

Fvi+1⊴exvi+1
= Fvi⊴exvi =⇒ xvi+1

= (F⊤
vi+1

Fvi)xvi := ρvi→vi+1
xvi .

By composing all the maps we find:

xv = ρvL−1→vL · · · ρv0→v1xv = Pγ
v→vxv

which completes the proof.

Proposition 5. Let F be a discrete O(d) bundle over a connected graph G with n nodes and let
||(Pγ

v→v − I)xv|| ≥ ϵ||xv|| for all cycles γv→v . Then λF0 ≥ ϵ2(2diam(G)ndmax)
−1.

Proof. If ϵ = 0 there is nothing to prove. Assume that ϵ > 0. By Proposition 4 we derive that the
harmonic space is trivial and hence λF0 > 0. Consider a unit eigenvector x ∈ ker(∆F −λF0 I) and let
v ∈ V such that ||xv|| ≥ ||xu|| for u ̸= v. There exists a cycle γ based at v such that Pγ

vxv ̸= xv for
otherwise we could extend xv ̸= 0 to any other node independently of the path choice and hence find
a non-trivial harmonic signal. In particular, we can assume this cycle to be non-degenerate, otherwise
if there existed a non-trivial degenerate loop contained in γ that does not fix x we could consider this
loop instead of γ for our argument. Let us write this path as (v0 = v, v1, . . . , vL = v) and consider
the rescaled signal x̃v

√
dv = xv . By assumption we have

ϵ||x̃v|| ≤ ||(Pγ
v→v − I)x̃v|| = ||(ρvL−1→vL · · · ρv0→v1 − I)x̃v||

= ||FvL−1
ρvL−2→vL−1

· · · ρv0→v1 x̃v −FvL=vx̃v||
= ||FvL−1

ρvL−2→vL−1
· · · ρv0→v1 x̃v −FvL−1

x̃vL−1
+ FvL−1

x̃vL−1
−FvL=vx̃v||

≤ ||ρvL−2→vL−1
· · · ρv0→v1 x̃v − x̃vL−1

||+ ||FvL−1
x̃vL−1

−FvL=vx̃v||.
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By iterating the approach above we find:

ϵ||x̃v|| ≤
L∑

i=0

||Fvi x̃vi −Fvi+1 x̃vi+1 || ≤
√
L

(
L∑

i=0

||Fvi x̃vi −Fvi+1 x̃vi+1 ||2
) 1

2

=
√
L

(
L∑

i=0

||Fvi

xvi√
dvi

−Fvi+1

xvi+1√
dvi+1

||2
) 1

2

.

From Definition 14 we derive that the last term can be bounded from above by
√
2LEF (x) =√

2L⟨x,∆Fx⟩. Therefore, we conclude:

ϵ
||xv||√
dv

≤
√
2L⟨x,∆Fx⟩ =

√
2LλF0 ||x|| ≤ 2

√
diam(G)λF0 .

By construction we get ||xv|| ≥ 1/
√
n, meaning that

λF0 ≥ ϵ2

2diam(G)

1

ndmax
.

Lemma 6. Let F be a discrete O(d) bundle over a connected graph G. Then dim(H0) ≤ d and
dim(H0) = d if and only if the transport is path-independent.

Proof. We first note that the argument below extends to weighted O(d)-bundles as well. Let x ∈
H0(G,F). According to Proposition 4, given v, u ∈ V , we see that xu = Pγ

v→uxv for any path
γv→u. It means that the harmonic space is uniquely determined by the choice of xv ∈ F(v).
Explicitly, given any cycle γ based at v, we know that xv ∈ ker(Pγ

v→v − I). If the transport
is everywhere path-independent, then the kernel coincides with the whole stalk F(v) and hence
we can extend any basis {xvi} ∈ F(v) ∼= Rd to a basis in H0(G,F) via the transport maps, i.e.
dim(H0(G,F)) = d. If instead there exists a transport map over a cycle γv→v with non-trivial fixed
points, then ker(Pγ

v→v − I) < F(v) ∼= Rd and hence dim(H0(G,F)) < d.

B Proofs for the Power of Sheaf Diffusion

Definition 19. Let G = (V,W) be a weighted graph, where W is a matrix with wvu = wuv ≥ 0
for all v ̸= u ∈ V , wvv = 0 for all v ∈ V , and (v, u) is an edge if and only if wvu > 0.

The graph Laplacian of a weighted graph is L = D−W, where D is the diagonal matrix of weighted
degrees (i.e. dv =

∑
u wvu). Its normalised version is L̃ = D−1/2LD−1/2.

Proposition 20. Let G be a graph. The set {∆F | (G,F) ∈ H1
sym} is isomorphic to the set of all

possible weighted graph Laplacians over G.

Proof. We prove only one direction. Let W be a choice of valid weight matrix for the graph
G. We can construct a sheaf (G,F) ∈ H1

sym such that for all edges v, u ⊴ e we have that
Fv⊴e = Fu⊴e = ±√

wvu. Then, Lvu = −wvu and Lvv =
∑

e∥Fv⊴e∥2 =
∑

u wvu. The equality
for the normalised version of the Laplacians follows directly.

We state the following Lemma without proof based on Theorem 3.1 in Hansen and Ghrist [35].
Lemma 21. Solutions X(t) to the diffusion in Equation 3 converge as t → ∞ to the orthogonal
projection of X(0) onto ker(∆F ).

Due to this Lemma, the proofs below rely entirely on the structure of ker(∆F ) that one obtains for
certain (G,F).
Proposition 8. Let G be the set of connected graphs G = (V,E) with two classes A,B ⊂ V such
that for each v ∈ A, there exists u ∈ A and an edge (v, u) ∈ E. Then H1

sym has linear separation
power over G.
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Proof. Let G = (V,E) be a graph with two classes A,B ⊂ V such that for each v ∈ A, there
exists u ∈ A and an edge (v, u) ∈ E. Additionally, let x(0) be any channel of the feature matrix
X(0) ∈ Rn×f .

We can construct a sheaf (F , G) ∈ H1
sym as follows. For all nodes v ∈ V and edges e ∈ E,

F(v) ∼= F(e) ∼= R. For all v, u ∈ A and edge (u, v) ∈ E, set Fv⊴e = Fu⊴e =
√
α > 0. Otherwise,

set Fv⊴e = 1.

Denote by hv the number of neighbours of node v in the same class as v . Note that based on the
assumptions, hv > 1 if v ∈ A. Then the only harmonic eigenvector of ∆F is:

av =

{√
dv + hv(α− 1), v ∈ A√
dv, v ∈ B

(7)

Denote its unit-normalised version ã := a
∥a∥ . In the limit of the diffusion process, the features

converge to h = ⟨x(0), ã⟩ã by Lemma 21. Assuming, x(0) /∈ ker(∆F )
⊥, which is nowhere dense

in Rn and, without loss of generality, that ⟨x(0), ã⟩ > 0, for sufficiently large α, ãv ≥ ãu for all
v ∈ A, u ∈ B.

Proposition 9. Let G be the set of connected bipartite graphs G = (A,B,E), with partitions A,B
forming two classes and |A| = |B|. Then H1

sym cannot linearly separate the classes of any graph in
G for any initial conditions X(0) ∈ Rn×f .

Proof. Let G = (A,B,E) be a bipartite graph with |A| = |B| and let x(0) ∈ Rn be any channel of
the feature matrix X(0) ∈ Rn×f .

Consider an arbitrary sheaf (G,F) ∈ H1
sym. Since the graph is connected, the only harmonic

eigenvector of ∆F is y ∈ Rn with yv =
√∑

v⊴e∥Fv⊴e∥2 (i.e. the square root of the weighted

degree). Based on Lemma 21, the diffusion process converges in the limit (up to a scaling) to ⟨x,y⟩y.
For the features to be linearly separable we require that ⟨x,y⟩ ̸= 0 and, without loss of generality,
for all v ∈ A, u ∈ B that yv < yu ⇔

∑
v⊴e∥Fv⊴e∥2 <

∑
u⊴e∥Fu⊴e∥2.

Suppose for the sake of contradiction there exists a sheaf in H1
sym with such a harmonic eigenvector.

Then, because |A| = |B|:∑
v∈A

∑
v⊴e

∥Fv⊴e∥2 <
∑
u∈B

∑
u⊴e

∥Fu⊴e∥2 ⇔
∑
v∈A

∑
v⊴e

∥Fv⊴e∥2 −
∑
u∈B

∑
u⊴e

∥Fu⊴e∥2 < 0

⇔
∑
e∈E

∥Fv⊴e∥2 − ∥Fu⊴e∥2 < 0

However, because (F , G) ∈ H1
sym, we have Fv⊴e = Fu⊴e and the sum above is zero.

Proposition 10. Let G contain all the connected graphs G = (V,E) with two classes A,B ⊆ V .
Consider a sheaf (F ;G) ∈ H1 with Fv⊴e = −αe if v ∈ A and Fu⊴e = αe if u ∈ B with αe > 0
for all e ∈ E. Then the diffusion induced by (F ;G) can linearly separate the classes of G for almost
all initial conditions, and H1 has linear separation power over G.

Proof. Let G = (V,E) be a connected graph with two classes A,B ⊂ V . Additionally, let x(0)
be any channel of the feature matrix X(0) ∈ Rn×f . Any sheaf of the described type has a single
harmonic eigenvector by virtue of Lemma 6, and it has the form:

yv =

+
√∑

v⊴e αe, v ∈ A

−
√∑

v⊴e αe, v ∈ B
(8)

Assume x(0) /∈ ker(∆F )
⊥, which is nowhere dense in Rn and, without loss of generality, that

⟨x(0),y⟩ > 0. Then, yv > 0 > yu for all v ∈ A, u ∈ B.

Next, we showed that using signed relations is necessary in d = 1 and simply using positive
asymmetric relations is not sufficient in this dimension.
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Definition 22. The class of sheaves overG with non-zero maps, one-dimensional stalks, and similarly
signed restriction maps H1

+ := {(F , G) | Fv⊴eFu⊴e > 0}
Proposition 23. Let G be the connected graph with two nodes belonging to two different classes.
Then H1

+ cannot linearly separate the two nodes for any initial conditions X ∈ R2×f .

Proof. Let G be the connected graph with two nodes V = {v, u}. Then any sheaf (F , G) ∈ H1
+(G)

has restriction maps of the form Fv⊴e = α,Fu⊴e = β and (without loss of generality) α, β > 0. As
before, the only (unnormalized) harmonic eigenvector for a sheaf of this form is y = (|α|β, α|β|) =
(αβ, αβ). Since this is a constant vector, the two nodes are not separable in the diffusion limit.

We state the following result without a proof (see Exercise 4.1 in Bishop [6]).

Lemma 24. Let A and B be two sets of points in Rn. If their convex hulls intersect, the two sets of
points cannot be linearly separable.

Proposition 11. Let G be a connected graph with C ≥ 3 classes. Then, H1 cannot linearly separate
the classes of G for any initial conditions X(0) ∈ Rn×f .

Proof. If the sheaf has a trivial global section, all features converge to zero in the diffusion limit.
Suppose H0(G,F) is non-trivial. Since G is connected and all the restriction maps are invertible, by
Lemma 6, dim(H0) = 1.

In that case, let h be the unit-normalised harmonic eigenvector of ∆F . By Lemma 21, for any node
v, its scalar feature in channel k ≤ f is given by xkv(∞) = ⟨xk(0),h⟩hv. Note that we can always
find three nodes v, u, w belonging to three different classes such that hv ≤ hu ≤ hv. Then, there
exists a convex combination hu = αhv + (1− α)hw, with α ∈ [0, 1]. Therefore:

xk
u(∞) = ⟨xk(0),h⟩hu = α⟨xk(0),h⟩hv + (1− α)⟨xk(0),h⟩hw = αxk

v(∞) + (1− α)xk
w(∞).

(9)
Since this is true for all channels k ≤ f , it follows that xu(∞) = αxv(∞)+(1−α)xw(∞). Because
xu(∞) is in the convex hull of the points belonging to other classes, by Lemma 24, the class of v is
not linearly separable from the other classes.

Proposition 12. Let G be the set of connected graphs with nodes belonging to C ≥ 3 classes. Then
for d ≥ C, Hd

diag has linear separation power over G.

Proof. Let G = (V,E) be a connected graph with C classes and (F , G), an arbitrary sheaf in
Hd

diag. Because F has diagonal restriction maps, there is no interaction during diffusion between the
different dimensions of the stalks. Therefore, the diffusion process can be written as d independent
diffusion processes, where the i-th process uses a sheaf F i with all stalks isomorphic to R and
F i

v⊴e = Fv⊴e(i, i) for all v ∈ V and incident edges e. Therefore, we can construct d sheaves
F i ∈ H1(G) with i < d as in Proposition 10, where (in one vs all fashion) the two classes are given
by the nodes in class i and the nodes belonging to the other classes.

It remains to restrict that the projection of x(0) on any of the harmonic eigenvectors of ∆F in the
standard basis is non-zero. Formally, we require xi(0) /∈ ker(∆Fi)⊥ for all positive integers i ≤ d.
Since ker(∆Fi)⊥ is nowhere dense in Rn, x(0) belongs to the direct sum of dense subspaces, which
is dense.

Lemma 25. Let G = (V,E) be a graph and (F , G) a (weighted) orthogonal vector bundle over G
with path-independent parallel transport and edge weights αe. Consider an arbitrary node v∗ ∈ V
and denote by ei the i-th standard basis vector of Rd. Then {h1, . . . ,hd} form an orthogonal
eigenbasis for the harmonic space of ∆F , where:

hi
v =

{
ei
√
dFv

Pv→wei
√
dFv

=

ei
√∑

v⊴e α
2
e, v = v∗

Pv∗→wei
√∑

v⊴e α
2
e, otherwise

(10)
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(a) Aligning the features of each
class with the axis of coordinates
in a 2D space. Dotted lines in-
dicate linear decision boundaries
for each class.

(b) Separating an arbitrary num-
ber of classes when the graph is
regular. Dotted line shows an ex-
ample decision boundary for one
of the classes.

Figure 6: Proof sketch for Lemma 27 and Proposition 28.

Proof. First, we show that hi
v is harmonic.

EF (h
i
v) =

1

2

∑
v,u,e:=(v,u)

∥ 1√
dFv

Fv≤ehv −
1√
dFu

Fu⊴ehu∥22 (11)

=
1

2

∑
v,u,e:=(v,u)

∥Fv≤ePv∗→vei −Fu⊴ePv∗→uei∥22 (12)

=
1

2

∑
v,u,e:=(v,u)

∥Fv≤ePu→vPv∗→uei −Fu⊴ePv∗→uei∥22 By path independence

(13)

=
1

2

∑
v,u,e:=(v,u)

∥Fv≤eF⊤
v⊴eFu⊴ePv∗→uei −Fu⊴ePv∗→uei∥22 By definition of Pu→v

(14)

=
1

2

∑
v,u,e:=(v,u)

∥Fu⊴ePv∗→uei −Fu⊴ePv∗→uei∥22 = 0 Orthogonality of Fv⊴e

(15)

For orthogonality, notice that for any i, j ≤ d and v ∈ V , it holds that:

⟨hi
v,h

j
v⟩ = ⟨Pv∗→wei

√
dFv ,Pv∗→wej

√
dFv ⟩ =

√
dFv

√
dFv ⟨ei, ej⟩ = 0 (16)

Lemma 26. Let R1,R2 be two 2D rotation matrices and e1, e2 the two standard basis vectors of
R2. Then ⟨R1e1,R2e2⟩ = −⟨R1e2,R2e1⟩.

Proof. The angle between e1 and e2 is π
2 . Letting ϕ, θ be the positive rotation angles of the two

matrices, the first inner product is equal to cos(π/2+(ϕ−θ)) while the second is cos(π/2−(ϕ−θ)).
The result follows from applying the trigonometric identity cos(π/2 + x) = − sinx.

We first prove Theorem 13 in dimension two in the following lemma and then we will look at the
general case.
Lemma 27. Let G be the class of connected graphs with C ≤ 4 classes. Then, H2

orth(G) has linear
separation power over G.

Proof. Idea: We can use rotation matrices to align the harmonic features of the classes with the axis
of coordinates as in Figure 6a. Then, for each side of each axis, we can find a separating hyperplane
separating each class from all the others.
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Let G be a connected graph with C ≤ 4 classes. Denote by P the following set of rotation matrices
together with their signed-flipped counterparts:

R1 =

[
1 0
0 1

]
, R2 =

[
0 −1
1 0

]
(17)

and by C = {1, . . . , C} the set of all class labels. Then, fix a node v∗ ∈ V and construct an injective
map g : C → P assigning each class label one of the signed basis vectors such that g(c(v∗)) = R1,
where c(v∗) denotes the class of node v∗.

Then, we can construct a sheaf (G,F) ∈ H2
orth(G) in terms of certain parallel transport maps along

each edge, that will depend on P . For all nodes v and edges e, F(v) ∼= F(e) ∼= R2. For each u ∈ V ,
we set Pv∗→u = g(c(u)). Then for all v, u ∈ V , set Pv→u = Pv∗→vP

−1
u→v∗ . It is easy to see that

the resulting parallel transport is path-independent because it depends purely on the classes of the
endpoints of the path.

Based on Lemma 25, the i-th eigenvector of ∆F is hi ∈ R2×n with hi
u = Pv∗→uei

√
du. Now we

will show that the projection of x(0) in this subspace will have a configuration as in Figure 6a up to a
rotation.

Let u,w be two nodes belonging to two different classes. Denote by αi = ⟨x(0),hi⟩. Then the inner
product between the features of nodes u,w in the limit of the diffusion process is:

⟨Pv∗→u

∑
i

αiei
√
du,Pv∗→w

∑
j

αjej
√
dw⟩ =

=
√
dudw

[∑
i ̸=j

αiαj⟨Pv∗→uei,Pv∗→wej⟩+
∑
k

α2
k⟨Pv∗→uek,Pv∗→wek⟩

]
=
√
dudw

[∑
i<j

αiαj

(
⟨Pv∗→uei,Pv∗→wej⟩+ ⟨Pv∗→uej ,Pv∗→wei⟩

)
+
∑
k

α2
k⟨Pv∗→uek,Pv∗→wek⟩

]
(18)

=
∑
k

α2
k⟨Pv∗→uek,Pv∗→wek⟩ (by Lemma 26)

It can be checked that by substituting the transport maps Pv∗→u,Pv∗→w with any Ra,Rb from P
such that Ra ̸= ±Rb, the inner product above is zero. Similarly, substituting any Ra = −Rb, the
inner product is −

√
dudw

∑
k α

2
k = −

√
dudw∥x(0)∥2, which is equal to the product of the norms of

the two vectors. Therefore, the diffused features of different classes are positioned at π
2 , π,

3π
2 from

each other, as in Figure 6a.

Proposition 13. Let G be the class of connected graphs with C ≤ 2d classes. Then, for all d ∈ {2, 4},
Hd

orth has linear separation power over G.

Proof. To generalise the proof in Lemma 27, we need to find a set P of size d containing rotation
matrices that make the projected features of different classes be pairwise orthogonal for any projection
coefficients α. For that, each term in Equation 18 must be zero for any coefficients α.

Therefore, P = {P0, . . . ,Pd−1} must satisfy the following requirements:

1. P0 = I ∈ P , since transport for neighbours in the same class must be the identity. Therefore,
P0Pk = PkP0 = Pk for all k.

2. Since ⟨P0ei,Pkei⟩ = 0 for all i and k ̸= 0, it follows that the diagonal elements of Pk are
zero.

3. From ⟨P0ei,Pkej⟩ = −⟨P0ej ,Pkei⟩ for all i ̸= j, k ̸= 0 and point (2) it follows that
P−1

k = P⊤
k = −Pk. Therefore, PkPk = −I for all k ̸= 0.

4. We have ⟨Pkei,Plei⟩ = 0 for all i and k ̸= l. Together with (3), it follows that the diagonal
elements of PkPl are zero.
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5. We have ⟨Pkei,Plej⟩ = −⟨Pkej ,Plei⟩ for all i ̸= j, and k ̸= l, with k, l ̸= 0. Together
with point (4) it follows that (PkPl)

⊤ = −PkPl. Similarly, from point (3) we have
that (PkPl)

⊤ = P⊤
l P

⊤
k = (−Pl)(−Pk) = PlPk. Therefore, the two matrices are

anti-commutative: PkPl = −PlPk.

We remark that points (1), (3), (5) coincide with the defining algebraic properties of the algebra
of complex numbers, quaternions, octonions, sedenions and their generalisations based on the
Cayley-Dickson construction [59]. Therefore, the matrices in P must be a representation of one
of these algebras. Firstly, such algebras exist only for d that are powers of two. Secondly, matrix
representations for these algebras exist only in dimensions two and four. This is because the algebra
of octonions and their generalisations, unlike matrix multiplication, is non-associative. As a sanity
check, note that the matrices R1,R2 from Lemma 27 are a well-known representation of the unit
complex numbers.

We conclude this section by giving out the matrices for d = 4, which are the real matrix representations
of the four unit quaternions:

R1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R2 =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (19)

R3 =

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , R4 =

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
It can be checked that these matrices respect the properties outlined above. Thus, in d = 4, we can
select the transport maps from the set {±R1,±R2,±R3,±R4} containing eight matrices, which
also form a group. Therefore, following the same procedure as in Lemma 27, we can linearly separate
up to eight classes.

Proposition 28. Let G be the class of connected regular graphs with a finite number of classes. Then,
H2

orth(G) has linear separation power over G.

Proof. Idea: Since the graph is regular, the harmonic features of the nodes will be uniformly scaled
and thus positioned on a circle. The aim is to place different classes at different locations on the
circle, which would make the classes linearly separable as shown in Figure 6b.

Let G be a regular graph with C classes and define θ = 2π
C . Denote by Ri the 2D rotation matrix:

Ri =

[
cos(iθ) − sin(iθ)
sin(iθ) cos(iθ)

]
(20)

Then let P = {Ri | 0 ≤ i ≤ C − 1, i ∈ N } the set of rotation matrices with an angle multiple of
θ. Then we can define a bijection g : C → P and a sheaf (G,F) ∈ H2

orth(G) as in the proof above.
Checking the inner-products from Equation 18 between the harmonic features of the nodes, we can
verify that the angle between any two classes is different from zero. By Lemma 26, the cross terms of
the inner product vanish:∑

k

α2
k⟨Ri[k],Rj [k]⟩ =

∑
k

α2
k cos((i− j)θ) = cos((i− j)θ)∥x∥2 (21)

Thus, the angle between classes i, j is (i− j)θ.

C Energy Flow Proofs

Proposition 29. If F is an O(d)-bundle in Hd
orth,sym, then x ∈ ker∆F if and only if xk ∈ ker∆0

for all 1 ≤ k ≤ d.
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Proof of Proposition 29. Let x ∈ H0(G,F). Then we have

0 = EF (x) =
1

2

∑
(v,u)∈E

||Fv⊴eD
− 1

2
v xv −Fu⊴eD

− 1
2

u xu||2

=
1

2

∑
(v,u)∈E

||Fe

(
D

− 1
2

v xv −D
− 1

2
u xu

)
||2

=
1

2

∑
(v,u)∈E

||d−
1
2

v xv − d
− 1

2
u xu||2.

The last term vanishes if and only if xk ∈ ker∆0 for each 1 ≤ k ≤ d.

Proposition 17. For any connected graph G and ε > 0, there exist a sheaf (G,F) /∈ Hd
sym , W1

with ∥W1∥2 < ε and feature vector x such that EF ((I⊗W1)x) > EF (x).

Proof. Let F be an O(d)-bundle over G and ε > 0. Assume that Fv⊴e = Fu⊴e for each (u, v) ̸=
(u0, v0) and that F⊤

v0⊴eFu0⊴e − I := B ̸= 0 with dim(ker(B)) > 0. Then there exist a linear map
W ∈ Rd×d with ||W||2 = ε and x ∈ H0(G,F) such that EF ((I⊗W)x) > 0. We sketch the proof.
Let g ∈ ker(B). Define then x ∈ C0(G,F) by

xv =
√
dvg.

Then x ∈ H0(G,F). If we now take W = εPkerB⊥ the rescaled orthogonal projection in the
orthogonal complement of the kernel of B we verify the given claim.

We provide below a proof for the equality in Definition 14.
Proposition 30.

x⊤∆Fx =
1

2

∑
e:=(v,u)

∥Fv⊴eD
−1/2
v xv −Fu⊴eD

−1/2
u xu∥22

Proof. We prove the result for the normalised sheaf Laplacian, and other versions can be obtained as
particular cases.

E(x) = x⊤∆Fx =
∑
v

x⊤
v ∆vvxv +

∑
w ̸=z

(w,z)∈E

x⊤
w∆wzxz (22)

=
∑
v⊴e

x⊤
v D

−1/2
v F⊤

v⊴eFv⊴eD
−1/2
v xv +

∑
w<z

(w,z)∈E

x⊤
w∆wzxz + x⊤

z ∆zwxw (23)

=
1

2

∑
v,w⊴e

(
x⊤
v D

−1/2
v F⊤

v⊴eFv⊴eD
−1/2
v xv + x⊤

wD
−1/2
w F⊤

w⊴eFw⊴eD
−1/2
w xw (24)

+ x⊤
v D

−1/2
v F⊤

v⊴eFw⊴eD
−1/2
w xw + x⊤

wD
−1/2
w F⊤

w⊴eFv⊴eD
−1/2
v xv

)
(25)

=
1

2

∑
v,w⊴e

x⊤
v D

−1/2
v F⊤

v⊴e

(
Fv⊴eD

−1/2
v xv −Fw⊴eD

−1/2
w xw

)
(26)

− x⊤
wD

−1/2
w F⊤

w⊴e

(
Fv⊴eD

−1/2
v xv −Fw⊴eD

−1/2
w xw

)
(27)

=
1

2

∑
v,w⊴e

(
x⊤
v D

−1/2
v F⊤

v⊴e − x⊤
wD

−1/2
w F⊤

w⊴e

)(
Fv⊴eD

−1/2
v xv −Fw⊴eD

−1/2
w xw

)
(28)

Note that Dv is symmetric for any node v and so is any D−1/2
v . Therefore, the two vectors in the

parenthesis are the transpose of each other and the result is their inner product. Thus, we have:

EF (x) =
1

2

∑
v,w⊴e

∥Fv⊴eD
−1/2
v xv −Fw⊴eD

−1/2
w xw∥22 (29)
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The result follows identically for other types of Laplacian. For the augmented normalized Laplacian,
one should simply replace D with D̃ = D + I and for the non-normalised Laplacian, one should
simply remove D from the equation.

Theorem 16. If (F , G) ∈ Hd
orth,sym and σ = (Leaky)ReLU, EF (Y) ≤ λ∗∥W1∥22∥W⊤

2 ∥22EF (X).

Proof. We first prove a couple of Lemmas before proving the Theorem. The proof structure follows
that of Cai and Wang [13], which in turn generalises that of Oono and Suzuki [51]. The latter proof
technique is not directly applicable to our setting because it makes some strong assumptions about
the harmonic space of the Laplacian (i.e. that the eigenvectors of the harmonic space have positive
entries).

λ∗ = max
(
(λmin − 1)2, (λmax − 1)2

)
, where λmin, λmax are the smallest and largest non-zero

eigenvalues of ∆F .

Lemma 31. For P = I−∆F , EF (Px) < λ∗EF (x).

Proof. We can write x =
∑

i cih
i as a sum of the eigenvectors {hi} of ∆F . Then x⊤∆Fx =∑

i c
2
iλi, where {λi} are the eigenvalues of ∆F .

EF (Px) = x⊤P⊤∆FPx = x⊤P∆FPx =
∑
i

c2iλi(1− λi)
2 ≤ λ∗

∑
i

c2iλi = λ∗EF (x) (30)

The inequality follows from the fact that the eigenvectors of the normalised sheaf Laplacian are in
the range [0, 2] [34, Proposition 5.5]. We note that the original proof of Cai and Wang [13] bounds
the expression by (1− λmin)

2 instead of λ∗, which appears to be an error.

Lemma 32. EF (XW) ≤ ∥W⊤∥22EF (X)

Proof. Following the proof of Cai and Wang [13] we have:

EF (XW) = Tr(W⊤X⊤∆FXW) (31)

= Tr(X⊤∆FXWW⊤) trace cyclic property (32)

≤ Tr(X⊤∆FX)∥WW⊤∥2 see Lemma 3.1 in Lee [40] (33)

= Tr(X⊤∆FX)∥W⊤∥22 (34)

Lemma 33. For conditions as in Theorem 16, EF
(
(In ⊗W)x

)
≤ ∥W∥22EF (x).

Proof. First, we note that for orthogonal matrices, Dv = I
∑

v⊴e α
2
e = Idv [34, Lemma 4.4]

EF
(
(I⊗W)x

)
=

1

2

∑
v,w⊴e

∥Fv⊴eD
−1/2
v Wfv −Fw⊴eD

−1/2
w Wxw∥22 (35)

=
1

2

∑
v,w⊴e

∥FeW
(
d−1/2
v xv − d−1/2

w xw

)
∥22 (36)

=
1

2

∑
v,w⊴e

∥W
(
d−1/2
v xv − d−1/2

w xw

)
∥22 Fe is orthogonal (37)

≤ 1

2

∑
v,w⊴e

∥W∥22∥d−1/2
v xv − d−1/2

w xw∥22 (38)

=
1

2

∑
v,w⊴e

∥W∥22∥Fe

(
d−1/2
v xv − d−1/2

w xw

)
∥22 Fe is orthogonal (39)

=
1

2
∥W∥22

∑
v,w⊴e

∥Fe

(
D−1/2

v xv −D−1/2
w xw

)
∥22 (40)

= ∥W∥22EF (x) (41)
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The proof can also be extended easily extended to vector bundles over weighted graphs (i.e. allowing
weighted edges as in Hansen and Ghrist [34]). For the non-normalised Laplacian, the assumption
that Fe is orthogonal can be relaxed to being non-singular and then the upper bound will also depend
on the maximum conditioning number over all Fe.

Lemma 34. For conditions as in Theorem 16, EF
(
σ(x)

)
≤ EF (x).

Proof.

E
(
σ(x)

)
=

1

2

∑
v,w⊴e

∥Fv⊴eD
−1/2
v σ(xv)−Fw⊴eD

−1/2
w σ(xw)∥22 (42)

=
1

2

∑
v,w⊴e

∥Fe

(
d−1/2
v σ(xv)− d−1/2

w σ(xw)
)
∥22 (43)

=
1

2

∑
v,w⊴e

∥d−1/2
v σ(xv)− d−1/2

w σ(xw)∥22 orthogonality of Fe (44)

=
1

2

∑
v,w⊴e

∥σ
( xv√

dv

)
− σ

( xw√
dw

)
∥22 cReLU(x) = ReLU(cx), c > 0

(45)

≤ 1

2

∑
v,w⊴e

∥ xv√
dv

− xw√
dw

∥22 Lipschitz continuity of ReLU

(46)

=
1

2

∑
v,w⊴e

∥Fe

(
d−1/2
v xv − d−1/2

w xw

)
∥22 orthogonality of Fe (47)

= EF (x) (48)

Combining these three lemmas for an entire diffusion layer proves the Theorem.

Theorem 15. For (F , G) ∈ H1
+ and σ being (Leaky)ReLU, EF (Y) ≤ λ∗∥W1∥22∥W⊤

2 ∥22EF (X).

Proof. If d = 1, then Lemma 33 becomes superfluous as W1 becomes a scalar that can be absorbed
into the right-weights. It remains to verify that a version of Lemma 34 holds in this case.

Lemma 35. For conditions as in Theorem 15, EF
(
σ(x)

)
≤ EF (x).

Proof.

E
(
σ(x)

)
=

1

2

∑
v,w⊴e

∥Fv⊴eD
−1/2
v σ(xv)−Fw⊴eD

−1/2
w σ(xw)∥22 (49)

=
1

2

∑
v,w⊴e

∥|Fv⊴e|D−1/2
v σ(xv)− |Fw⊴e|D−1/2

w σ(xw)∥22 Fv⊴eFw⊴e > 0 (50)

=
1

2

∑
v,w⊴e

∥σ
( |Fv⊴e|xv√

dv

)
− σ

( |Fw⊴e|xw√
dw

)
∥22 cσ(x) = σ(cx), c > 0 (51)

≤ 1

2

∑
v,w⊴e

∥ |Fv⊴e|xv√
dv

− |Fw⊴e|xw√
dw

∥22 ReLU Lipschitz cont. (52)

=
1

2

∑
v,w⊴e

∥Fv⊴eD
−1/2
v xv −Fw⊴eD

−1/2
w xw∥22 Fv⊴eFw⊴e > 0 (53)

= EF (x) (54)
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We note that if Fv⊴eFw⊴e < 0 (i.e. the relation is signed), then it is very easy to find counter-
examples where ReLU does not work anymore. However, the result still holds in the deep linear
case.

If the features of an SCN/GCN oversmoothing as in Theorem 15 converge to ker(∆F ), then the model
will no longer be able to linearly separate the classes. This is shown by the following Corollaries.

Corollary 36. Consider an SCN model f with k layers and a sheaf (F ;G) ∈ H1
sym over a bipartite

graph G as in Proposition 9. Then for any finite k, Y := f(X) is not linearly separable for any input
with EF (X) = 0.

Proof. By Theorem 15, if EF (X) = 0, then EF (Y) = 0 and, therefore, Yi ∈ ker(∆F ) for any
column i. The proof of Proposition 9 showed that the classes of such a bipartite graph cannot be
linearly separated for any such feature matrix Y.

Corollary 37. Consider an SCN model f with k layers and a sheaf (F ;G) ∈ H1
+ over any graph G

with more than two classes as in Proposition 11. Then for any finite k, Y := f(X) is not linearly
separable for any input with EF (X) = 0.

Proof. By Theorem 15, if EF (X) = 0, then EF (Y) = 0 and, therefore, Yi ∈ ker(∆F ) for any
column i. The proof of Proposition 11 showed that the classes of such a graph cannot be linearly
separated for any such feature matrix Y.

D Sheaf Learning Proof

Proposition 18. Let G = (V,E) be a finite graph with features X. Then, if (xv,xu) ̸= (xw,xz) for
any (v, u) ̸= (w, z) ∈ E and Φ is an MLP with sufficient capacity, Φ can learn any sheaf (F ;G).

Proof. Assume that the node features are k-dimensional and, therefore, the graph feature matrix
has shape X ∈ Rn×k. Define the finite set A := {(xv,xu) : v → u ∈ E} ⊂ R2k containing the
concatenated features of the nodes for all the oriented edges v → u of the graph. Then, because
each (xv,xu) is unique, for any dimension d, there exists a (well-defined) function g : A→ Rd×d

sending (xv,xu) 7→ Fv⊴e=(v,u). We now show that this function can be extended to a smooth
function f : R2k → Rd×d and, therefore, it can be approximated by an MLP due to the Universal
Approximation Theorem [36, 37].

Let I be an index set for the elements of A. Then, because A is finite, for any ai∈I , we can find
a sufficiently small neighbourhood Ui ⊂ R2k such that ai ∈ Ui and aj /∈ Ui for j ̸= i ∈ I .
Furthermore, for each i ∈ I , we can find a (smooth) bump function ψi : R2k → R such that
ψi(ai) = 1 and ψi(a) = 0 if a /∈ Ui. Then, the function f(a) :=

∑
i∈I g(ai)ψi(a) is smooth and

f |A = g.

E Additional model details and hyperparameters

Hybrid transport maps. Consider the transport maps −F⊤
v⊴eFu⊴e appearing in the off-diagonal

entires of the sheaf Laplacian LF . When learning a sheaf Laplacian, there exists the risk that the
features are not sufficiently good in the early layers (or in general) and, therefore, it might be useful
to consider a hybrid transport map of the form −F⊤

v⊴eFu⊴e

⊕
F, where

⊕
is the direct sum of

two matrices and F represents a fixed (non-learnable map). In particular, we consider maps of the
form −F⊤

v⊴eFu⊴e

⊕
I1
⊕

−I1 which essentially appends a diagonal matrix with 1 and −1 on the
diagonal to the learned matrix. From a signal processing perspective, these correspond to a low-pass
and a high-pass filter that could produce generally useful features. We treat the addition of these fixed
parts as an additional hyper-parameter.
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Adjusting the activation magnitudes. We note that in practice we find it useful to learn an
additional parameter ε ∈ [−1, 1]d (i.e. a vector of size d) in the discrete version of the models:

Xt+1 = (1 + ε)Xt − σ
(
∆F(t)(I⊗Wt

1)XtW
t
2

)
. (55)

This allows the model to adjust the relative magnitude of the features in each stalk dimension. This is
used across all of our experiments in the discrete models.

Augmented normalised sheaf Laplacian. Similarly to GCN which normalises the Laplacian by
the augmented degrees (i.e. (D+ In)

−1/2, where D is the usual diagonal matrix of node degrees),
we similarly use (D + Ind)

−1/2 for normalisation to obtain greater numerical stability. This is
particularly helpful when learning general sheaves as it increases the numerical stability of SVD.

Table 2: Hyper-parameter ranges for the discrete and continous models.
Discrete Models Continous Models

Hidden channels (8, 16, 32) (WebKB) and (8, 16, 32, 64) (others) (8, 16, 32, 64)
Stalk dim d 1− 5 1− 5
Layers 2− 8 N/A
Learning rate 0.02 (WebKB) and 0.01 (others) Log-uniform [0.01, 0.1]
Activation ELU ELU
Weight decay (regular parameters) Log-uniform [−4.5, 11.0] Log-uniform [−6.9, 13.8]
Weight decay (sheaf parameters) Log-uniform [−4.5, 11.0] Log-uniform [−6.9, 13.8]
Input dropout Uniform [0, 0.9] Uniform [0, 0.9]
Layer dropout Uniform [0, 0.9] N/A
Patience (epochs) 100 (Wiki) and 200 (others) 50
Max training epochs 1000 (Wiki) and 500 (others) 50.
Integration time N/A Uniform [1.0, 9.0].
Optimiser Adam [38] Adam

Hyperparameters and training procedure. We train all models for a fixed maximum number of
epochs and perform early stopping when the validation metric has not improved for a pre-specified
number of patience epochs. We report the results at the epoch where the best validation metric
was obtained for the model configuration with the best validation score among all models. We use
the hyperparameter optimisation tools provided by Weights and Biases [5] for this procedure. The
complete hyperparameter ranges we optimised over can be found in Table 2. All models were trained
and fine-tuned on an Amazon AWS p2.xlarge machine containing 8 NVIDIA K80 GPUs and using a
2.3 GHz (base) and 2.7 GHz (turbo) Intel Xeon E5-2686 v4 Processor.

E.1 Computational Complexity

We can split the computational complexity into the following computational steps:

1. The linear transformation X′ = (I ⊗ Wt
1)XtW

t
2. W1 is a d × d matrix and W2 is

an f × f matrix. Therefore, the complexity is O
(
n(d2f + df2)

)
= O (n(cd+ cf)) =

O(nc2).
2. Message Passing. Since ∆F is a sparse matrix, the message passing is implemented as

a sparse-dense matrix multiplication ∆FX
′. When the restriction maps are diagonal, the

complexity of this operation is O (mc), since the multiplication of each block matrix in
∆F and block vector in X′ reduces to a an element-wise vector multiplication. When the
restriction maps are non-diagonal, the complexity is O (mdc) because each matrix-vector
multiplication is O(d2) and we need to perform f of them for each node and edge.

3. Learning the Sheaf. Assume we learn the restriction maps via Φ(xv,xu) =
σ(V[vec(Xv)||vec(Xu)]), where vec(·) converts the d × f matrix into a df -sized vec-
tor. This operation has to be performed for each incident node-edge pair. Therefore, the
complexity is O(md2f) = O(mcd), when learning diagonal maps since V is a d × 2df
matrix. When learning a non-diagonal matrix, the number of rows of V is O(d2) and the
complexity becomes O(md3f) = O(mcd2). Note, however, that in general, the complexity
of learning the restriction maps can be significantly reduced to O(mc) (in the diagonal case)
and O(m(c+ d2)) (in the non-diagonal case) by, for instance, using an MLP with constant
hidden-size.
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Figure 7: (Left) Train accuracy as a function of diffusion time. (Middle) Test accuracy as a function
of diffusion time. (Right) Histogram of the learned rotation angle of the 2D transport maps. The
performance of the bundle model is superior to that of the one-dimensional sheaf. The transport maps
learned by the model are aligned with our expectation: the model learns to rotate more (i.e. to move
away) the neighbours belonging to different classes than the neighbours belonging to the same class.

4. Constructing the Laplacian. To build the Laplacian, we need to perform the matrix-matrix
multiplications involved in computing each of the blocks. The complexity of that is O(md)
in the diagonal case and O(md3) in the non-diagonal case. Computing the normalisation of
the Laplacian is O(nd) in the diagonal case and O(nd3) in the non-diagonal case.

Putting everything together, the final complexity is O(nc2 + mcd) in the diagonal case and
O
(
n(c2 + d3) +m(cd2 + d3)

)
in the non-diagonal case. When learning the sheaf via an

MLP with constant hidden size, the complexity reduces to O(nc2 + mc) (same as GCN) and
O
(
n(c2 + d3) +m(c+ d3)

)
, respectively.

For learning orthogonal matrices, we rely on the library Torch Householder [49] which provides
support for fast transformations with large batch sizes.

F Additional Experiments

In this section, we provide a series of additional experiments and ablation studies.

Two-dimensional synthetic experiment. In the main text we focused on a synthetic example
involving sheaves with one-dimensional stalks. We now consider a graph with three classes and
two-dimensional features, with edge homophily level 0.2. We use 80% of the nodes for training
and 20% for testing. First, we know that a discrete vector bundle with two-dimensional stalks that
can solve the task in the limit exists from Theorem 13, while based on Proposition 11 no sheaf with
one-dimensional stalks can perfectly solve the tasks.

Therefore, similarly to the synthetic experiment in the main text, we compare two similar models
learning the sheaf from data: one using 1D stalks and another using 2D stalks. As we see from
Figure 7, the discrete vector bundle model has better training and test-time performance than the
one-dimensional counterpart. Nonetheless, none of the two models manages to match the perfect
performance of the ideal sheaf on this more challenging dataset. From the final subfigure, we also see
that the model learns to rotate more across the heterophilic edges in order to push away the nodes
belonging to other classes. The prevalent angle of this rotation is 2 radians, which is just under
120◦ = 360◦/C, where C = 3 is the number of classes. Thus the model learns to position the three
classes at approximately equal arc lengths from each other for maximum linear separability.

Continous Models. To also understand how the continuous version of our models performs against
other PDE-based GNNs we include a category of such SOTA models: CGNNs [70], GRAND [15],
and BLEND [14]. Results are included in Table 3. Generally, continuous models do not perform
as well as the discrete ones because they are constrained to use the same set of weights for the
entire integration time and cannot use dropout. Therefore, the model capacity is difficult to increase
without overfitting. Nonetheless, our continuous models generally outperform other state-of-the-art
continuous models, which also share the same limitations. Finally, we note that the baselines were
fine-tuned over the same hyper-parameter ranges as in Table 2
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Table 3: Results on node classification datasets sorted by their homophily level. Top three models are
coloured by First, Second, Third. Our models are marked NSD.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

Cont Diag-NSD 82.97±4.37 86.47±2.55 36.85±1.21 38.17±9.29 62.06±3.84 80.00±6.07 76.56±1.19 89.47±0.42 86.88±1.21

Cont O(d)-NSD 82.43±5.95 84.50±4.34 36.39±1.37 40.40±2.01 63.18±1.69 72.16±10.40 75.19±1.67 89.12±0.30 86.70±1.24

Cont Gen-NSD 83.78±6.62 85.29±3.31 37.28±0.74 52.57±2.76 66.40±2.28 84.60±4.69 77.54±1.72 89.67±0.40 87.45±0.99

BLEND 83.24±4.65 84.12±3.56 35.63±0.89 43.06±1.39 60.11±2.09 85.95±6.82 76.63±1.60 89.24±0.42 88.09±1.22

GRAND 75.68±7.25 79.41±3.64 35.62±1.01 40.05±1.50 54.67±2.54 82.16±7.09 76.46±1.77 89.02±0.51 87.36±0.96

CGNN 71.35±4.05 74.31±7.26 35.95±0.86 29.24±1.09 46.89±1.66 66.22±7.69 76.91±1.81 87.70±0.49 87.10±1.35

Positional encoding ablation. Based on Proposition 18 we proceed to analyse the impact of
increasing the expressive power of the model by making the nodes more distinguishable. For that,
we equip our datasets with additional features consisting of graph Laplacian positional encodings
as originally done in Dwivedi et al. [23]. In Table 4 we see that positional encodings do indeed
improve the performance of the continuous models compared to the numbers reported in the main
table. Therefore, we conclude that the interaction between the problem of sheaf learning and that of
the expressivity of graph neural networks represents a promising avenue for future research.

Table 4: Ablation study for positional encodings. Positional encodings improve performance on some
of our models.

Eigenvectors Texas Wisconsin Cornell

Cont Diag-SD
0 82.97 ± 4.37 86.47± 2.55 80.00 ± 6.07
2 3.51± 5.05 85.69 ± 3.73 81.62 ± 8.00
8 85.41± 5.82 86.28 ± 3.40 82.16± 5.57

16 82.70 ± 3.86 85.88 ± 2.75 81.08 ± 7.25

Cont O(d)-SD
0 82.43 ± 5.95 84.50 ± 4.34 72.16 ± 10.40
2 84.05 ± 5.85 85.88 ± 4.62 83.51 ± 9.70
8 84.87± 4.71 86.86± 3.83 84.05± 5.85

16 83.78 ± 6.16 85.88 ± 2.88 83.51 ± 6.22

Cont Gen-SD
0 83.78± 6.62 85.29 ± 3.31 84.60± 4.69
2 83.24 ± 4.32 84.12 ± 3.97 81.08 ± 7.35
8 82.70 ± 5.70 84.71 ± 3.80 83.24 ± 6.82

16 82.16 ± 6.19 86.47± 3.09 82.16 ± 6.07

Visualising diffusion. To develop a better intuition of the limiting behaviour of sheaf diffusion for
node classification tasks we plot the diffusion process using an oracle discrete vector bundle for two
graphs with C = 3 (Figure 9) and C = 4 (Figure 8) classes. The diffusion processes converge in the
limit to a configuration where the classes are rotated at 2π

C from each other, just like in the cartoon
diagrams of Figure 6. Note that in all cases, the classes are linearly separable in the limit.

We note that this approach generalises to any number of classes, but beyondC = 4 it is not guaranteed
that they will be linearly separable in 2D. However, they are still well separated. We include an
example with C = 10 classes in Figure 10.

Figure 8: Sheaf diffusion process disentangling the C = 4 classes over time. The nodes are coloured
by their class.
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Figure 9: Sheaf diffusion process disentangling the C = 3 classes over time. The nodes are coloured
by their class.

Figure 10: Sheaf diffusion process disentangling the C = 10 classes over time. The nodes are
coloured by their class.
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