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Abstract

Contrastive learning, which learns to contrast positive with negative pairs of sam-
ples, has been popular for self-supervised visual representation learning. Although
great effort has been made to design proper positive pairs through data augmenta-
tion, few works attempt to generate optimal positives for each instance. Inspired
by semantic consistency and computational advantage in latent space of pretrained
generative models, this paper proposes to learn instance-specific latent transfor-
mations to generate Contrastive Optimal Positives (COP-Gen) for self-supervised
contrastive learning. Specifically, we formulate COP-Gen as an instance-specific
latent space navigator which minimizes the mutual information between the gen-
erated positive pair subject to the semantic consistency constraint. Theoretically,
the learned latent transformation creates optimal positives for contrastive learning,
which removes as much nuisance information as possible while preserving the
semantics. Empirically, using generated positives by COP-Gen consistently outper-
forms other latent transformation methods and even real-image-based methods in
self-supervised contrastive learning.

1 Introduction

Learning effective visual representation without explicit human annotation is attractive but challenging
in machine learning and computer vision. One way to achieve this goal is through self-supervised
learning, which leverages handcrafted pretext tasks to create the learning objectives, such as context
prediction [1], colorization [2], rotation prediction [3], and generative modeling [4, 5].

Recently, contrastive learning [6, 7, 8, 9, 10, 11] has achieved great success in self-supervised visual
representation learning. The goal of contrastive learning is to pull semantically similar samples
(positive pairs) together in the feature space while pushing dissimilar samples (negative pairs) apart.
Without access to labels, negative pairs are sampled randomly and in large amount [10, 11] to obtain
effective representations [12, 13]. A line of works are proposed to calibrate the impact of negative
samples [14, 15, 16, 17, 18, 19].

On the other hand, the construction of positive pairs is also very crucial. Tian et al. [20] demonstrates
that optimal positive pairs are task-dependent. Since the labels of downstream tasks and pretraining
dataset are not accessible in self-supervised learning, a common way to create positive pairs is to
use semantic-preserving data space transformation (augmentation) to obtain two or more different
views of the same sample, as shown in Figure 1a. Great effort has been made to find the optimal
augmentation policy [11, 20]. Nevertheless, data augmentation cannot create instance-specific
optimal positives, which are key in contrastive learning to preserve semantic and discard nuisance
information for each sample. Some works try to address this problem by learning adversarial
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Figure 1: Different ways of creating positive pairs for contrastive learning. (a) is based on data space
transformation Tx while (b) (c) based on latent space transformation Tz. Our proposed COP-Gen
aims to create optimal positives for each anchor while (a) (b) do not. Blue arrows indicate learnable
and black non-learnable operations. Figure inspired by [11].

perturbations in data space [21, 22, 23] or using nearest neighbors in the learned representation space
[24, 25, 26, 27]. However, the former limits the transformation diversity and the latter suffers from a
high false positive rate [25].

Instead of creating optimal positives for each instance in data space or representation space, a more
proper way to address this problem is through transformation in the latent space of well-trained
generative models. The main reasons include (1) semantic consistency between the positive pair can
be achieved in the latent space (in contrast to representation space transformation and non-domain-
knowledge-guided data augmentation) by controlling the transformation distance within a small range;
(2) latent space transformation is continuous and differentiable (in contrast to data augmentation),
which is computationally friendly for searching instance-wise optimal transformations. In addition,
it may bring more diversity beyond data augmentation. Jahanian et al. [28] have made a first step
towards leveraging latent space transformation together with data augmentation to create positive
pairs, as shown in Figure 1b. However, the transformation is still designed for the whole dataset.
How to find the optimal latent transformation for each sample remains an open issue.

In this work, to address the above problems, we propose an instance-specific Contrastive Optimal
Positive Generation (COP-Gen) approach via latent space transformation. Specifically, COP-Gen
learns a navigator in the latent space, whose objective is to transform each input anchor to the
optimal position. To this end, subjecting to the semantic constraint, the navigator is simply learnt to
minimize the mutual information between the generated positive pair. Therefore, the training process
is implemented by adversarially training a mutual information estimator together with the latent space
navigator, as illustrated in Figure 1c. We summarize our contributions as follows:

• We find the latent space of well-trained generative model fits exactly for generating instance-specific
optimal positives in fully unsupervised setting and thus propose COP-Gen.

• We theoretically demonstrate that the learned latent transformation generates optimal positive
pairs for contrastive learning, which can preserve semantic-relevant information while discarding
nuisance information.

• Extensive experiments show that using COP-Gen to generate positives outperforms other latent
transformation methods and even real-image-based methods in self-supervised contrastive learning.
We also extend COP-Gen to supervised contrastive learning.

2 Preliminaries

Contrastive Learning. Given a training sample x, state-of-the-art contrastive methods like SimCLR
[11], as illustrated in Figure 1a, use data augmentations tx ∼ Tx and t′x ∼ Tx to create a positive
pair (v,v′), and then learn an encoder f to maximize the agreement between them by contrasting
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with K randomly sampled negatives, using the InfoNCE loss [9]:

Lf
NCE(v,v

′) = −E

[
log

exp(sim(f(v), f(v′)))

exp(sim(f(v), f(v′))) +
∑K

k=1 exp(sim(f(v), f(v′
k)))

]
, (1)

where sim denotes the cosine similarity between two vectors. It is proved that minimizing InfoNCE
loss maximizes a lower bound on mutual information [9, 29]: I(v;v′) ≥ log(K) − Lf

NCE, where
I(v;v′) represents mutual information between v and v′.

Optimal Positives for Contrastive Learning. Intuitively, the data augmentation Tx that creates
positive pairs should preserve the semantic characteristics while changing the nuisance aspects [30].
To find the right balance, Tian et al. [20] introduce an “InfoMin principle”, which demonstrates that
optimal positives for contrastive learning are task-dependent.
Definition 2.1 (Optimal Positives for Contrastive Learning, Proposition A.1 in [20]). Given a
downstream task T with label y, the optimal positive pair (v∗,v′∗) created from the data x satisfies

I(v∗;v′∗) = I(x;y), (2)

I(v∗;v′∗|y) = 0, (3)

subject to I(v;y) = I(v′;y) = I(x;y).

Definition 2.1 indicates that when we have access to the downstream task, the optimal positive pair
should only capture the task-relevant information I(x;y), while leaving the nuisance information
I(v∗;v′∗|y) to be zero.

Unfortunately, y is not accessible in unsupervised contrastive learning. The construction of positive
pairs is commonly guided by domain knowledge or experimental results instead [11, 20] and could
not be instance-wise optimal. To address this problem, we will next develop an optimal positive
generation approach that uses pretrained generative models without accessing the labels.1

3 Contrastive Optimal Positive Generation via Latent Transformation

In this section, we first introduce our contrastive optimal positive generation (COP-Gen) approach
in Section 3.1. Next, we give a theoretical analysis in Section 3.2. In Section 3.3 we describe and
explain the practical details.

3.1 Motivation and COP-Gen Approach

Before describing our approach, we explain the inspiration behind it by formulating a prominent
property of pretrained generative models. It has been observed that using pretrained generative models
can create images with interpretable transformations [31, 32, 33], which has several interesting
applications such as face attribute editing [34] and data augmentation [35]. These generative models
[31, 36, 37] are commonly trained on annotated or one-class datasets. Yet it is worth noting that even
they are trained on unlabeled large scale dataset like ImageNet [38], nearby latent vectors can map to
semantically similar images, which is a remarkable property for unsupervised representation learning
[28]. See Figure 2 for an empirical observation. We formulate this property as follows.
Proposition 3.1 (Semantic Consistency in Latent Space). Given a well-trained unconditional gener-
ative model G, z and z′ are two latent vectors, if the distance d(z, z′) ≤ δ, then G(z) and G(z′) will
have the similar semantic label y. In the form of mutual information, we have

|I(G(z);y)− I(G(z′);y)| ≤ ε, (4)

where ε stands for tolerable semantic difference, and δ is the maximum shifted distance to maintain
semantic consistency (approximately corresponding to the second column of G(z′) in Figure 2).

The above observation and Proposition 3.1 inspire us to find optimal positives in the latent space of
well-trained generative models without access to the labels. Therefore, we propose the following

1The optimal positives for contrastive pretraining always depend on downstream task, which is usually
unknown in advance. We here focus on addressing the label-inaccessible issue of pretraining dataset, which is
assumed to be helpful and general.
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Figure 2: Randomly sampled images from ImageNet-pretrained unconditional BigBiGAN [39]. From
left to right for each example, the distance between z and z′ keeps rising.

COP-Gen approach. Our goal is to learn a latent space navigator Tz(z), which can map each
sampled anchor z to the right position z′, where the constructed pair (G(z), G(z′)) is the optimal for
contrastive learning.

COP-Gen. Our idea, inspired by the InfoMin principle, is to reduce as much shared information
between G(z) and G(Tz(z)) as possible while preserving the semantics:

min
Tz

I(tx(G(z)); t′x(G(Tz(z)))), s.t. d(z, Tz(z)) ≤ δ, where z ∼ pz, tx, t
′
x ∼ Tx. (5)

In practice, a shared encoder f trained with InfoNCE loss is applied to estimate a lower bound of the
mutual information between the positive samples, as illustrated in Figure 1c. Specifically, Eq. (5) is
implemented as the following adversarial training form:

max
Tz

min
f

Lf
NCE(tx(G(z)), t′x(G(Tz(z)))), s.t. d(z, Tz(z)) ≤ δ, where z ∼ pz, tx, t

′
x ∼ Tx. (6)

After learning Tz, we freeze it and use it together with G to generate positive pairs offline. After that,
we perform the standard contrastive learning by training an encoder that maximizes (a lower bound
on) the mutual information between generated positive pairs. As will be proved in Section 3.2, there
is no nuisance information remaining in any generated positive pairs to be learned by the encoder.

Note that the synthetic images are usually object-centric and color-biased [40]. As a consequence,
when using these synthetic images for contrastive learning, data space augmentations Tx like random
cropping and color jittering cannot be replaced even when the latent transformation is optimal. Thus,
Tx is also adopted in COP-Gen to keep consistency with the contrastive learning stage.

3.2 Theoretical Analysis

In this subsection, we theoretically demonstrate that under the guarantee of semantic consistency,
COP-Gen will find optimal latent transformations for each sampled latent vector. We first give the
following assumption and lemma.
Assumption 3.2 (Semantic-preserving Tx). The data space augmentation Tx : X → X should be
designed to be semantic-preserving. In the form of mutual information,

I(tx(x);y) = I(x;y), ∀ tx ∼ Tx, (7)

where x ∈ X is the data, y ∈ Y is the semantic label of x.

In practice, we take the well-trained BigBiGAN [39] generator as the data source, which was trained
jointly with an additional encoder to learn the inverse mapping as BiGAN [41] and ALI [42]. It has
been proved that these models have the following property.2

Lemma 3.3 (Theorem 2 in [41]). Assume discriminator D, generator G and encoder E are optimal,
if G and E are deterministic, then G−1 = E almost everywhere.

Lemma 3.3 ensures the invertibility of the pretrained generator G. In COP-Gen (Figure 1c), the
invertibility ensures G(Tz(z)) can be mapped back to a deterministic place Tz(z) in the latent space.
Thus training a navigator Tz : z → Tz(z) can make sense. Otherwise the navigator would be
confused if there were more than one destination. The formal proof will be given in Theorem 3.4. We
also use a pretrained flow model [43], which is naturally invertible, as the data source and conduct a
toy experiment in Appendix D.

2It may not hold for other typical GAN generators.
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Theorem 3.4 (Optimal Tz). Under the above assumption and lemma, given specific G(z), T ∗
z

obtained by optimizing Eq. (5) generates optimal positives G(T ∗
z (z)) for contrastive learning.

Proof. Below we use the notations in Figure 1c, i.e., z′ = Tz(z),x = G(z),x′ = G(z′),v =
tx(x),v

′ = t′x(x
′), for brevity. Using the chain rule of mutual information, the training objective in

Eq. (5) can be written as

I(v;v′) = I(v;y)− I(v;y|v′) + I(v;v′|y). (8)

We first prove that v introduces no extra semantic information when v′ is known, i.e., the above
second item

I(y;v|v′) = 0. (9)
Strictly, the equality approximately holds within the error range of ε as shown below.

Using the chain rule of mutual information, we have

I(y;x|v′) = I(y;x) + I(y;v′|x)− I(y;v′). (10)

Since t′x preserves the semantics of x′, and the semantic consistency between z and z′ = Tz(z) holds
under the condition of d(z, Tz(z)) ≤ δ from Proposition 3.1, we have

|I(y;x)− I(y;v′)| = |I(y;x)− I(y; t′x(x
′))| = |I(y;x)− I(y;x′)| ≤ ε (11)

by combining Eq. (7) and (4). In addition, under Lemma 3.3, x′ and thus v′ = t′x(x
′) can be

expressed as a function of x, so that
I(y;v′|x) = 0. (12)

By plugging Eq. (11) and (12) into Eq. (10), we find I(y;x|v′) is approximately zero within the
error range of ε. And v = tx(x) is a function of x. Therefore, y → v′ → x → v forms a Markov
chain approximately. Therefore, Eq. (9) holds within the error range of ε.

Now, Eq. (8) becomes

I(v;v′) = I(v;y) + I(v;v′|y). (13)

Since tx is semantic-preserving, the first item I(v;y) in Eq. (13) equals to the constant I(x;y).
Therefore, minimizing Eq. (13) will make the second item, which represents the nuisance information,
tend to zero. Formally, under the semantic constraint, T ∗

z obtained by minimizing Eq. (13) satisfies

I(v;v′∗) → I(x;y), (14)
I(v;v′∗|y) → 0, (15)
s. t. d(z, T ∗

z (z)) ≤ δ,

within the semantic error ε defined in Proposition 3.1, where v′∗ = t′x(G(T ∗
z (z))). According to

Definition 2.1, T ∗
z creates optimal positives for contrastive learning in latent space.

3.3 Practical Details

Choice of Tz. The latent space navigator Tz is implemented as a nonlinear two-layer neural network
Tz(z) = W2(σ(W1z + b1)) + b2 by default, where σ is the ReLU [44] function. We adopt
nonlinear trajectories in latent space since linear trajectories may cause generated images distorted or
meaningless [45, 46]. Linear Tz is also experimented as an ablation in Section 4.3.

Implementation of d(z, z′) ≤ δ. In practice, we model z′ as z′ = z + Tz(z) instead of
z′ = Tz(z), since random initializing the parameters of Tz may not guarantee d(z, z′) ≤ δ
thus violate the semantic constraint. Take L2 distance as an example, d(z, z′) now becomes

d2(z, z
′) =

√∑K
k=1 (Tz(z)k)2. Since z ∈ RK is usually sampled from an isotropic Gaussian

N (0, I), Tz(z) approximately (due to nonlinear Tz) follows Gaussian distribution with marginals
Tz(z)k ∼ N (µk, σ

2
k), where µk and σk are determined by W1,W2, b1, b2. Thus E[d2(z, z′)2] =∑K

k=1 E[(Tz(z)k)
2] =

∑K
k=1 (µ

2
k + σ2

k). Therefore, in order to satisfy d(z, z′) ≤ δ experimentally,
we control the initialization of the parameters in Tz and monitor the mean and standard deviation of
Tz(z) as well as the quality of generated images during training. A summary of the implementation
of the semantic consistency constraint during the whole training process is discussed in Appendix B.
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4 Experiments

In this section we conduct experiments on the proposed COP-Gen approach and compare it with
other latent transformation and real-image-based methods. We use Pytorch [47] for all experiments.

4.1 Experimental Settings

Pretrained Generative Models. Most of our self-supervised experiments are conducted using Ima-
geNet ILSVRC-2012 [38] pretrained BigBiGAN [39, 48]. We do not use the encoder of BigBiGAN,
but only use the generator as a black-box data source. Besides, some additional self-supervised exper-
iments leveraging MNIST [49] pretrained Residual Flow [43] model can be found in Appendix D.
We also extend our approach to supervised contrastive learning [50] in Appendix E.

COP-Gen Training. The latent space navigator Tz is implemented as a nonlinear two-layer MLP by
default. The sizes of the input, hidden and output layers are the same, all equal to the latent dimension
(120-d) of BigBiGAN. Data space SimCLR [11] augmentation is adopted, which is implemented
to be differentiable by applying torchvision.transforms to tensors x on-the-fly, to let gradients
flow from v = Tx(x) to x. The backbone of the mutual information estimator f is ResNet-18 [51] to
save GPU memory. We use InfoNCE loss [9] as the adversarial training objective for f and Tz, with
the temperature set to 0.1. Adam [52] (β1 = 0.5, β2 = 0.999) is used as the optimizer, where the
learning rate is set to 3× 10−5 for f and 1× 10−5 for Tz. We train over 200K generated samples3

with batch size of 176, which takes about 1 hour on 4 NVIDIA 2080 Ti GPUs.

Methods for Comparison. We compare our COP-Gen with the following positive generation
methods. The baseline SimCLR [11], which leverages data space transformation (e.g., random
cropping, color jittering, etc.) to create positive pairs. InfoMin Aug. [20], which is inspired by the
InfoMin principle and adopts additional (cf. SimCLR Aug.) data augmentations. NNCLR [25],
which uses nearest neighbors in the learned representation space as the positives. Negative Feature
Transformation [53], which creates hard negatives through feature interpolation. Two latent space
transformation methods introduced in GenRep [28]. The one is through Gaussian transformation,
with standard deviation set to 0.2 determined by grid searching. The other is a “steering” method
introduced in [54], which learns a shared latent trajectory over 160K samples to mimic data space
transformations (including zoom, shifts, rotations, and color transformations), and then randomly
samples the length of the learned trajectory to create positives. More implementation details are given
in Appendix C.1.

Comparison of Computational Overhead. When comparing with non-learning-based latent trans-
formation methods (GenRep Gaussian [28]), our COP-Gen introduces additional navigator training
overhead. This cost also happens in the previous learning-based latent “steering” method [28]. When
comparing with real-image-based baseline [11], all computations including navigator training and
positive sampling in the latent space of generative models are considered. All these computations are
not too much (several GPU hours). But if we take training generative models into consideration, the
extra training cost would be expensive (typically several GPU weeks). Nevertheless, the community
has released many well-trained generative models for researchers to use. The detailed computational
overhead is listed in Appendix F.

Contrastive Learning. We conduct contrastive learning on both real and synthetic datasets. For
both of them in all experiments, we use 128 × 128 image size, which is the output resolution of
the pretrained BigBiGAN generator. The real image encoder is trained on unlabeled ImageNet [38]
which has ∼1.28M images of 1000 classes (ImageNet-1K), and the synthetic image encoder is trained
on 1.3M randomly sampled anchor images from BigBiGAN. We use InfoNCE as the loss, which is
optimized using SGD with momentum of 0.9, the learning rate of 0.03×BatchSize/256, and weight
decay of 10−4. We train with batch size of 224 for 100 epochs and decay the learning rate using the
cosine decay schedule [55], which takes ∼3 days for ResNet-50 on 2 NVIDIA 2080 Ti GPUs.

3See more discussions on the number of training samples (i.e. when to terminate the COP-Gen training
process) in Section 4.3 and Appendix B.
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Table 1: ImageNet-1K linear evaluation and PASCAL VOC object detection with different self-
supervised contrastive positive generation methods. All the reported are our reproduced results.

Method Tz Tx

ImageNet Linear Evaluation VOC Object Detection

Top-1 Top-5 AP AP50 AP75

Training on ImageNet-1K real images:
SimCLR [11] N/A SimCLR Aug. 49.44 75.58 52.91 78.68 58.51
Neg FT [53] N/A SimCLR Aug. 50.82 75.09 51.08 77.73 55.05
InfoMin [20] N/A InfoMin Aug. 50.93 75.87 51.11 77.58 55.55
NNCLR [25] N/A SimCLR Aug. 51.97 76.80 51.70 77.93 56.27

Training on BigBiGAN synthetic images:
GenRep [28] None SimCLR Aug. 41.63 66.57 51.05 77.22 55.77
NNCLR [25] None SimCLR Aug. 42.46 66.46 50.40 76.74 55.00
InfoMin [20] None InfoMin Aug. 42.83 67.52 50.18 75.68 54.71
Neg FT [53] None SimCLR Aug. 43.26 67.21 50.45 77.11 54.88
GenRep [28] Gaussian SimCLR Aug. 48.73 73.13 50.20 77.03 54.37
GenRep [28] Steering SimCLR Aug. 51.19 74.97 51.42 77.96 56.43
COP-Gen (ours) Optimal SimCLR Aug. 53.25 77.16 53.09 78.95 57.99

4.2 Experimental Results

Linear Evaluation on ImageNet-1K. We train a fully connected linear classifier on top of the frozen
2048-d embeddings from the pretrained ResNet-50 encoder. It is trained using SGD with momentum
of 0.9, batch size of 224 for 60 epochs with cosine learning rate decay. Following [28], the initial
learning rate is set as 0.3 × BatchSize/256 for the real and 2 × BatchSize/256 for the synthetic
respectively. We report Top-1 and Top-5 classification accuracies on ImageNet-1K validation set.

The comparison result is presented in Table 1.4 First, COP-Gen achieves the best performance
compared to other synthetic-image-based methods, demonstrating the effectiveness of our latent
space optimal positive generation approach. In addition, it is worth noting that synthetic-image-based
contrastive representation learning can outperform the real-image-based method, as long as the proper
latent transformation method is adopted. That is because the latent transformation brings more
diversity to and could achieve instance-wise optimal positives. Although there is still a gap in the
resolution and quality between synthetic and real images, this phenomenon inspires us to further
develop black-box generative models as datasets to perform visual representation learning.

Object Detection on PASCAL VOC. We test the pretrained encoders on the downstream object de-
tection task to evaluate the feature transferability. Following the protocol in [10], we use detectron2
[56] to train a Faster-RCNN [57] with the R50-C4 backbone. We fine-tune all layers end-to-end
with batch size of 4 for 96K iterations (∼23 epochs) on the PASCAL VOC [58] trainval07+12
set and evaluate on the test07 set. The results are in Table 1. It can be seen that COP-Gen
achieves consistent gains over other synthetic encoders and competitive performance compared with
real-image-based baselines.

Transfer Learning and Semi-Supervised Learning Evaluations. Following the procedure in
[11, 25], we evaluate the pretrained encoders on transfer learning and semi-supervised learning
tasks. For transfer learning task, we train a linear classifier on following datasets: Food101 [59],
CIFAR10 [60], CIFAR100 [60], SUN397 [61], Pets [62], Caltech-101 [63], and Flowers [64]. For
semi-supervised learning task, we follow the setting in [11], i.e., sample 1% or 10% of the labeled
ImageNet training set in a class-balanced way, and fine-tune the whole network on the labeled data.
These two experiments are implemented based on the open-source codebase VISSL [65] using its
standard set of hyper-parameters and evaluation protocols. We compare our method with the baseline
SimCLR and two of the most competitive methods: NNCLR on the real and latent “steering” method.
Table 2 shows the results. It is worth noting that synthetic-image-trained encoders outperform
real-image-trained encoders on nearly all transfer and semi-supervised benchmarks. And our method
achieves competitive performances when compared with the previous latent “steering” method.

4The gap between our reproduced results and those on real images is because we use smaller image size,
batch size and different optimizers. All these details are clarified in Section 4.1. Results with standard deviations
after running experiments multiple times and longer contrastive learning are given in Appendix C.3.
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Table 2: Comparison of transfer learning and semi-supervised learning performance. For transfer
classification we report Top-1 accuracy. For semi-supervised learning we report Top-5 accuracy.

Method
Linear Transfer Classification Semi-Supervised

Label Fraction

Food101 CIFAR10 CIFAR100 SUN397 Pets Caltech-101 Flowers 1% 5%

Training on ImageNet-1K real images:
SimCLR [11] 65.16 84.44 60.99 66.26 69.72 81.96 82.81 45.77 77.34
NNCLR [25] 62.53 84.10 60.43 64.49 70.35 82.45 82.84 44.09 76.28

Training on BigBiGAN synthetic images:
GenRep Steering [28] 66.17 84.23 63.29 62.46 69.94 84.65 84.78 52.33 78.70
COP-Gen (ours) 67.05 84.09 62.44 63.82 73.56 84.63 84.36 51.84 78.81

4.3 Ablation Study

In this section we present a thorough analysis of COP-Gen and its influence on contrastive learning.

Default Setting. We conduct ablation experiments on ImageNet-100, a subset of ImageNet-1K,

Table 3: ImageNet-100 linear evaluation on pre-
trained encoders based on synthetic images of dif-
ferent ways of positive generation.

Method Tz Tx Top-1

Default setting:
GenRep [28] None SimCLR Aug. 58.26
GenRep [28] Gaussian SimCLR Aug. 62.62
GenRep [28] Steering SimCLR Aug. 63.08
COP-Gen (ours) Optimal SimCLR Aug. 63.96

Contrastive pretraining w/o data augmentation:
GenRep [28] Gaussian None 28.90
GenRep [28] Steering None 28.68
COP-Gen (ours) Optimal None 37.40

as done in [66, 15, 28]. In this setting, the syn-
thetic encoder is trained on 130K anchor images
sampled from pretrained BigBiGAN. Note that
these sampled images actually come from 1000
classes since the fixed BigBiGAN was trained
on unlabeled ImageNet-1K. Therefore, we here
only perform contrastive learning on these syn-
thetic images and report ImageNet-100 linear
evaluation results, since training a real encoder
on ImageNet-100 will be an unfair compari-
son. Here, the number of contrastive pretraining
epoch is set to 200, and other training hyper-
parameters and process are the same as those
in Section 4.1 by default. The ImageNet-100
linear evaluation results of the default setting
are presented in the upper part of Table 3.

Do We Still Need Data Augmentation Tx? Having obtained the optimal latent space transformation
Tz, a natural question is that do we still need data augmentation Tx when performing contrastive
learning. We answer this question by removing Tx and using only Tz to create positive pairs.
The results are shown in the bottom part of Table 3. It can be seen that in the absence of Tx, the
performance drops significantly, even though Tz obtained by our COP-Gen is optimal. And best
result is achieved by combining instance-specific latent (COP-Gen) and data space transformations.

Further, we conduct ablations by removing color, crop, and all transformations in the data
space respectively at both navigator learning and contrastive learning stages, to see whether
the learned Tz(·) (together with the frozen G) could cover these data space transformations.
As shown in Table 4, the large performance drops imply that G(Tz(·)) has poor ability to
cover color and crop augmentations, which are crucial when creating contrastive pairs [11].

Table 4: Ablation on Tx. Navigator training and
contrastive learning adopt the same policy.

Tx SimCLR Aug. w/o color w/o crop None

Top-1 63.96 55.26 43.84 36.16

The reason behind this is probably because im-
ages generated by GANs are usually object-
centric and color-biased [40]. To overcome this,
one might involve these complex Tx when train-
ing generative models G, or train G together
with our navigator Tz, so that G(Tz(·)) could
cover more Tx.

Number of Training Samples for Tz. By default, we decide when to terminate COP-Gen training pro-
cess by monitoring the quality of generated positives. This allows efficient experiments in Section 4.2
without operations like grid searching. Now, we increase the number of training samples to investigate
its influence on the generated positives and contrastive learning performance. For random anchor im-
ages, we show how the generated positives evolve over the training time in the middle part of Figure 3.
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Figure 3: Middle: Generated anchor-specific positives
by our COP-Gen approach with respect to the number
of training samples. A smoother evolution with more
examples is given in Figure 4 in Appendix. Right:
Results by other latent-transformation-based positive
generation methods.

It can be seen that: (1) In the first row, the
clothes of the person change and the back-
ground becomes simpler and simpler. On
the contrary, for an anchor with simple back-
ground (row 2), the training process makes it
gradually more complex. This phenomenon
shows that the learned positives are instance-
specific. In addition, the COP-Gen training
process only changes the above nuisance in-
formation between the positive pair, while
keeping the semantics (the person and the
obelisk) unchanged, so that the following
contrastive learning stage will not focus on
the semantic-irrelevant information. (2) As
for the last positive in row 4, the semantics
of the subject is changed (a human face ap-
pearing on the cup), which indicates that the
semantic consistency constraint is violated
and the training process should have been
terminated.

Table 5: Ablation on different numbers of
COP-Gen training samples.

Training Samples 200K 400K 600K

Top-1 63.96 64.12 63.56

The contrastive learning results using these positives
generated at different training periods are shown in Ta-
ble 5. Note that although the best performance may not
be achieved through simply and conservatively monitor-
ing the quality of generated positives, the results only
fluctuate slightly and all of them outperform other non-
instance-specific latent transformation methods.

Linear Tz. We also conduct experiments on modeling Tz as a linear trajectory. With such design, we
achieve 61.18% Top-1 accuracy, which falls behind non-linear Tz and other latent transformation
methods. This may be due to the limited modeling capability of linear transformations.

4.4 Visualization Analysis

We give a visual comparison on the generated positives with other latent transformation methods. As
shown in Figure 3, the “steering” method [54, 28], which learns a shared latent trajectory with random
scales to mimic data augmentations, causes unrealistic in a few images. This is partly because the
pretrained GANs could not achieve these strong data space transformations. Relatively, the Gaussian
transformation constructs positives in a conservative way after grid searching its standard deviation
[28], which only ensures the semantic consistency but lacks diversity. In contrast, our COP-Gen is
aware of the instance-specific nuisance information and removes that between the positives.

5 Related Work

Contrastive Learning. The goal of contrastive learning is to contrast positive with negative pairs
[6]. Without access to labels, positive pairs are typically created from a single image through data
augmentation while negative pairs are sampled randomly from the whole dataset [10, 11]. Many
works have been proposed to improve this strategy by correcting the sampling bias or mining hard
samples. For negative pairs, some works [14, 19] eliminate the false negatives in randomly sampled
pairs. Some works construct hard negatives from existing samples [15, 24, 17, 16, 53], or adversarial
perturbations [21, 18]. For positive pairs, Chen et al. [11] and Tian et al. [20] revisit common data
augmentations and Reed et al. [67] searches augmentation policies. To construct hard positives,
feature extrapolation [53] and neighbor discovery [24, 25, 26, 27, 68] are adopted.

Our goal is more than mining hard but to create optimal positives. The most relevant works to
ours are [69, 20] that share the same high level idea to construct positives with minimum sufficient
information. However, there are several fundamental differences. The work [69] focuses on graph
contrastive learning and the model design relies on domain knowledge, while our target is general
visual representation learning without any supervision. Besides proposing the InfoMin principle,
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Tian et. al [20] also conducted a view learning experiment to find optimal positives in data space.
However, the construction is under the color-channel splitting framework and requires the labels of
downstream task. In contrast, COP-Gen finds instance-specific optimal positives in the latent space
of pretrained unconditional generative models, which is a fully unsupervised setting.

Besides, the objective in [70, 71] simply pulls positives together without explicitly contrasting with
negative samples. We check if it is possible to combine our contrastive optimal positive generation
method with these non-contrastive frameworks in Appendix C.4.

Using Generative Models as Data Source. Deep generative models have been developed to
produce photo realistic images [36, 37, 72, 73], thus they can be used as great tools for generating
desired image datasets. Some works investigate intermediate GAN representations to construct part
segmentation datasets [74, 75], while some treat pretrained GANs as black-box models and use them
to augment data for robustness [76, 35] or ensembling [77]. The pretrained generative models can
be data source alone. Some works [78, 79] leverage class-conditional generative models to train a
classifier, while GenRep [28] and this paper focus on a more general setting of visual representation
learning.

Latent Space Navigation. A key technique for using pretrained generative models to produce
interested images is latent space navigation [32, 33, 80, 81, 46, 82, 83], which manipulates images
by discovering interpretable directions in the latent space. Different from these works, our goal is
to learn not only the direction but also the magnitude of the trajectory. In addition, the trajectory is
instance-specific, i.e., the learned transformations applied to different images have different meanings.
Refer to Figure 3 for the visualization result.

6 Discussion

In this paper, we propose an instance-specific contrastive positive generation approach based on well-
trained generative models. Thanks to the attractive property of the latent space, we simply optimize
a latent trajectory that reduces as much information as possible within a reasonable magnitude.
Theoretical analysis and experimental results demonstrate the effectiveness of our approach.

Limitations and Broader Impact. Since this work uses synthetic data to perform contrastive
learning, the performance naturally and partly depends on the quality of pretrained generative models.
Nevertheless, having seen that learning from synthetic dataset has outperformed learning from the
real, which might impact representation learning community as a whole, we are inspired to further
develop more proper generative models (e.g., to reduce the reliance on data space augmentations) as
dataset sources to perform contrastive learning.

Besides, learning from synthetic data alleviates several societal issues of learning from real datasets,
which might be private [84] or biased [85]. On the other hand, pretrained generative models may still
leak [86] or inherit the biases from the training data [87]. These risks and impacts on representation
learning need to be considered when leveraging pretrained generative models as the data source.

Take a class-imbalanced setting for example. Although vanilla contrastive learning can learn more
balanced feature space than its supervised counterpart since it does not use labels [88], it still could
not immune to imbalance. It is hypothesized that the high-frequency “classes” might dominate the
learning process and leaves the low-frequency “classes” under-learned [89]. We here hypothesize
that the learning of samples from low-frequency “classes” might benefit from COP-Gen generated
positives. The training process of COP-Gen has seen the overall imbalanced distribution thus has the
potential to take it into consideration to create more proper positives.
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perimental results (either in the supplemental material or as a URL)? [No] Our code
and models will be released once this paper is accepted. We gave the pseudo code in
Appendix A and experimental details in Section 4 and Appendix C.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see the detailed experimental settings in Section 4 and
Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Because contrastive learning is computationally expensive,
e.g., ∼3 days for 100 epoch contrastive pretraining and ∼1 day for the downstream
object detection on 2 GPUs. It would be expensive for us to run all baselines and our
method multiple times or perform longer pretraining. Nevertheless, consistent results
can be observed from Section 4.3, where 200 epochs pretraining are conducted on a
smaller set of ImageNet.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the creators

of datasets, pretrained models we use. Our codes are implemented based on GenRep,
which together with the reproduced methods are mentioned in Appendix C.1.

(b) Did you mention the license of the assets? [Yes] Please see Appendix C.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We did not introduce new assets in this work.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We use public datasets (ImageNet, PASCAL VOC, and MNIST)
and public pretrained generative models (BigBiGAN and BigGAN trained on ImageNet
and Residual Flow trained on MNIST) which allow researchers to use.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We use public datasets, as summarized above,
contain objects, animals, numbers, etc.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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