
A Derivation of the Generalized Bayes Classifier

In this Appendix, we prove Theorem 3, in which we characterize a stochastic generalization of the
Bayes classifier to arbitrary CMMs. We reiterate the theorem for the reader here:
Theorem 3. If argmax

pY PSC MpC
pY q ‰ ∅, then there exists a regression-thresholding classifier

pYp,t,η P argmax
pY PSC

MpC
pY q.

As described in the main paper, unlike prior results [Koyejo et al., 2014, Yan et al., 2018, Wang
et al., 2019b], we do not assume that the distribution of ηpXq is absolutely continuous. This makes
proving Theorem considerably more complicated than these previous results. We prove Theorem 3
in a sequence of steps, constructing optimal classifiers in forms progressively closer to that of the
generalized Bayes classifier described in Theorem 3. Specifically, we first show, in Lemma 18, that
there exists an optimal classifier that is a (stochastic) function of the true regression function η˚.
We then construct an optimal classifier in which this function of η˚ is non-decreasing. Finally, we
construct an optimal classifier in which this function of η˚ is a threshold function, as in Theorem 3.

Lemma 18. For any stochastic classifier pY : X Ñ B, there is a stochastic classifier pY 1 : X Ñ B of
the form

pY 1pxq „ Bernoullipfpη˚pxqqq, (6)
for some f : r0, 1s Ñ r0, 1s, such that C

pY 1 “ C
pY .

Proof. We start by defining the regression function and discussing formal probability notation. Let
F “ σpη˚pZqq be the σ-field generated by the true regression function η˚pZq. Define pY 1 : X Ñ B
by

pY 1pxq „ Bernoulli
ˆ

E
Z„PX

”

pY pZq

ˇ

ˇ

ˇ
F
ı

pη˚pxqq

˙

,

where by the η˚pxq we are explicitly indicating that η˚pxq is the input to the conditional expectation,
as the conditional expectation is a measurable function of η˚pZq. In the sequel, following standard
conventions, we omit such notation. Note that pY 1 has the desired form and is defined almost surely.

Now, we get our final notes in place before proceeding with calculations. Let G “ σpXq be the
σ-field generated by X .

A key step in the proof is showing the equality

E
”

Y pY 1pXq

ˇ

ˇ

ˇ
F
ı

“ η˚pXqE
”

pY pXq

ˇ

ˇ

ˇ
F
ı

“ E
”

Y pY pXq

ˇ

ˇ

ˇ
F
ı

. (7)

We first provide an intuitive summary. Observe that conditioned on η˚pXq, Y is independent of pY
and pY 1 separately. Thus, we can integrate over Y and get the η˚pXq. By the definition of pY 1 we
obtain the conditional expectation with respect to Y , and we have the resulting equality.

For the time being, taking Equation (7) as fact, we complete the rest of the proof. Combining
Equation (7) and the tower property of conditional expectation, we have

TP
pY 1 “ E

”

Y pY 1pXq

ı

“ E
”

E
”

Y pY 1pXq

ˇ

ˇ

ˇ
F
ıı

“ E
”

E
”

Y pY pXq

ˇ

ˇ

ˇ
F
ıı

“ E
”

Y pY pXq

ı

“ TP
pY .

Similarly, one can check that C
pY 1 “ C

pY .

Proof of Equation (7). We now present the formal details to establish Equation (7), which may
be skipped if one is uninterested in the measure-theoretic details. We first to set up the random
variables needed to formalize the above intuition. Let S, T , U , V , and W be random variables. Let
pS, T q “ pη˚pXq, Xq. We also require U and V to be uniform on r0, 1s. We need not specify the
precise distribution W . Further, let pS, T q, U , V , and W all be independent. For notation purposes,
it is convenient for the underlying probability space pΩ,G,Pq to be the product probability space of
some probability spaces to the extent possible. In particular, we require the set Ω “

ŚW
i“S Ωi and a

set B in G to have a product structure B “
ŚW

i“S Bi for ease of exposition. Note that the measure P
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is not a product measure, as S and T are dependent, although it is a product measure with respect to
the laws of pS, T q, U , V , W .

Now, we define Y , pY 1, and pY in terms of U , V , W , and X . Define

Y pη˚pXqq “ 1tU ď η˚pXqu

pY 1pη˚pXqq “ 1tV ď ErpY |Fsu

pY pXq “ rpS, T,W q,

where here U serves as the noise in Y , V serves as the internal randomization of pY 1, and W serves
as the possible internal randomization of pY . Here, 1 is the indicator taking the value 1 if the event in
curly braces occurs and 0 otherwise, and r is some function. Note that this is still of the desired form.

To prove the first part of Equation (7), i.e., to show that the middle term M “ η˚pXqErpY pXq|Fs “

S ErpY |Fs is indeed the conditional expectation of the left of Equation (7), we must verify two
conditions: (i) M is F-measurable and (ii) the integrals of Y pY 1 and M are identical on any event
A in F [Durrett, 2010, page 221]. Condition (i) is immediate, since M is a function of η˚pXq and
nothing more.

For condition (ii), we do a bit of computation. Let A “ AS ˆ AT ˆ AU ˆ AV ˆ AW be an event
in F . Note that because A is F-measurable, the sets AU and AV must be all of ΩU and ΩV or the
empty set. Suppose for the moment that both are non-empty. Then, we have

ż

A

Y pY 1dP “

ż

AS

ż

AV

ż

AU

1 tU ď Su1tV ď ErpY |FsudPUdPV dPS

“

ż

AS

ż

AV

S1tV ď ErpY |FsudPV dPS

“

ż

AS

S ErpY |FsdPS

“

ż

A

S ErpY |FsdP.

Note that the crucial first and last equalities in which we break and reform the integral over the entire
event in terms of its coordinates is possible due to Fubini’s theorem for integrable functions. This
proves the desired equality when AU “ ΩU and AV “ ΩV , and from the preceding calculation we
can see that the integrals are both 0 when either AU “ H or AV “ H, and so the desired equality
holds. This establishes the left equality of Equation (7).

Establishing the right hand side of Equation (7) also takes a bit of calculation. First, we have already
verified the measurability condition (i), and so all that remains is to check the integral equality. Again,
let A be an event in F , and assume that AT , AU , and AW are non-empty. We have

ż

A

Y pY dP “

ż

AS

ż

AT

ż

AW

ż

AU

1 tU ď Su rpS, T,W qdPUdPW dPT dPS

“

ż

AS

ż

AT

ż

AW

S rpS, T,W qdPW dPT dPS

“

ż

AS

S

ˆ
ż

AT

ż

AW

rpS, T,W qdPW dPT

˙

dPS .

Note that Fubini’s theorem is again used in the first step. In the event that any of AT , AU , or AW

is empty, then the above equation is 0 and equality holds. Now, we have to show that the random
variable M 1 “

ş

AT

ş

AW
rpS, T,W qdPW dPT |S is the conditional expectation of pY with respect to

F . Measurability is readily apparent, as M 1 is a function of S and no more. Now, we check the
condition that pY and M 1 have the same integral on an event A in F . Again assume that AU and AW

are non-empty, observing in the calculation to follow that equality holds with the value 0 if either is
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empty. Using Fubini’s theorem and some direct computation, we have
ż

A

pY dP “

ż

A

rpS, T,W qdP

“

ż

AS

ż

AT

ż

AW

rpS, T,W qdPW dPT dPS

“

ż

A

ˆ
ż

AT

ż

AW

rpS, T,W qdPW dPT

˙

dP

“

ż

A

M 1dP.

This completes the proof that the conditional expectation of pY is M 1, and so it proves that the
conditional expectation of Y pY is η˚pXqErpY |Fs. This is the right equality of Equation (7), thus
completing the proof.

It follows from Lemma 18 that, if MpC
pY q is maximized by any stochastic classifier, then it is

maximized by a classifier pY of the form in Eq. (6). It remains to show that f in Eq. (6) can be of the
form z ÞÑ p1tz “ tu ` 1tz ą tu for some threshold pp, tq P r0, 1s2. Before proving this, we give a
simplifying lemma showing that the problem of maximizing a CMM can be equivalently framed as a
particular functional optimization problem. This will allow us to to significantly simplify the notation
in the subsequent proofs.

Lemma 19. Let M be a CMM, and suppose that MpC
pY q is maximized (over SC) by a classifier pY

of the form
pY pxq „ Bernoullipfpηpxqqq,

for some f˚ : r0, 1s Ñ r0, 1s. Let f be a solution to the optimization problem

max
f :r0,1sÑr0,1s

ErηpXqfpηpXqqs s.t. Erp1 ´ ηpXqqfpηpXqqs ď Erp1 ´ ηpXqqf˚pηpXqqs. (8)

Then, the classifier
pY 1pxq „ Bernoullipfpηpxqqq,

also maximizes MpC
pY 1 q (over SC).

Proof. This result follows from the definition (Definition 1) of a CMM. Specifically, by construction
of pY 1,

TP
pY 1 “ ErηpXqfpηpXqqs ě ErηpXqf˚pηpXqqs “ TP

pY

and
FP

pY 1 “ Erp1 ´ ηpXqqfpηpXqqs ď Erp1 ´ ηpXqqf˚pηpXqqs “ FP
pY .

Moreover, since the proportions of positive and negative true labels are independent of the chosen
classifier (i.e., TP

pY 1 ` FN
pY 1 “ TP

pY ` FN
pY and FP

pY 1 ` TN
pY 1 “ FP

pY ` TN
pY ), we have

C
pY 1 “

„

TN
pY ` ϵ1 FP

pY ´ ϵ1
FN

pY ´ ϵ2 TP
pY ` ϵ2,

ȷ

,

where ϵ1 :“ FP
pY ´ FP

pY 1 P r0,FP
pY s and ϵ2 :“ TP

pY 1 ´ TP
pY P r0,FNs. Thus, by the definition

(Definition 1) of a CMM, MpC
pY 1 q ě MpC

pY q.

Lemma 19 essentially shows that maximizing any CMM M is equivalent to performing Neyman-
Pearson classification, at some particular false positive level α depending on M (through f˚) and on
the distribution of ηpXq. For our purposes, this simplifies the remaining steps in proving Theorem 3
by allowing us to ignore the details of the particular CMM M and regression function η and focus on
characterizing solutions to an optimization problem of the form (8) (see, specifically, (9) below).

To characterize solutions to this optimization problem, we will utilize the following two measure-
theoretic technical lemmas:
Lemma 20. Let µ be a measure on r0, 1s with µpr0, 1sq ą 0. Then, there exists z P R such that, for
all ϵ ą 0, µpr0, 1s X pz ´ ϵ, zqq ą 0.
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Proof. We prove the contrapositive. Suppose that, for every z P r0, 1s, there exists ϵz ą 0 such that
µpr0, 1s X pz ´ ϵz, zqq “ 0. The family S :“ tr0, 1s X pz ´ ϵz, zq : z P Ru is an open cover of
r0, 1s. Since r0, 1s is compact, there exists a finite sub-cover S 1 Ď S of r0, 1s. Thus, by countable
subaddivity of measures,

µpr0, 1sq ď
ÿ

SPS1

µpSq “ 0.

Lemma 21. Let pX ,Σ, µq be a measure space, let E,F P Σ be measurable sets, and let f : X Ñ R
be a Σ-measurable function. If

ess sup
µ

fpEq ą ess inf
µ

fpF q,

then there exist measurable sets A Ď E and B Ď F with µpAq, µpBq ą 0, and

inf
xPA

fpxq ą sup
xPB

fpxq.

Proof. If ess supµ fpEq ą ess infµ fpF q, then there exist a ą b such that ess supµ fpEq ą a ą

b ą ess infµ fpF q. Since ess supµ fpEq ą a, it follows that PZpE X tz : fpzq ě auq ą 0.
Similarly, since ess infµ fpF q ă b, it follows that PZpF X tz : fpzq ď buq ą 0. Hence, letting
A “ E X tz : fpzq ě au and B “ F X tz : fpzq ď bu, we have

inf
zPA

fpzq ě a ą b ě sup
zPB

fpzq.

We are now ready for the main remaining step in the proof of Theorem 3, namely characterizing
solutions of (a generalization of) the optimization problem (8):
Lemma 22. Let Z be a r0, 1s-valued random variable, and let c P r0, 1s. Suppose that the
optimization problem

max
f :r0,1sÑr0,1s measurable

ErZfpZqs subject to Erp1 ´ ZqfpZqs ď c (9)

has a solution. Then, there is a solution to (9) that is a stochastic threshold function.

Proof. Suppose that there exists a solution f to (9). We will construct a stochastic threshold function
that solves (9) in two main steps. First, we will construct a monotone solution to (9). Second, we will
show that this monotone solution is equal to a stochastic threshold function except perhaps on a set of
probability 0 with respect to Z. This stochastic threshold function is therefore a solution to (9).

Construction of Monotone Solution to (9): Define

gpzq :“ ess sup
PZ

fpr0, zsq and hpzq :“ ess inf
PZ

fppz, 1sq,

where the essential supremum and infimum are taken with respect to the measure PZ of Z, with the
conventions gpzq “ 0 whenever PZpr0, zsq “ 0 and hpzq “ 1 whenever PZppz, 1sq “ 0. We first
show that, for all z P r0, 1s, gpzq ď hpzq. We will then use this to show that g “ f except on a set of
PZ measure 0 (i.e., PZptz P r0, 1s : gpzq ‰ fpzquq “ 0). Therefore, both ErZgpZqs “ ErZfpZqs

and Erp1´ZqgpZqs “ Erp1´ZqfpZqs. Since g : r0, 1s Ñ r0, 1s is clearly monotone non-decreasing,
the result follows.

Suppose, for sake of contradiction, that, for some z P r0, 1s, gpzq ą hpzq. By Lemma 21, there
exist A Ď r0, zs and B Ď pz, 1s such that infzPA fpzq ą supzPB fpzq and PZpAq, PZpBq ą 0.
Define zA :“ ErZ|Z P As and zB :“ ErZ|Z P Bs, and note that, since A Ď r0, zs and B Ď pz, 1s,
zA ă zB . Define,

ϵ :“ min

"

PZpAqp1 ´ zAq

PZpBqp1 ´ zBq
inf
zPA

fpzq, 1 ´ sup
zPB

fpzq

*

ą 0
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and define ϕ : r0, 1s Ñ r0, 1s by

ϕpzq :“

$

&

%

fpzq ´ ϵPZpBqp1´zBq

PZpAqp1´zAq
if z P A

fpzq ` ϵ if z P B
fpzq otherwise,

noting that, by construction of ϵ, ϕpzq P r0, 1s for all z P r0, 1s. Then, by construction of ϕ,

Erp1 ´ ZqϕpZqs ´ Erp1 ´ ZqfpZqs “ ´p1 ´ zAqϵ
PZpBqp1 ´ zBq

PZpAqp1 ´ zAq
PZpAq ` p1 ´ zBqϵPZpBq

“ 0 ¨ ϵ “ 0,

while

ErZϕpZqs ´ ErZfpZqs “ ´zAϵ
PZpBqp1 ´ zBq

PZpAqp1 ´ zAq
PZpAq ` zBϵPZpBq

“

ˆ

´
zA

1 ´ zA
p1 ´ zBq ` zB

˙

ϵPZpBq ą 0,

since the function z ÞÑ z
1´z is strictly increasing. This contradicts the assumption that f optimizes (9),

implying g ď h.

We now show that g “ f except on a set of PZ measure 0. First, note that, if gpzq ‰ fpzq, then
gpzq “ ess sup fpr0, zsq “ ess sup fpr0, zqq, and so g is left-continuous at z.

For any δ ą 0, define

Aδ :“ tz P r0, 1s : gpzq ă fpzq ´ δu and Bδ :“ tz P r0, 1s : gpzq ą fpzq ` δu .

Since

tz P r0, 1s : gpzq ă fpzqu “

8
ď

j“1

"

z P r0, 1s : gpzq ă fpzq ´
1

j

*

and

tz P r0, 1s : gpzq ą fpzqu “

8
ď

j“1

"

z P r0, 1s : gpzq ą fpzq `
1

j

*

,

by countable subadditivity, it suffices to show that PZpAδq “ PZpBδq “ 0 for all δ ą 0.

Suppose, for sake of contradiction, that PZpAδq ą 0. Applying Lemma 20 to the measure E ÞÑ

PZpAδ X Eq, there exists z P R such that, for any ϵ ą 0, PZpAδ X pz ´ ϵ, zqq ą 0. Since g is
continuous at z, there exists ϵ ą 0 such that gpz ´ ϵq ě gpzq ´ δ, so that, for all z P Aδ X pz ´ ϵ, zq,
fpzq ą gpzq ` δ. Then, since PZpAδ X pz ´ ϵ, zqq ą 0, we have the contradiction

gpzq ě ess sup fpAδ X pz ´ ϵ, zqq ą gpzq.

On the other hand, suppose, for sake of contradiction, that PZpBδq ą 0. Applying Lemma 20 to the
measure E ÞÑ PZpBδ X Eq, there exists z P R such that, for any ϵ ą 0, PZpBδ X pz ´ ϵ, zqq ą 0.
Since g is continuous at z, there exists ϵ ą 0 such that gpz ´ ϵq ě gpzq ´ δ. At the same time,
since g is non-decreasing, for t P Bδ X pz ´ ϵ, zq, fptq ă gptq ´ δ ď gpzq ´ δ. Thus, since
PZpBδ X pz ´ ϵ, zqq ą 0, we have hpz ´ ϵq ă gpzq ´ δ ă gpz ´ ϵq, contradicting the previously
shown fact that g ď h.

To conclude, we have shown that PZptz P r0, 1s : gpzq ‰ fpzquq “ 0.

Construction of a Stochastic Threshold Solution: We now construct a solution to (9) that is equal
to a stochastic threshold function (i.e., a function that has the form p1tz “ tu ` 1tz ą tu) except on
a set of PZ-measure 0. To show this, it suffices to construct a function f : r0, 1s Ñ r0, 1s such that
(a) f is monotone non-decreasing and (b) the set f´1pp0, 1qq is the union of the singleton ttu and a
set of PZ-measure 0.

From the previous step of this proof, we may assume that we have a solution f to (9) that is monotone
non-decreasing. It suffices therefore to show that A :“ f´1pp0, 1qq is the union of a singleton and a
set of PZ-measure 0. Define

t0 :“ inftz P r0, 1s : PZpA X r0, zsq ą 0u and t1 :“ suptz P r0, 1s : PZpA X rz, 1sq ą 0u.
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Then, for all ϵ ą 0, PZpA X r0, t0 ´ ϵsq “ PZpA X rt1 ` ϵ, 1sq “ 0. Hence, if t0 “ t1, then, since

Aztt0u “

8
ď

j“1

A X pr0, t0 ´ 1{js Y rt1 ` 1{j, 1sq

by countable subadditivity, PZpAztt0uq “ 0, which implies that A “ tt0u Y pAztt0uq is the union
of a singleton and a set of measure 0.

It suffices therefore to prove that t0 “ t1. It is easy to see, from the definitions of t0 and t1, that
t0 ď t1. Suppose, for sake of contradiction, that t0 ă t1. Then, there exists t P pt0, t1q, and, by
definition of t0 and t1, both PZpA X r0, tqq ą 0 and PZpA X pt, 1sq ą 0. For any δ ě 0, define

Bδ :“ tz P r0, tq : δ ă fpzq ă 1 ´ δu and Cδ :“ tz P pt, 1s : δ ă fpzq ă 1 ´ δu,

so that PZpB0q ą 0 and PZpC0q ą 0. By countable subadditivity, there exists δ ą 0 such that
PZpBδq ą 0 and PZpCδq ą 0.

Define ϵ :“ δ ¨ mintPZpBδq, PZpCδquu ą 0. Define g : r0, 1s Ñ R for all z P r0, 1s by

gpzq “

$

&

%

fpzq ´ ϵ
PZpBδq

if z P Bδ

fpzq ` ϵ
PZpCδq

if z P Cδ

fpzq otherwise.
,

and note that, by definition of ϵ, Bδ , and Cδ , g : r0, 1s Ñ r0, 1s. Then,

ErgpZqs ´ ErfpZqs “ ´
ϵ

PZpBδq
PZpBδq `

ϵ

PZpCδq
PZpCδq “ 0,

while

ErZgpZqs ´ ErZfpZqs “ ´ErZ|Z P Bδs
ϵ

PZpBδq
PZpBδq ` ErZ|Z P Cδs

ϵ

PZpCδq
PZpCδq

“ ϵ pErZ|Z P Cδs ´ ErZ|Z P Bδsq .

Since Bδ Ď r0, tq and Cδ Ď pt, 1s, this difference is strictly positive, contradicting the assumption
that f optimizes (9).

Combining Lemma 22 with Lemma 19 completes the proof of our main result, Theorem 3.

A.1 Extension to AUROC

For any regression function η, the receiver operating characteristic (ROC) function ROCη : r0, 1s Ñ

r0, 1s is
ROCηpxq :“ sup

pp,tqPr0,1s2
TP

pYp,t,η
¨ 1tFP

pYp,t,η
ď xu for all x P r0, 1s, (10)

i.e., ROCpxq is the maximum true positive probability (over all regression-thresholding classifiers
with regression function η) achievable while keeping the false positive probability below x. The area
under the ROC curve (AUROC) is then given by

AUROCη “

ż 1

0

ROCηpxq dx. (11)

While AUROC is not a CMM (as it depends on the entire family of confusion matrices computed at
all possible thresholds pp, tq P r0, 1s2), AUROC is widely used to measure performance of classifiers
across the classification thresholds. Here, we show that our Theorem 3 extends naturally from CMMs
to AUROC.

We begin by noting that, for any x P r0, 1s, the performance measure TP ¨ 1tFP ď xu is a CMM.
Therefore, letting η˚ denote the true regression function, by Theorem 3, there exists a threshold
pp, tq P r0, 1s2 such that the regression-thresholding classifier pYp,t,η˚ P argmax

pY PSC TP¨1tFP ď xu;
i.e., pYp,t,η˚ maximizes TP ¨1tFP ď xu over all stochastic classifiers. By definition of ROC (Eq. (10)),
it follows that, for any x P r0, 1s,

η˚ P argmax
η:XÑr0,1s

ROCηpxq,
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and, by definition AUROC (Eq. (11)), it then follows that

η˚ P argmax
η:XÑr0,1s

AUROCη .

To conclude, we have shown that thresholding the true regression function is optimal not only under
any CMM but also under AUROC. A identical argument can be made for other performance measures,
such as the area under the precision-recall curve (AUPRC), that aggregate CMMs across multiple
classification thresholds.

B Relative Performance Guarantees in terms of the Generalized Bayes
Classifier

In this Appendix, we prove Lemmas 5 and 6, as well as their consequence, Corollary 8. Also, in
Section B.1, we demonstrate, in a few key examples, how to compute the Lipschitz constant used in
Corollary 8.

We begin with the proof of Lemma 5, which, at a given threshold pp, tq, bounds the difference
between the confusion matrices of the true regression function η and an estimate η1 of η. We restate
the result for the reader’s convenience:

Lemma 5. Let p, t P r0, 1s and let η, η1 : X Ñ r0, 1s. Then,
›

›

›
C

pYp,t,η
´ C

pYp,t,η1

›

›

›

8
ď P

“

|ηpXq ´ t| ď
›

›η ´ η1
›

›

8

‰

. (12)

Proof. For the true negative probability, we have
ˇ

ˇ

ˇ
TN

pYp,t,η
´ TN

pYp,t,η1

ˇ

ˇ

ˇ
“
ˇ

ˇP
“

Y “ 0, η1pXq ď t ă ηpXq
‰

´ PrY “ 0, ηpXq ď t ă η1pXqs
ˇ

ˇ

ď P
“

|ηpXq ´ t| ď }η ´ η1}8

‰

.

This type of inequality is standard and follows from the fact that, if t lies between η and η1, then the
difference of η and t is necessarily less than η and η1. Repeating this calculation for the true positive,
false positive, and false negative probabilities gives (12).

Note that, in the presence of degree r Uniform Class Imbalance (see Section 5), one can obtain a
tighter error bound rP r|ηpXq ´ t| ď }η ´ η1}8s for the true positive and false negative probabilities
because, for all x P X , PrY “ 1|X “ xs ď r. However, the weaker bound (12) simplifies the
exposition.

We now turn to proving Lemma 6, which we use to bound the maximum difference between the
empirical and true confusion matrices of a regression-thresholding classifier over thresholds pp, tq.
Specifically, we will use this result to bound the difference in confusion matrices between the optimal
threshold pp˚, t˚q and the threshold ppp,ptq selected by maximizing the empirical CMM. We actually
prove a more general version of Lemma 6, for arbitrary classifiers, based on the following definition:

Definition 23 (Stochastic Growth Function). Let F be a family of r0, 1s-valued functions on X .
The stochastic growth function ΠF : N Ñ N, defined by

ΠF pnq :“ max
x1,...,xnPX ,
z1,...,znPr0,1s

|tp1tfpxiq ą ziuq
n
i“1 : f P Fu| for all n P N,

is the maximum number of distinct classifications of n points x1, ..., xn by a stochastic classifier pY

with px ÞÑ ErpY pxqsq P F and randomness given by z1, ..., zn.

Definition 23 generalizes the growth function [Mohri et al., 2018], a classical measure of the com-
plexity of a hypothesis class originally due to Vapnik and Chervonenkis [2015], to non-deterministic
classifiers. Importantly for our purposes, one can easily bound the stochastic growth function of
regression-thresholding classifiers:
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Example 24 (Stochastic Growth Function of Regression-Thresholding Classifiers). Suppose

F “ tf : X Ñ r0, 1s| for some p, t P r0, 1s, fpxq “ p ¨ 1tηpxq “ tu ` 1tηpxq ą tu for all x P X u ,

so that tpYf,η : f P Fu is the class of regression-thresholding classifiers. Any set of points
px1, z1q, ..., pxn, znq, can be sorted in increasing order by ηpxq’s, breaking ties in decreasing order by
z’s. Having sorted the points in this way, tfpxq ą zu “ 0 for the first j points and tfpxq ą zu “ 1
for the remaining n ´ j points, for some j P rns Y t0u. Thus, ΠF pnq “ n ` 1.

We will now prove the following result, from which, together with Example 24, Lemma 6 follows
immediately:

Lemma 6 (Generalized Version). Let F be a family of r0, 1s-valued functions on X . Then, with
probability at least 1 ´ δ,

sup
fPF

›

›

›

pC
pYf

´ C
pYf

›

›

›

8
ď

c

8

n
log

32ΠF p2nq

δ
.

Before proving Lemma 6, we note a standard symmetrization lemma, which allows us to replace the
expectation of xTN

pYp,t,η
with its value on an independent, identically distributed “ghost sample”.

Lemma 25 (Symmetrization; Lemma 2 of Bousquet et al. [2003]). Let X and X 1 be independent
realizations of a random variable with respect to which F is a family of integrable functions. Then,
for any ϵ ą 0,

P

«

sup
fPF

fpXq ´ E fpXq ą ϵ

ff

ď 2P

«

sup
fPF

fpXq ´ fpX 1q ą
ϵ

2

ff

.

We now use this lemma to prove Lemma 6.

Proof. To facilitate analyzing the stochastic aspect of the classifier pYf,η, let Z1, ..., Zn
IID
„

Uniformpr0, 1sq, such that pYf,ηpXiq “ 1tZi ă fpηppXiqqu.

Now suppose that we have a ghost sample pX 1
1, Y

1
1 , Z

1
1q, ..., pX 1

n, Y
1
n, Z

1
nq. Let xTN

1

pYf,η
denote the

empirical true negative probability computed on this ghost sample, and let xTN
piq
pYf,η

denote the empirical
true negative probability computed on

pX1, Y1, Z1q, ..., pXi´1, Yi´1Zi´1q, pX 1
i, Y

1
i , Z

1
iq, pXi`1, Yi`1, Zi`1q, ...pXn, Yn, Znq

(i.e., replacing only the ith sample with its ghost). By the Symmetrization Lemma,

P

«

sup
fPF

xTN
pYf,η

´ E xTN
pYf,η

ą ϵ

ff

ď 2P

«

sup
fPF

xTN
pYf,η

´ xTN
1

pYf,η
ą ϵ{2

ff

ď 2ΠF p2nq sup
fPF

P
”

xTN
pYf,η

´ xTN
1

pYf,η
ą ϵ{2

ı

ď 4ΠF p2nq sup
fPF

P
”

xTN
pYf,η

´ E xTN
pYf,η

ą ϵ{4
ı

, (13)

where the second inequality is a union bound over the ΠF p2nq distinct classifications of 2n points
that can be assigned by pYf,η with f P F , and the last inequality is from the fact that xTN

pYf,η
and

xTN
1

pYf,η
are identically distributed and the algebraic fact that, if a ´ b ą ϵ, then either a ´ c ą ϵ{2 or

b ´ c ą ϵ{2.

For any particular f P F , by McDiarmid’s inequality [McDiarmid, 1998],

P
”

xTN
pYf,η

´ E xTN
pYf,η

ą ϵ{4
ı

ď e´nϵ2{8, (14)
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since, for any i P rns,
ˇ

ˇ

ˇ

ˇ

xTN
pYf,η

´ xTN
piq
pYf,η

ˇ

ˇ

ˇ

ˇ

“
1

n

ˇ

ˇ

ˇ
1
!

Yi “ pYf,ηpXiq “ 0
)

´ 1
!

Y 1
i “ pYf,ηpX 1

iq “ 0
)
ˇ

ˇ

ˇ
ď

1

n
.

Plugging Inequality (14) into Inequality (13) gives

P

«

sup
fPF

xTN
pYf,η

´ E xTN
pYf,η

ą ϵ

ff

ď 4ΠF p2nqe´nϵ2{8.

Repeating this argument with ´xTN instead of xTN, as well as with xTP, xFN, xFP and their negatives,
and taking a union bound over these 8 cases, gives the desired result.

Finally, we will use these two lemmas, together with the margin and Lipschitz assumptions, to prove
Corollary 8, which bounds the sub-optimality of the trained classifier, relative to the generalized
Bayes classifier, in terms of the desired CMM.

Corollary 8. Let η : X Ñ r0, 1s denote the true regression function, and let pη : X Ñ r0, 1s denote
any empirical regressor. Let

`

pp,pt
˘

:“ argmax
pp,tqPr0,1s2

M
´

pC
pYp,t, pη

¯

and pp˚, t˚q :“ argmax
pp,tqPr0,1s2

M
´

C
pYp,t,η

¯

denote the empirically selected and true optimal thresholds, respectively. Suppose that M is Lipschitz
continuous with constant LM with respect to the uniform (L8) metric on C. Finally, suppose that
PX and η satisfies a pC, βq-margin condition around t˚. Then, with probability at least 1 ´ δ,

M
´

C
pYp,t,η

pp˚, t˚q

¯

´ M
´

C
pYp,t, pη

`

pp,pt
˘

¯

ď LM

˜

C }η ´ pη}
β
8 ` 2

c

8

n
log

32p2n ` 1q

δ

¸

.

Proof. First, note that

M
´

C
pYp˚,t˚,η

¯

´ M
´

C
pY
pp,pt, pη

¯

ď M
´

C
pYp˚,t˚,η

¯

´ M
´

C
pYp˚,t˚, pη

¯

` M
´

C
pYp˚,t˚, pη

¯

´ M
´

pC
pYp˚,t˚, pη

¯

` M
´

pC
pY
pp,pt, pη

¯

´ M
´

C
pY
pp,pt, pη

¯

,

since, by definition of ppp,ptq,

M
´

pC
pYp˚,t˚, pη

¯

´ M
´

pC
pY
pp,pt, pη

¯

ď 0;

this term sits between the second and third lines above. By the Lipschitz assumption,

M
´

C
pYp˚,t˚,η

¯

´ M
´

C
pY
pp,pt, pη

¯

ď LM

ˆ

›

›

›
C

pYp˚,t˚,η
´ C

pYp˚,t˚, pη

›

›

›

8
(15)

`

›

›

›
C

pYp˚,t˚, pη
´ pC

pYp˚,t˚, pη

›

›

›

8
(16)

`

›

›

›

pC
pY
pp,pt, pη

´ C
pY
pp,pt, pη

›

›

›

8

˙

. (17)

Corollary 8 follows by applying Lemma 5 and the pC, βq-margin condition to (15) and applying
Lemma 6 to both terms (16) and (17).
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B.1 Lipschitz constants for some common CMMs

Corollary 8 assumed that the CMM M was Lipschitz continuous with respect to the sup-norm on
confusion matrices. In this section, we show how to compute appropriate Lipschitz constants for
several simple example CMMs. We begin with a simple example:

Example 26 (Weighted Accuracy). For a fixed w P p0, 1q, the w-weighted accuracy is given by
MpCq “ p1 ´ wqTP ` wTN. In this case, M clearly has Lipschitz constant LM “ maxtw, 1 ´ wu.

For the remainder of this section (only), we will use P :“ ErY s to denote the positive probability
of the true labels and pP :“ 1

n

řn
i“1 Yi to denote the empirical positive probability of the true labels.

Many CMMs of interest, such as Recall and Fβ scores, are not Lipschitz continuous over all of C.
Fortunately, inspecting the proof of Corollary 8, it suffices for the CMM M to be Lipschitz continuous
on the line segments between three specific pairs of confusion matrices, given in Eqs. (15), (16), and
(17). Deriving the appropriate Lipschitz constants is a bit more complex, and we demonstrate here
how to derive them for the specific CMMs of Recall and Fβ scores.

Of the six confusion matrices in Eqs. (15), (16), and (17), four are true confusion matrices, while
the other two are empirical. The four true confusion matrices have the same positive probability
TP ` FN “ P , which is a function of the true distribution of labels. The two empirical confusion
matrices have the positive probability xTP ` xFN “ pP , which is a function of the data. By a
multiplicative Chernoff bound, with probability at least 1 ´ e´nP {8, pP ě P {2. Thus, with high
probability, it suffices for the CMM M to be Lipschitz continuous over confusion matrices with
positive probability at least P {2. For Recall and Fβ scores, this gives the following Lipschitz
constants:

Example 27 (Recall). Recall is given by MpCq “ TP
TP`FN “ TP

P . Thus, M is Lipschitz continuous
with constant LM “ 2

P over the confusion matrices in Eqs. (15), (16), and (17).

Example 28 (Fβ Score). For β P p0,8q, the Fβ score is given by

MpCq “
p1 ` β2qTP

p1 ` β2qTP ` FP ` β2FN
“

p1 ` β2qTP
TP ` FP ` β2P

.

Hence,
ˇ

ˇ

ˇ

ˇ

B

BTP
MpCq

ˇ

ˇ

ˇ

ˇ

“ p1 ` β2q
FP ` β2P

pTP ` FP ` β2P q
2 ď

1 ` β2

β2P
,

while, since TP ď P ,
ˇ

ˇ

ˇ

ˇ

B

BFP
MpCq

ˇ

ˇ

ˇ

ˇ

“ p1 ` β2q
TP

pTP ` FP ` β2P q
2 ď

1 ` β2

β4P
.

Hence, M is Lipschitz continuous with constant 2p1`β2
q

P max
␣

β´2, β´4
(

over the confusion matri-
ces in Eqs. (15), (16), and (17).

As Examples 27 and 28 demonstrate, the Lipschitz constants of some CMMs can become large

when the proportion P is positive samples is small. In particular, when P P O

ˆ

b

logn
n

˙

, the

— LM

b

logpn{δq

n term of Corollary 8 fails to vanish as n Ñ 8. We believe that some loss of
convergence rate is inevitable if P Ñ 0 as n Ñ 8, due to the inherent instability of such metrics, but
further work is needed to understand if the rates given by Corollary 8 are optimal under these metrics.
See also Dembczyński et al. [2017] for detailed discussion of Lipschitz constants of many common
CMMs.

C Bounds on Uniform Error of the Nearest Neighbor Regressor

In this appendix, we prove our upper bound on the uniform risk of the kNN regressor (Theorem 15),
as well as the corresponding minimax lower bound (Theorem 17).
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C.1 Upper Bounds

Here, we prove Theorem 15, our upper bound on the uniform error of the k-NN regressor, restated
below:

Theorem 15. Under Assumptions 13 and 14, whenever k{n ď p˚pϵ˚qd{2, for any δ ą 0, with

probability at least 1 ´ N
´

p2k{pp˚nqq
1{d

¯

e´k{4 ´ δ, we have the uniform error bound

}η ´ pη}8 ď 2αLr

ˆ

2k

p˚n

˙α{d

`
2

3k
log

2Spnq

δ
`

c

2r

k
log

2Spnq

δ
. (18)

Proof. For any x P X , let

rηkpxq :“
1

k

k
ÿ

j“1

ηpXσjpxqq

denote the mean of the true regression function over the k nearest neighbors of x. By the triangle
inequality,

}η ´ pη}8 ď }η ´ rηk}8 ` }rηk ´ pη}8,

wherein }η ´ rηk}8 captures bias due to smoothing and }rηk ´ pη}8 captures variance due to label

noise. We separately show that, with probability at least 1 ´ N

ˆ

´

2k
p˚n

¯1{d
˙

e´k{4,

}η ´ rηk}8 ď 2αLr

ˆ

2k

p˚n

˙α{d

,

and that, with probability at least 1 ´ δ,

}rηk ´ pη}8 ď
2

3k
log

2Spnq

δ
`

c

2r

k
log

2Spnq

δ
.

Bounding the smoothing bias Fix some r ą 0 to be determined, and let tBrpz1q, ..., BrpzNprqqu

be a covering of pX , ρq by Nprq balls of radius r, with centers z1, ..., zNprq P X .

By the lower bound assumption on PX , each PXpBrpzjqq ě p˚r
d. Therefore, by a multiplicative

Chernoff bound, with probability at least 1 ´ Nprqe´p˚nrd{8, each Brpzjq contains at least p˚nr
d{2

samples. In particular, if r ě

´

2k
p˚n

¯1{d

, then each Bk contains at least k samples, and it follows that,
for every x P X , ρpx,Xσkpxqq ď 2r. Thus, by Hölder continuity of η,

|ηpxq ´ rηkpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ηpxq ´
1

k

k
ÿ

j“1

ηpXσjpxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

k

k
ÿ

j“1

ˇ

ˇηpxq ´ ηpXσjpxqq
ˇ

ˇ ď Lp2rqα.

Finally, if k
n ď

p˚

2 pr˚qd, then we can let r “

´

2k
p˚n

¯1{d

.

Bounding variance due to label noise Let Σ :“ tσpxq P rnsk : x P X u denote the set of possible
k-nearest neighbor index sets. One can check from the definition of the shattering coefficient that
|Σ| ď Spnq.

For any σ P rnsk, let Zσ :“
řk

j“1 Yσj
and let µσ :“ E rZσs. Note that the conditional ran-

dom variables Yσj
|X1, ..., Xn have conditionally independent Bernoulli distributions with means

ErYσj |X1, ..., Xns “ ηpXσj q and variances E
”

`

Yσj ´ ηpXσj q
˘2

|X1, ..., Xn

ı

“ ηpXσj qp1 ´

ηpXσj
qq ď r. Therefore, by Bernstein’s inequality (Eq. (2.10) of Boucheron et al. [2013]), for any

ϵ ą 0,

P r|Zσ{k ´ µσ| ě ϵs ď 2 exp

ˆ

´
kϵ2

2pr ` ϵ{3q

˙

. (19)
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Moreover, for any x P X , µσpxq “ rηkpxq and Zσpxq{k “ pηpxq. Hence, by a union bound over σ in
Σ,

P
ˆ

sup
xPX

|rηkpxq ´ pηpxq| ą ϵ

ˇ

ˇ

ˇ

ˇ

X1, ..., Xn

˙

“ P
ˆ

sup
xPX

ˇ

ˇµσpxq ´ Zσpxq{k
ˇ

ˇ ą ϵ

ˇ

ˇ

ˇ

ˇ

X1, ..., Xn

˙

ď P
ˆ

sup
σPΣ

|µσ ´ Zσ{k| ą ϵ

ˇ

ˇ

ˇ

ˇ

X1, ..., Xn

˙

ď |Σ| sup
σPΣ

P p|µσ ´ Zσ{k| ą ϵ|X1, ..., Xnq

ď 2Spnq exp

ˆ

´
kϵ2

2pr ` ϵ{3q

˙

.

Since the right-hand side is independent of X1, ..., Xn, the unconditional bound

P
ˆ

sup
xPX

}rηkpxq ´ pηpxq}8 ą ϵ

˙

ď 2Spnq exp

ˆ

´
kϵ2

2pr ` ϵ{3q

˙

follows. Plugging in

ϵ “
1

3k
log

2Spnq

δ
`

d

ˆ

1

3k
log

2Spnq

δ

˙2

`
2r

k
log

2Spnq

δ
ď

2

3k
log

2Spnq

δ
`

c

2r

k
log

2Spnq

δ

and simplifying gives the final result.

Recall that there is a small (polylogarithmic in r) gap between our upper and lower bounds. We
believe that the upper bound may be slightly loose, and that this might be tightened by using a
stronger concentration inequality, such as Bennett’s inequality [Bennett, 1962], instead of Bernstein’s
inequality in Inequality (19).

Naively applying Theorem 15 results in very slow convergence rates in high dimensions. For this
reason, we close this section with a corollary of Theorem 15, illustrating that the convergence
rates provided by Theorem 15 improve if the covariates are assumed to lie on an (unknown) lower
dimensional manifold:
Corollary 29 (Implicit Manifold Case). Suppose Z is a r0, 1sd-valued random variable with a
density lower bounded away from 0, and suppose that, for some Lipschitz map T : r0, 1sd Ñ RD,
X “ T pZq. Then, Npϵq ď p2{ϵqd, and Spnq ď 2nD`1 ` 2, and so, by Theorem 15, k —

n
2α

2α`d plog nq
d

2α`d r´ d
2α`d ,

}η ´ pη}8 P OP

˜

ˆ

log n

n

˙
α

2α`d

r
α`d
2α`d

¸

.

This shows that, if the D covariates lie implicitly on a d-dimensional manifold, convergence rates
depend on d, which may be much smaller than D.

C.2 Lower Bounds

In this section, we prove Theorem 17, our lower bound on the minimax uniform error of estimating a
Hölder continuous regression function. We use a standard approach based on the following version
of Fano’s lemma:
Lemma 30. (Fano’s Lemma; Simplified Form of Theorem 2.5 of Tsybakov 2009) Fix a family P of
distributions over a sample space X and fix a pseudo-metric ρ : P ˆ P Ñ r0,8s over P . Suppose
there exist P0 P P and a set T Ď P such that

sup
PPT

DKLpP, P0q ď
log |T |

16
,

where DKL : P ˆ P Ñ r0,8s denotes Kullback-Leibler divergence. Then,

inf
pP
sup
PPP

P
ˆ

ρpP, pP q ě
1

2
inf
PPT

ρpP, P0q

˙

ě 1{8,

where the first inf is taken over all estimators pP .
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Proof. We now proceed to construct an appropriate P0 P P and T Ď P . Let g : r´1, 1sd Ñ r0, 1s

defined by

gpxq “

#

exp
´

1 ´ 1
1´}x}22

¯

if }x}2 ă 1

0 else

denote the standard bump function supported on r´1, 1sd, scaled to have }g}X ,8 “ 1. Since g is
infinitely differentiable and compactly supported, it has a finite α-Hölder semi-norm:

}g}Σα :“ sup
ℓPNd:}ℓ}1ďα

sup
x‰yPX

|gℓpxq ´ gℓpyq|

}x ´ y}α´}ℓ}1
ă 8, (20)

where ℓ is any tβu-order multi-index and gℓ is the corresponding mixed derivative of g. Define

M :“
´

64p2α`dqnr
d logpnrq

¯
1

2α`d

ě 1, since r ě 1{n. For each m P rM sd, define gm : X Ñ r0, 1s by

gmpxq :“ g

ˆ

Mx ´
2m ´ 1d

2

˙

,

so that tgm : m P rM sdu is a grid of Md bump functions with disjoint supports. Let ζ0 ” 1
4 denote

the constant- 14 function on X . Finally, for each m P rM sd, define ζm : X Ñ r0, 1s by

ζm :“ ζ0 ` min

"

1

2
,

L

}g}Σα

*

M´αgm. (21)

Note that, for any m P rM sd,

}ζm}Σα ď LM´α }gm}Σα

}g}Σα

“ L,

so that ζm satisfies the Hölder smoothness condition. For any particular η, let Pη denote the joint
distribution of pX,Y q. Note that Pζpx, 1q “ ζpxq ě 1{4. Moreover, one can check that, for all
x ě ´2{3, ´ logp1 ` xq ď x2 ´ x. Hence, for any x P X ,

Pηm
px, 1q log

Pηm
px, 1q

Pηpx, 1q
“ rPζmpx, 1q log

Pζmpx, 1q

Pζpx, 1q

“ rζmpxq log
ζmpxq

ζpxq

“ ´rζmpxq log

ˆ

1 `
ζpxq ´ ζmpxq

ζmpxq

˙

ď rζmpxq

˜

ˆ

ζpxq ´ ζmpxq

ζmpxq

˙2

´
ζpxq ´ ζmpxq

ζmpxq

¸

“ r

˜

pζpxq ´ ζmpxqq
2

ζmpxq
´ ζpxq ` ζmpxq

¸

ď r
´

4 pζpxq ´ ζmpxqq
2

´ ζpxq ` ζmpxq

¯

,

and, similarly, since Pζpx, 0q “ 1 ´ ζpxq ě 1{4,

Prηm
px, 0q log

Prηm
px, 0q

Prηpx, 0q
ď r

´

4 pζpxq ´ ζmpxqq
2

` ζpxq ´ ζmpxq

¯

.
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Adding these two terms gives

DKL
`

Pn
rη, P

n
rηm

˘

“ n

ˆ
ż

X
Prηmpx, 0q log

Prηpx, 0q

Prηm
px, 0q

dx `

ż

X
Prηmpx, 1q log

Prηpx, 1q

Prηm
px, 1q

dx

˙

ď 8nr

ż

X
pζpxq ´ ζmpxqq

2

“ 8nr}ζ ´ ζm}22

ď 2nrM´2α}gm}22

“ 2nrM´p2α`dq}g}22

“ 2nr

˜

ˆ

64p2α ` dqnr

d logpnrq

˙
1

2α`d

¸´p2α`dq

}g}22

“
1

32

d

2α ` d
}g}22 logpnrq

ď
1

16

d

2α ` d

ˆ

logpnrq ´ log logpnrq ` log
64p2α ` dq

d

˙

“
log |rM sd|

16
,

where the second inequality comes from the definition of ζm (Eq. 21) and the third inequality comes
from the facts that }g}22 ď 1 and log log x ď 1

2 log x for all x ą 1. Fano’s lemma therefore implies
the lower bound

inf
pη

sup
rPp0,1s,ζPΣαpLq

PtpXi,Yiquni“1„Pn
η

˜

›

›

›
rζ ´ rpζ

›

›

›

8
ě C

ˆ

logpnrq

n

˙
α

2α`d

r
α`d
2α`d

¸

ě
1

8
,

where

C “
1

2
min

"

1

2
,

L

}g}Σα

*ˆ

d

64p2α ` dq

˙
α

2α`d

.

D Efficient Computation of the Optimal Stochastic Threshold

Although the focus of this paper is on statistical properties of regression-thresholding classifiers, we
note that, given an estimate pη of the regression function, the empirically optimal stochastic threshold
ppp,ptq, i.e., that which maximizes Mp pC

pY
pη, pp,pt

q, can be efficiently computed. In this appendix, we

describe a simple algorithm for doing so. The key insight is that, because ppp,ptq is used to threshold
the observed empirical class probabilities pηpX1q, ..., pηpXnq before computing M , Mp pC

pY
pη,p,t

q only
needs to be computed at the n values of pη actually observed in the data.

We also note that, while, by Corollary 8, one can safely use the original training dataset to compute
ppp,ptq, one can also safely use a much smaller subset of the data, since the rate of convergence in
Lemma 6 is quite fast in n.

For large n, the runtime of Algorithm 1 is dominated by Line 3, which involves lexicographically
sorting n pairs. This can be done in Opn log nq time using standard comparison-based sorting
algorithms. Hence, the overall runtime of Algorithm 1 is Opn log nq.

E Further Experimental Details

Experiments were run using the numpy and scikit-learn packages in Python 3.9, on a
machine running Ubuntu 20.04 with an Intel Core i5-9600 CPU and 64 gigabytes of mem-
ory. Each experiment took about 10 minutes to run. Python code and instructions for repro-
ducing Figures 2b and 2a are available at https://gitlab.tuebingen.mpg.de/shashank/
imbalanced-binary-classification-experiments.
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Algorithm 1: Efficient threshold-optimization algorithm.
Input: Estimated regression function pη, training covariate samples X1, ..., Xn, CMM M .
Output: Estimated optimal stochastic threshold ppp,ptq

1 Sample Z1, ..., Zn
IID
„ Uniformpr0, 1sq

2 e1, ..., en Ð pηpX1q, ..., pηpXnq

3 pe1, Z1q, ..., pen, Znq Ð LexicographicSortppe1, Znq, ..., pen, Znqq

4 TP Ð 1
n

řn
i“1 Yi

5 FP Ð 1 ´ TP
6 TN,FN Ð 0

7 ppp,ptq Ð p0, 0q

8 Mmax Ð M

ˆ„

TN FP
FN TP

ȷ˙

9 for i “ 1; i ă“ n; i ` ` do
10 TP Ð TP ´ Yi{n
11 FP Ð TP ´ p1 ´ Yiq{n
12 TN Ð TN ` p1 ´ Yiq{n
13 FN Ð FN ` Yi{n

14 Mnew Ð M

ˆ„

TN FP
FN TP

ȷ˙

15 if Mnew ą Mmax then
16 ppp,ptq Ð pei, Ziq

17 Mmax Ð Mnew
18 end
19 return ppp,ptq

F Experiments with Real Data: Case Study in Credit Card Fraud Detection

In this section, we explore theoretical predictions from the main paper in a real dataset, the Kag-
gle Credit Card Fraud Detection dataset (available at https://www.kaggle.com/datasets/
mlg-ulb/creditcardfraud under an Open Database License (ODbL)), a widely used bench-
mark dataset for imbalanced classification. This dataset contains 29 continuous features (computed
via PCA from an underlying set of features) for each of 284,807 credit card transactions, of which
492 (0.172%) are labeled as fraudulent, and the remaining are assumed to be non-fraudulent. The
supervised learning task is to predict whether a credit card transaction is fraudulent, given its 29
PCA features. Due to computational limitations, we down-sampled the negative set (non-fraudulent
transactions) by a factor of 0 before conducting our experiments; however, we expect our main
observations to hold on the full dataset as well. We also Z-scored each feature (to have mean 0 and
variance 1).

The main question we sought to investigate here was whether the theoretical finding, in Theorem 3,
that stochastic classification is sometimes necessary in order to obtain optimal prediction performance
under general performance metrics, would be visible in real data. To investigate this, we partitioned
the dataset randomly into a training subset (60% of samples), a validation subset (20% of samples),
and a test subset (20% of samples). We fit a k-nearest neighbor regressor (with Euclidean distance as
the underlying metric) to the training subset, used the validation subset to select optimal deterministic
and generalization thresholds, and then used the test subset to evaluate performance. We evaluated
performance in terms of F1 score, since it is perhaps the CMM most widely used with imbalanced
datasets. We then repeated this experiment with 100 random train/validation/test splits and report
aggregate results over these independent trials.

We generally found that, as predicted by our theoretical results, stochastic thresholding generally
outperforms deterministic thresholding by a small but consistent margin. Figure 3 shows that, for
fixed nearest neighbor hyperparameter k “ 4, this effect is robust across differing degrees of class
imbalance, for imbalance ratios ranging from 1 : 1 (perfect balance) to 57 : 1 (the full dataset),
where class imbalance here was manipulated by down-sampling the negative class. Similarly,
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Figure 3: Mean F1 scores (over 100 random training/validation/test splits) of optimal deterministic
and stochastic thresholding nearest neighbor classifiers, on the credit card fraud dataset, at various
degrees of class imbalance. Error bars denote standard errors, computed over the 100 random
training/validation/test splits.
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Figure 4: Mean F1 scores (over 100 random training/validation/test splits) of optimal deterministic
and stochastic thresholding nearest neighbor classifiers, on the credit card fraud dataset, for various
values of the nearest neighbor hyperparameter k. Error bars denote standard errors, computed over
the 100 random training/validation/test splits.

Figure 4 shows that this effect is robust over different values of the nearest neighbor hyperparameter
k P t2, 4, 8, 16, 32, 64, 128u.
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