A Derivation of the Generalized Bayes Classifier

In this Appendix, we prove Theorem 3] in which we characterize a stochastic generalization of the
Bayes classifier to arbitrary CMMs. We reiterate the theorem for the reader here:

Theorem @. If argmaxy_g. M(Cy ) # @, then there exists a regression-thresholding classifier

ffp,tm € argmax M (Cy ).
Yesc

As described in the main paper, unlike prior results [Koyejo et al., 2014, Yan et al., 2018, Wang
et al.,|2019b]], we do not assume that the distribution of 1(X) is absolutely continuous. This makes
proving Theorem considerably more complicated than these previous results. We prove Theorem [3]
in a sequence of steps, constructing optimal classifiers in forms progressively closer to that of the
generalized Bayes classifier described in Theorem [3] Specifically, we first show, in Lemma|I8] that
there exists an optimal classifier that is a (stochastic) function of the true regression function n*.
We then construct an optimal classifier in which this function of n* is non-decreasing. Finally, we
construct an optimal classifier in which this function of n* is a threshold function, as in Theorem

Lemma 18. For any stochastic classifier Y : X — B, there is a stochastic classifier V:X -8B of
the form R

Y'(x) ~ Bernoulli(f(n*(x))), (6)
for some f : [0,1] — [0,1], such that Cy, = Cy..

Proof. We start by defining the regression function and discussing formal probability notation. Let
F = o(n*(Z)) be the o-field generated by the true regression function n*(Z). Define Y’ : X — B
by
Y'(z) ~ Bernoulli ( EP [?(Z)’]—"] (n*(m))) )
~Px

where by the n*(x) we are explicitly indicating that n* () is the input to the conditional expectation,
as the conditional expectation is a measurable function of n* (7). In the sequel, following standard
conventions, we omit such notation. Note that Y has the desired form and is defined almost surely.

Now, we get our final notes in place before proceeding with calculations. Let G = o(X) be the
o-field generated by X.

A key step in the proof is showing the equality
E [Y?/(X)(f] —7*(X)E [?(X)‘]—'] —E [Y?(X))f] . )

We first provide an intuitive summary. Observe that conditioned on *(X), Y is independent of Y
and Y’ separately. Thus, we can integrate over Y and get the n*(X). By the definition of Y’ we
obtain the conditional expectation with respect to Y, and we have the resulting equality.

For the time being, taking Equation as fact, we complete the rest of the proof. Combining
Equation (/) and the tower property of conditional expectation, we have

TPy, —E [YV'(X)| ~E[E [Y?’(X)‘]-‘H ~E[E [Y?(X)‘]—‘H —E[YY(X)| = TP;.
Similarly, one can check that C’f/, = C’f/. O

Proof of Equation {7). We now present the formal details to establish Equation (7)), which may
be skipped if one is uninterested in the measure-theoretic details. We first to set up the random
variables needed to formalize the above intuition. Let S, T, U, V', and W be random variables. Let
(S,T) = (n*(X), X). We also require U and V' to be uniform on [0, 1]. We need not specify the
precise distribution V. Further, let (S,T"), U, V, and W all be independent. For notation purposes,
it is convenient for the underlying probability space (€2, G, P) to be the product probability space of
some probability spaces to the extent possible. In particular, we require the set 2 = X IZ 5§} and a

set B in G to have a product structure B = X l‘/z g B; for ease of exposition. Note that the measure [P
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is not a product measure, as S and 7" are dependent, although it is a product measure with respect to
the laws of (S,T7), U, V, W.

Now, we define Y, }Af’, and Y in terms of U,V,W,and X. Define

(n*(X)) = H{U < n*(X)}

(n*(X)) = H{V < E[Y|F]}
Y(X) = r(S,T,W),

Y
}’}/

where here U serves as the noise in Y, V serves as the internal randomization of y! ,and W serves
as the possible internal randomization of Y. Here, 1 is the indicator taking the value 1 if the event in
curly braces occurs and 0 otherwise, and 7 is some function. Note that this is still of the desired form.

To prove the first part of Equation (7)), i.e., to show that the middle term M = n*(X) E[Y (X)|F] =
SE[Y]|F] is indeed the conditional expectation of the left of Equation {7), we must verify two

conditions: (i) M is F-measurable and (ii) the integrals of YY"’ and M are identical on any event
A in F [Durrett, 2010, page 221]. Condition (i) is immediate, since M is a function of n*(X) and
nothing more.

For condition (ii), we do a bit of computation. Let A = Ag x A x Ay x Ay x Ay be an event
in F. Note that because A is F-measurable, the sets A and Ay must be all of 0y and Qy or the
empty set. Suppose for the moment that both are non-empty. Then, we have

J YY'dP = J f f 1{U < S} 1{V < E[Y|F]}dPydPy dPg
A As JAv JAy
= J S1{V < E[Y|F]}dPydPs
AS AV

= | SE[Y|F]dPs
As

:J SE[Y|F]dP.
A

Note that the crucial first and last equalities in which we break and reform the integral over the entire
event in terms of its coordinates is possible due to Fubini’s theorem for integrable functions. This
proves the desired equality when Ay = Qg and Ay = Qy, and from the preceding calculation we
can see that the integrals are both 0 when either Ay = J or Ay = F, and so the desired equality
holds. This establishes the left equality of Equation (7).

Establishing the right hand side of Equation (7)) also takes a bit of calculation. First, we have already
verified the measurability condition (i), and so all that remains is to check the integral equality. Again,
let A be an event in F, and assume that Ar, A7, and Ay are non-empty. We have

JY}A’d]I”:J f f f 1{U < S}r(S,T,W)dPydPy dPrdPs
A As VAT JAw JAy

IJ J f ST(S,T,W)d]Pwd]PTd]PS
As JAr JAw

:J SU J r(S,T,W)d]P’WdIP’T> dPs.
As Ar JAw

Note that Fubini’s theorem is again used in the first step. In the event that any of A, Ay, or Ay
is empty, then the above equation is 0 and equality holds. Now, we have to show that the random

variable M’ = § Ar § Aw (S, T, W)dPy dPr|g is the conditional expectation of Y with respect to
F. Measurability is readily apparent, as M’ is a function of .S and no more. Now, we check the

condition that Y and M’ have the same integral on an event A in F. Again assume that Ay and Ay,
are non-empty, observing in the calculation to follow that equality holds with the value O if either is

17



empty. Using Fubini’s theorem and some direct computation, we have

J ffdp:f (S, T, W)dP
A A

:f J f r(S, T, W)dPy dPrdPs

As Jar Jay

_ f U J r(S,T,W)dIPWd]P’T) 4P
A \Jap Jay

=J. M'dP.
A

This completes the proof that the conditional expectation of Y is M, and so it proves that the
conditional expectation of Y'Y is n*(X) E[Y|F]. This is the right equality of Equation (7)), thus
completing the proof. O

It follows from Lemma that, if M (Cf/) is maximized by any stochastic classifier, then it is
maximized by a classifier Y of the form in Eq. (6). It remains to show that f in Eq. (6)) can be of the
form z +— pl{z = t} + 1{z > t} for some threshold (p, t) € [0, 1]%. Before proving this, we give a
simplifying lemma showing that the problem of maximizing a CMM can be equivalently framed as a
particular functional optimization problem. This will allow us to to significantly simplify the notation
in the subsequent proofs.

Lemma 19. Let M be a CMM, and suppose that M (Cy) is maximized (over SC) by a classifier 1%
of the form
Y (x) ~ Bernoulli(f(n(x))),

for some f* :[0,1] — [0,1]. Let f be a solution to the optimization problem

f:[ofﬂiﬁo,l]E[’?(X)f(’?(Xm st E[(1 = (X)) f(n(X))] < E[(1 = n(X)f*(n(X))]. ()

Then, the classifier
Y’ (x) ~ Bernoulli( f(n(x))),

also maximizes M (Cy.,) (over SC).

Proof. This result follows from the definition (Definition[T)) of a CMM. Specifically, by construction
of Y/,

—3
)
*§>
I
&=
=
>
g
=
s
A\

E[n(X)f*(n(X))] = TPy
and
FPy, = E[(1 = n(X))f(n(X))] < E[(1 —n(X))f*(n(X))] = FPy..
Moreover, since the proportions of positive and negative true labels are independent of the chosen
classifier (i.e., TPy, + FNy, = TPy + FNy and FPy, + TNy, = FPy + TNy), we have

Co = TN{,+€1 FP{,—El
V' T |FNp —e2 TPy +eo, |

where €; := FPy — FPy, € [0,FPg] and €3 := TPy, — TPy € [0,FN]. Thus, by the definition
(Deﬁnition ofaCMM, M (Cy,) = M(Cy). O

Lemma [T9|essentially shows that maximizing any CMM M is equivalent to performing Neyman-
Pearson classification, at some particular false positive level o depending on M (through f*) and on
the distribution of 7(X). For our purposes, this simplifies the remaining steps in proving Theorem
by allowing us to ignore the details of the particular CMM M and regression function 7 and focus on
characterizing solutions to an optimization problem of the form (8] (see, specifically, (9) below).

To characterize solutions to this optimization problem, we will utilize the following two measure-
theoretic technical lemmas:

Lemma 20. Let i1 be a measure on [0, 1] with ([0, 1]) > 0. Then, there exists z € R such that, for
alle > 0, u([0,1] n (2 — €, 2)) > 0.
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Proof. 'We prove the contrapositive. Suppose that, for every z € [0, 1], there exists €, > 0 such that
w([0,1] n (2 — €,,2)) = 0. The family S := {[0,1] n (z — €., 2) : z € R} is an open cover of
[0,1]. Since [0, 1] is compact, there exists a finite sub-cover &’ < S of [0, 1]. Thus, by countable

subaddivity of measures,
p([0,1]) < > u(S) = 0.
SeS’

O

Lemma 21. Ler (X, X, ) be a measure space, let E, F' € 3. be measurable sets, and let f : X — R
be a Y-measurable function. If

ess sup f(E) > ess inf f(F),
p p

then there exist measurable sets A < E and B < F with u(A), u(B) > 0, and

inf f(z) > sup f(z).
zeA reB

Proof. 1If ess sup,, f(E) > essinf, f(F), then there exist a > b such that ess sup,, f(E) > a >
b > essinf, f(F). Since esssup, f(E) > a, it follows that Pz(E n {z : f(2) > a}) > 0.
Similarly, since ess inf,, f(F') < b, it follows that Pz(F n {z : f(z) < b}) > 0. Hence, letting
A=En{z:f(z) 2a}and B=F n{z: f(z) < b}, we have

inf f(z) = a>b=sup f(z).
z€eA ~eB

O

We are now ready for the main remaining step in the proof of Theorem [3| namely characterizing
solutions of (a generalization of) the optimization problem (8):

Lemma 22. Let Z be a [0, 1]-valued random variable, and let ¢ € [0,1]. Suppose that the
optimization problem

ElZf(Z 1 E|l(1-2)f(Z2)] <
f:[O,l]—»%l,Elif{meammble [ f( )] SMb]eCl o [( )f( )] ¢ ©)

has a solution. Then, there is a solution to (9) that is a stochastic threshold function.

Proof. Suppose that there exists a solution f to (9). We will construct a stochastic threshold function
that solves @]) in two main steps. First, we will construct a monotone solution to @]) Second, we will
show that this monotone solution is equal to a stochastic threshold function except perhaps on a set of
probability 0 with respect to Z. This stochastic threshold function is therefore a solution to (9).

Construction of Monotone Solution to (9): Define

g(z) :=esssup f([0,2]) and h(z):=essinf f((z,1]),
Py Pz

where the essential supremum and infimum are taken with respect to the measure P of Z, with the
conventions ¢g(z) = 0 whenever Pz([0, z]) = 0 and h(z) = 1 whenever Pz((z,1]) = 0. We first
show that, for all z € [0, 1], g(z) < h(z). We will then use this to show that g = f except on a set of
Pz measure 0 (i.e., Pz ({z € [0,1] : g(z) # f(2)}) = 0). Therefore, both E[Z¢(Z)] = E[Zf(Z)]
andE[(1-2)g(Z)] = E[(1-2)f(Z)]. Since g : [0, 1] — [0, 1] is clearly monotone non-decreasing,
the result follows.

Suppose, for sake of contradiction, that, for some z € [0,1], g(z) > h(z). By Lemma[21] there
exist A € [0,z] and B < (z,1] such that inf,c4 f(2) > sup,.p f(2) and Pz(A), Pz(B) > 0.
Define z4 := E[Z|Z € A] and zp := E[Z|Z € B], and note that, since A < [0, z] and B < (z,1],
za < zp. Define,

:= min Min 5 ~sun f(s
o {PZ<B><1—zB>Ze£f< ) 1= sup S >}>o
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and define ¢ : [0,1] — [0, 1] by

f(z)—e% ifze A
¢(z) := f(z)+e ifze B

f(2) otherwise,
noting that, by construction of €, ¢(2) € [0, 1] for all z € [0, 1]. Then, by construction of ¢,

Pz(B)(l — ZB)

E[(1 - 2)¢(2)] - E[(1 - 2)f(2)] = —(1 - ZA)em

=0-e=0,

Pz(A) + (1 — ZB)GPz(B)

while
Pz(B)(1 — zp)
Pz(A)(1 - za)

—(— A (1—ZB)+ZB>€P2(B)>O,
l—ZA

E[Z(Z)] — E[Zf(Z)] = —za¢ Pz(A) + zpePy(B)

z

since the function z — =

implying g < h.

is strictly increasing. This contradicts the assumption that f optimizes (9},

We now show that g = f except on a set of Pz measure 0. First, note that, if g(z) # f(z), then
g(z) = ess sup f([0, z]) = ess sup f(]0, z)), and so g is left-continuous at z.

For any 6§ > 0, define
As:={z€[0,1]: g(2) < f(2) =6} and Bs:={z€[0,1]:9(2)> f(z)+}.

Since

(e 0.1159) < 1)) = J {20110 < 1) - 7

and

Jj=1

(e 0.11596) > 160} = | {20110 > 1)+ 5

by countable subadditivity, it suffices to show that Pz (As) = Pz(Bs) = 0 forall 6 > 0.

Suppose, for sake of contradiction, that Pz (As) > 0. Applying Lemmato the measure £/ —
Pz(As n E), there exists z € R such that, for any € > 0, Pz(A4s N (2 — €,2)) > 0. Since g is
continuous at z, there exists € > 0 such that g(z — €) = g(z) — d, so that, forall z € As N (z — ¢, 2),
f(2) > g(z) + 0. Then, since Pz(As n (z — ¢, z)) > 0, we have the contradiction

g(z) = esssup f(As N (z —€,2)) > g(2).

On the other hand, suppose, for sake of contradiction, that Py (Bs) > 0. Applying Lemmato the
measure F — Pz(Bs n E), there exists z € R such that, for any € > 0, Pz(Bs n (z — €,2)) > 0.
Since g is continuous at z, there exists € > 0 such that g(z — €) > g(z) — d. At the same time,
since g is non-decreasing, for t € Bs n (z — €,2), f(t) < g(t) —§ < g(z) — 0. Thus, since
Pz(Bs n (2 —¢€,2)) > 0, we have h(z — €) < g(z) — < g(z — €), contradicting the previously
shown fact that g < h.

To conclude, we have shown that Pz ({z € [0,1] : g(z) # f(2)}) = 0.

Construction of a Stochastic Threshold Solution: We now construct a solution to (9) that is equal
to a stochastic threshold function (i.e., a function that has the form p1{z = ¢} + 1{z > ¢}) except on
a set of Pz-measure 0. To show this, it suffices to construct a function f : [0, 1] — [0, 1] such that
(a) f is monotone non-decreasing and (b) the set f~1((0, 1)) is the union of the singleton {¢} and a
set of Pz-measure 0.

From the previous step of this proof, we may assume that we have a solution f to (9) that is monotone
non-decreasing. It suffices therefore to show that A := f~1((0, 1)) is the union of a singleton and a
set of Pz-measure 0. Define

to :=inf{z € [0,1]: Pz(An[0,2]) >0} and ¢ :=sup{z€[0,1]: Pz(An [z 1]) > 0}.
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Then, for all € > 0, Pz(A n [0,t0 — €]) = Pz(A n [t1 + €, 1]) = 0. Hence, if tg = ¢1, then, since
0
A\fto} = | A ([0,t0 = /5] v [t + 1/5,1])
j=1

by countable subadditivity, Pz (A\{to}) = 0, which implies that A = {to} U (A\{to}) is the union
of a singleton and a set of measure 0.

It suffices therefore to prove that ty = ¢;. It is easy to see, from the definitions of ¢y and ¢;, that
to < t1. Suppose, for sake of contradiction, that ¢, < t;. Then, there exists ¢ € (to,t1), and, by
definition of ¢ and ¢y, both Pz(A n [0,t)) > 0 and Pz(A n (t,1]) > 0. For any § > 0, define

Bs:={z€[0,t): < f(z) <1—-0} and Cs5:={z€e(t,1]:0< f(z) <1-46},

so that Pz(By) > 0 and Pz(Cp) > 0. By countable subadditivity, there exists 6 > 0 such that
Pz(Bg) > (0 and Pz(C5) > 0.

Define € := ¢ - min{Pz(Bs), Pz(Cs)}} > 0. Define g : [0,1] — R for all z € [0, 1] by

9() =4 fR)+ 5y ifzeCs
f(z) otherwise.

and note that, by definition of €, By, and Cs, g : [0, 1] — [0, 1]. Then,
E[g(2)] - E[f(2)] = -

€

m PZ(CzS):O7

Pz(B5) + 7Pz(605)

while

E[Zg(Z)] - E[Zf(Z)] = —E[Z|Z € Bs] Pz(Bs) + E[Z|Z € Cs] Pz(Cs)

Pz(Bs) Pz(Cs)

— ¢ (E[Z|Z € C5] — E[Z|Z € Bs)).

Since Bs < [0,t) and Cs < (t, 1], this difference is strictly positive, contradicting the assumption
that f optimizes (9). O

Combining Lemma [22] with Lemma [I9] completes the proof of our main result, Theorem 3]

A.1 Extension to AUROC

For any regression function 7, the receiver operating characteristic (ROC) function ROC,, : [0,1] —
[0,1]is
ROC,(z):= sup TPy
(p.)ef01]2 "
i.e., ROC(z) is the maximum true positive probability (over all regression-thresholding classifiers
with regression function 7)) achievable while keeping the false positive probability below z. The area
under the ROC curve (AUROC) is then given by

o HFP?;, L, S x} forall =€ [0,1], (10)

1
AUROC,, = J- ROC, (z) dx. (11)
0
While AUROC is not a CMM (as it depends on the entire family of confusion matrices computed at
all possible thresholds (p, t) € [0, 1]%), AUROC is widely used to measure performance of classifiers
across the classification thresholds. Here, we show that our Theorem [3|extends naturally from CMMs
to AUROC.

We begin by noting that, for any x € [0, 1], the performance measure TP - 1{FP < z} is a CMM.
Therefore, letting n* denote the true regression function, by Theorem [3} there exists a threshold
(p,t) € [0, 1] such that the regression-thresholding classifier Y, ; ,+ € argmaxy g, TP-1{FP < z};
ie., ?p,t,n* maximizes TP - 1{FP < z} over all stochastic classifiers. By definition of ROC (Eq. (T0)),
it follows that, for any « € [0, 1],

n* e argmax ROC,(z),
7:X—[0,1]

21



and, by definition AUROC (Eq. (TT)), it then follows that

n* e argmax AUROC,,.
n:X—[0,1]

To conclude, we have shown that thresholding the true regression function is optimal not only under
any CMM but also under AUROC. A identical argument can be made for other performance measures,
such as the area under the precision-recall curve (AUPRC), that aggregate CMMs across multiple
classification thresholds.

B Relative Performance Guarantees in terms of the Generalized Bayes
Classifier

In this Appendix, we prove Lemmas [5]and [6} as well as their consequence, Corollary [8] Also, in
Section[B.T| we demonstrate, in a few key examples, how to compute the Lipschitz constant used in
Corollary [§]

We begin with the proof of Lemma [5] which, at a given threshold (p, t), bounds the difference
between the confusion matrices of the true regression function 7 and an estimate 7’ of 7. We restate
the result for the reader’s convenience:

Lemma@ Letp,t € [0,1] and let n, 7 : X — [0,1]. Then,

lcs, <P[In(x) 1/ < |n— ], ]- (12)

p,t,m Yp,t,n’

0

Proof. For the true negative probability, we have

TN

pyt,n

~ TN

p,t,n’

=P[Y =0,7(X) <t <n(X)]-P[Y =0,7(X) <t<n(X)]
<P[In(X) =t <[n—n"lo] -

This type of inequality is standard and follows from the fact that, if ¢ lies between 7 and 7, then the
difference of i) and ¢ is necessarily less than 7 and 7’. Repeating this calculation for the true positive,
false positive, and false negative probabilities gives (T2). [

Note that, in the presence of degree r» Uniform Class Imbalance (see Section E]), one can obtain a
tighter error bound 7P [|9(X) — t| < |n — 7/||s] for the true positive and false negative probabilities
because, for all z € X, P[Y = 1|X = z] < r. However, the weaker bound (12) simplifies the
exposition.

We now turn to proving Lemma [} which we use to bound the maximum difference between the
empirical and true confusion matrices of a regression-thresholding classifier over thresholds (p, t).
Specifically, we will use this result to bound the difference in confusion matrices between the optimal
threshold (p*, t*) and the threshold (P, 7) selected by maximizing the empirical CMM. We actually
prove a more general version of Lemmal|f] for arbitrary classifiers, based on the following definition:

Definition 23 (Stochastic Growth Function). Let F be a family of [0, 1]-valued functions on X.
The stochastic growth function I : N — N, defined by

Ir(n):= max_ {({f(xi) > z})i_y : f€F} forall neN,

21,---,2n€[0,1]

is the maximum number of distinct classifications of n points x1, ..., x,, by a stochastic classifier Y

A~

with (x — E[Y (z)]) € F and randomness given by z1, ..., zn.

Definition @] generalizes the growth function [Mohri et al.| | 2018]], a classical measure of the com-
plexity of a hypothesis class originally due to|Vapnik and Chervonenkis| [2015]], to non-deterministic
classifiers. Importantly for our purposes, one can easily bound the stochastic growth function of
regression-thresholding classifiers:
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Example 24 (Stochastic Growth Function of Regression-Thresholding Classifiers). Suppose
F={f:X —[0,1]| forsome p,t € [0,1], f(z) =p - 1{n(z) =t} + 1{n(x) >t} forall x € X},

so that {Y}, : f € F} is the class of regression-thresholding classifiers. Any set of points
(z1,21), .-y (T, 2, ), can be sorted in increasing order by 7(x)’s, breaking ties in decreasing order by
z’s. Having sorted the points in this way, {f(z) > z} = 0 for the first j points and {f(z) > z} =1
for the remaining n — j points, for some j € [n] U {0}. Thus, IIz(n) =n + 1

We will now prove the following result, from which, together with Example [24] Lemma [6| follows
immediately:

Lemmal [6] (Generalized Version). Let F be a family of [0, 1]-valued functions on X. Then, with
probability at least 1 — 6,

" 8 32[,(2n)
Gy, —Cy5,| <2108 =250,
?”16172 H Yy ¥illoo n 08 0

Before proving Lemma@ we note a standard symmetrization lemma, which allows us to replace the
expectation of TNA - w1th its value on an independent, identically distributed “ghost sample”.

Lemma 25 (Symmetrization; Lemma 2 of Bousquet et al.|[2003])). Ler X and X' be independent
realizations of a random variable with respect to which F is a family of integrable functions. Then,
forany e > 0,

P |sup f(X) —E f(X) > 61 <P lsup FX) - f(X) > <

feF feF 2

We now use this lemma to prove Lemma [6]

Proof. To facilitate analyzing the stochastic aspect of the classifier ?fyn’ let Zy,...,2Z, b

Uniform([0, 1]), such that Y., (X;) = 1{Z; < f(n((X:))}.
Now suppose that we have a ghost sample (X1,Y7, Z1), ..., (X}, Y., Z!). Let fﬁlgm denote the

empirical true negative probability computed on this ghost sample, and let "l/"Ng; ) denote the empirical
true negative probability computed on '

(X1, Y1, 21), oy (X301, Y1 Zi1), (X[, Y Z0), (X1, Y1, Zig)s - (Xny Yo, Z)

27 1)

(i.e., replacing only the i*" sample with its ghost). By the Symmetrization Lemma,

P supTNA E"fN{, >el <2P supTN "fl\\llf/ > ¢/2
feF fin fin feF " fin
2H;(2n)sup]P’[TNA ~ TNy, >e/2]
feF »
4H}-(2n)sup]P’[TNA ~ETN; >e/4], (13)
feF fin

where the second 1nequahty is a union bound over the IIz(2n) distinct classifications of 2n points
that can be assigned by Yf n with f € F, and the last inequality is from the fact that TNA and
s

TNY are identically distributed and the algebraic fact that, if a — b > ¢, then either a — ¢ > ¢/2 or
b—c> €/2.

For any particular f € F, by McDiarmid’s inequality [McDiarmid, [1998]],

N N —ne?
P [TN);M ~ETN;, > 6/4] <e e, (14)
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since, for any ¢ € [n],

~ —~ (i) 1 S o
’TN% ~ TNy, ’ == ‘1 {YZ— = Vp(X:) = 0} _1 {Yz—’ = V(X)) = 0}‘ <

S

i

Plugging Inequality (I4) into Inequality (I3) gives

P sup"lfN? —Efﬁf/ > € <4H}-(2n)e_”€2/8.
feF fin fin

Repeating this argument with —TN instead of "fN, as well as with ﬁ’, IEN, FP and their negatives,
and taking a union bound over these 8 cases, gives the desired result. O

Finally, we will use these two lemmas, together with the margin and Lipschitz assumptions, to prove
Corollary [8] which bounds the sub-optimality of the trained classifier, relative to the generalized
Bayes classifier, in terms of the desired CMM.

Corollary [l Letn : X — [0, 1] denote the true regression function, and let i) : X — [0,1] denote
any empirical regressor. Let

(ﬁ,{f) ;= argmax M (CA'A

2remax, - m,) and (p*,t*):= argmax M (CA >
p,t)€(o, o

’ woeloz N

denote the empirically selected and true optimal thresholds, respectively. Suppose that M is Lipschitz
continuous with constant Ly with respect to the uniform (L) metric on C. Finally, suppose that
Px and n satisfies a (C, §)-margin condition around t*. Then, with probability at least 1 — 6,

~ ~ 8 32(2n +1
(€5, 000) <81 (€5, (00) < (1= 2y 2D,

Proof. First, note that

L CHECH

Yok o

since, by definition of (p, f),

M (a?r*,t*,ﬁ) - M (A}A’ﬁ,{yﬁ) < 05

this term sits between the second and third lines above. By the Lipschitz assumption,

(O, ) (C5,)

< LM<‘09P*J*W =% el (15)
* HC{/p*,t*,ﬁ B Ap*,t*,;, 0 (16)
* éAﬁ,Eﬁ N Cf/ptn m) (17)

Corollary [8|follows by applying Lemma [5| and the (C, 3)-margin condition to (T5) and applying
Lemmal6]to both terms (T6) and (T7). O
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B.1 Lipschitz constants for some common CMMs

Corollary [8|assumed that the CMM M was Lipschitz continuous with respect to the sup-norm on
confusion matrices. In this section, we show how to compute appropriate Lipschitz constants for
several simple example CMMs. We begin with a simple example:

Example 26 (Weighted Accuracy). For a fixed w € (0, 1), the w-weighted accuracy is given by
M(C) = (1 — w)TP + wTN. In this case, M clearly has Lipschitz constant L; = max{w,1 — w}.

For the remainder of this section (only), we will use P := E[Y] to denote the positive probability

of the true labels and P := % >, 'Y, to denote the empirical positive probability of the true labels.
Many CMMs of interest, such as Recall and Fj scores, are not Lipschitz continuous over all of C.
Fortunately, inspecting the proof of Corollary 8] it suffices for the CMM M to be Lipschitz continuous
on the line segments between three specific pairs of confusion matrices, given in Eqs. (I3), (I6), and
(T7). Deriving the appropriate Lipschitz constants is a bit more complex, and we demonstrate here
how to derive them for the specific CMMs of Recall and Fg scores.

Of the six confusion matrices in Eqgs. (I3), (I6), and (I7), four are true confusion matrices, while
the other two are empirical. The four true confusion matrices have the same positive probability
TP + FN = P, which is a function of the true distribution of labels. The two empirical confusion
matrices have the positive probability TP + FN = P, which is a function of the data. By a
multiplicative Chernoff bound, with probability at least 1 — e~"/8, P> P/2. Thus, with high
probability, it suffices for the CMM M to be Lipschitz continuous over confusion matrices with
positive probability at least P/2. For Recall and F scores, this gives the following Lipschitz
constants:

Example 27 (Recall). Recall is given by M (C) = ij_ipFN = I Thus, M is Lipschitz continuous
with constant Ly; = 2 over the confusion matrices in Egs. (I3), (T€), and (T7).

Example 28 (I's Score). For 3 € (0, ), the Fj3 score is given by

M(C) = (1+ B%)TP . (1+p%)TP
- (1+B2)TP+FP+ B2FN TP +FP + B2P’
Hence,
J FP + 5*P 1+ 52

s _ 2
MO = (14 8) e ap < ep

while, since TP < P,
TP _1+ B2
(TP + FP + g2P)2 ~ (P’

M) = 1+

2
Hence, M is Lipschitz continuous with constant Z(Lpﬁ) max { B2, *4} over the confusion matri-

ces in Egs. (T3)), (I6), and (T7).
As Examples 27] and 28] demonstrate, the Lipschitz constants of some CMMs can become large
when the proportion P is positive samples is small. In particular, when P € O (4 / 10%”) , the

= LA/ M term of Corollary [8| fails to vanish as n — o0. We believe that some loss of

convergence rate is inevitable if P — 0 as n — o0, due to the inherent instability of such metrics, but
further work is needed to understand if the rates given by Corollary [§]are optimal under these metrics.
See also|Dembczynski et al.|[2017] for detailed discussion of Lipschitz constants of many common
CMMs.

C Bounds on Uniform Error of the Nearest Neighbor Regressor

In this appendix, we prove our upper bound on the uniform risk of the kNN regressor (Theorem 15,
as well as the corresponding minimax lower bound (Theorem I7).
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C.1 Upper Bounds

Here, we prove Theorem[I5] our upper bound on the uniform error of the k-NN regressor, restated
below:

Theorem @ Under Assumptions and whenever k/n < py(€*)?/2, for any § > 0, with
probability at least 1 — N ((Zk/(p*n))l/d> e *4 — 5, we have the uniform error bound

N &1 25(n)
3k 5 Ee TS

a/d
2k ) ;2o B0 (18)

—n <2¢L I
Il <20 (2

Proof. Forany x € X, let

| =

k
(@) i= 3 2 (X, )

denote the mean of the true regression function over the k nearest neighbors of x. By the triangle
inequality,

I =l < |1 = fklloo + 17 — Ao,
wherein |n — 7jx | captures bias due to smoothing and ||7j; — 7| captures variance due to label

Pxn

N 2k a/d
|n — k), <2%Lr < n) ,

Dx

/
noise. We separately show that, with probability at least 1 — [NV ((2’“) ) ek,

and that, with probability at least 1 — 6,

- 2 25(n) 2r 25(n)
— < —
177 = Noo < s log =5 4/ T log ——.

Bounding the smoothing bias Fix some 7 > 0 to be determined, and let { B, (21), ..., Br(2n(r))}
be a covering of (X, p) by N(r) balls of radius r, with centers z1, ..., 2y () € X.

By the lower bound assumption on Py, each Px (B, (z;)) = psr?. Therefore, by a multiplicative
Chernoff bound, with probability at least 1 — N (r)e‘p*’”d/ 8, each B, (z;) contains at least pxnrd/2

L \ V4
pxn
forevery x € X, p(z, X, () < 2r. Thus, by Holder continuity of 7,

samples. In particular, if r > ( , then each By, contains at least k samples, and it follows that,

n(z) — k()| = <

| =

k k
1) = 3 21X 0)]| < 3 2 1) = 1Ko )] < L2

1/d
Finally, if £ < 2% (r*)%, then we can let r = (&) ,
n DxM

Bounding variance due to label noise Let ¥ := {o(z) € [n]" : z € X} denote the set of possible
k-nearest neighbor index sets. One can check from the definition of the shattering coefficient that
|X] < S(n).

For any o € [n]*, let Z, := 25:1 Y,, and let p, := E[Z,]. Note that the conditional ran-
dom variables Y, | X1, ..., X, have conditionally independent Bernoulli distributions with means
E[Ys,|X1,...,Xn] = n(X,,) and variances E [(ng - n(ng))2 \X17...7Xn] = n(X,,)(1 -

n(Xo,)) < r. Therefore, by Bernstein’s inequality (Eq. (2.10) of Boucheron et al.|[2013]), for any
€> 0,
P[|Zs/k — o] = €] < 2ex —L (19)
o :LLO' = ~= p Q(T + 6/3) .
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Moreover, for any € X, fi,(;) = k() and Z,(,)/k = 7)(x). Hence, by a union bound over ¢ in
Ea

P (sup s () — A@)] > | X1, X) _p <sup ooy — Zogo /K] > ¢|X1, X)
TeEX TeEX
<P (Sup |MU - a/k| > € Xla aXn>
oEX

< |SIsupP (|io — Zo /K| > €[ X1,y Xn)
oeX

< 25(n) exp (M) .

Since the right-hand side is independent of X1, ..., X,,, the unconditional bound
ke?
P il el <28 -
(s0p o) = 0], = €) < 2800 ex0 (-7
follows. Plugging in

1 2 1 2 2 9 2 2 2 2 2
e = —log S(gn) + \/(?)k log Sén)) + —Tlog 5(n) < —1 S(n) + —Tlog S(n)

3k k 5 Bk %S k 5
and simplifying gives the final result. O

Recall that there is a small (polylogarithmic in ) gap between our upper and lower bounds. We
believe that the upper bound may be slightly loose, and that this might be tightened by using a
stronger concentration inequality, such as Bennett’s inequality [Bennett, 1962], instead of Bernstein’s
inequality in Inequality (T9).

Naively applying Theorem [T5]results in very slow convergence rates in high dimensions. For this
reason, we close this section with a corollary of Theorem [I3] illustrating that the convergence
rates provided by Theorem [T5]improve if the covariates are assumed to lie on an (unknown) lower
dimensional manifold:

Corollary 29 (Implicit Manifold Case). Suppose Z is a [0, 1]%-valued random variable with a

density lower bounded away from 0, and suppose that, for some Lipschitz map T : [0,1]¢ — RP,
X = T(Z). Then, N(¢) < (2/€)%, and S(n) < 2nP*! + 2, and so, by Theorem k =

nﬁ(logn)ﬁriﬁ,
R logn\ Zad .
In—#l., € Op (( g ) m&%).
n

This shows that, if the D covariates lie implicitly on a d-dimensional manifold, convergence rates
depend on d, which may be much smaller than D.

C.2 Lower Bounds

In this section, we prove Theorem|I7} our lower bound on the minimax uniform error of estimating a
Holder continuous regression function. We use a standard approach based on the following version
of Fano’s lemma:

Lemma 30. (Fano’s Lemma; Simplified Form of Theorem 2.5 of |\Tsybakov||2009) Fix a family P of

distributions over a sample space X and fix a pseudo-metric p : P x P — [0, 0] over P. Suppose
there exist Py € P and a set T' < P such that

log |T
sup D (P, Py) < {ié ‘7
PeT

where Dip, : P x P — [0, 0] denotes Kullback-Leibler divergence. Then,

~ 1
inf sup P (p(P, P) = - inf p(P, Po)> >1/8,
P PeP 2 per

where the first inf is taken over all estimators P.
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Proof. We now proceed to construct an appropriate Py € P and T' < P. Let g : [—-1,1]¢ — [0, 1]
defined by

1 .

0 else

denote the standard bump function supported on [—1,1]¢, scaled to have |g|x o = 1. Since g is
infinitely differentiable and compactly supported, it has a finite a-Holder semi-norm:

4 0
x) —
lglse == sup sup lg"(@) — 9" ()| <

w (20)
leNd: |l <o x#YEX Hl’ — yHO‘*HEHI ’

where / is any |3|-order multi-index and g* is the corresponding mixed derivative of g. Define

1
M = <%) S 1, since r > 1/n. For each m € [M]?, define g,,, : X — [0,1] by

gm (@) =g (Mx _ 2m2_1d) 7

so that {g,, : m € [M]?} is a grid of M bump functions with disjoint supports Let {, = 1 denote
the constant- function on X. Finally, for each m € [M]4, define ¢, : X — [0,1] by
1 L
Cm = C0+min{,}M°‘gm. 21
27 |gllse

Note that, for any m € [M]<,

Gl < Lag=olomlze _p
lgls-

)

so that ¢, satisfies the Holder smoothness condition. For any particular 7, let P, denote the joint
distribution of (X,Y"). Note that P;(x,1) = {(z) > 1/4. Moreover, one can check that, for all
x> —2/3, —log(1 + z) < 22 — z. Hence, for any = € X,

Py, (z,1)log m =rF, (z,1)log P];C((’l))
— (@) 10 ( )
= 77‘<m SC (.’ﬂ))

) - <m<> (@)=l
“’"”(( e ) Cnl) )

—r <“(”“>Cmfg( Vot + <m<w>>

<7 (4(C@) = Gu(@)® = (@) + ()

and, similarly, since P¢(x,0) =1 — ((z) > 1/4,

Py 0)log 0 < (4(C0) = o) + €0 = o)
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Adding these two terms gives

n n _ Prn(x»o) P»pn(fﬂ,l)
Drt (Pry P, ) = <L Fro (@, 0)log Py, (2,0) ot L Fro (1) log Py, (2,1) &
< 8nr L (C(2) — G (2))?
= 8nr|¢ — Cmll3

< 20 M~ g3

= 2nr M~ Pt g |3

1 —(2a+d)
—onr 64(2c + d)nr 2o+ I H2
B dlog(nr) 9l

1 d )
= 3390 1 g 19l210g(nr)
1 d 64(2a + d) log [[M]¢]
<—— (1 —logl 1 = :
16 2+ d < og(nr) —loglog(nr) + log d ) 16

where the second inequality comes from the definition of (,,, (Eq. and the third inequality comes
from the facts that |g[3 < 1 and loglogz < £ log for all z > 1. Fano’s lemma therefore implies
the lower bound

. ~ log(nr)\ =  ata 1
inf sup ]P{(th'i)};l:l,‘p# (‘r( — r(ij =>C (g7(1)> T2a+d> > 1

N re(0,1],¢ex (L)
where

C = 1min 1 L d o

M gl S \GiRara))

D Efficient Computation of the Optimal Stochastic Threshold

Although the focus of this paper is on statistical properties of regression-thresholding classifiers, we
note that, given an estimate 7) of the regression function, the empirically optimal stochastic threshold

(p, 1), i.e., that which maximizes M (CA’)A, ), can be efficiently computed. In this appendix, we
7,P,t

describe a simple algorithm for doing so. The key insight is that, because (p, ?) is used to threshold
the observed empirical class probabilities 7(X1), ..., (X}, ) before computing M, M (Cy ) only

,p,t
needs to be computed at the n values of 7] actually observed in the data.

We also note that, while, by Corollary 8] one can safely use the original training dataset to compute

(P, f), one can also safely use a much smaller subset of the data, since the rate of convergence in
Lemma|6]is quite fast in n.

For large n, the runtime of Algorithm[I]is dominated by Line 3, which involves lexicographically
sorting n pairs. This can be done in O(nlogn) time using standard comparison-based sorting
algorithms. Hence, the overall runtime of Algorithm is O(nlogn).

E Further Experimental Details

Experiments were run using the numpy and scikit-learn packages in Python 3.9, on a
machine running Ubuntu 20.04 with an Intel Core i5-9600 CPU and 64 gigabytes of mem-
ory. Each experiment took about 10 minutes to run. Python code and instructions for repro-
ducing Figures 2b] and [2a] are available at https://gitlab.tuebingen.mpg.de/shashank/
imbalanced-binary-classification-experiments.
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Algorithm 1: Efficient threshold-optimization algorithm.

Input: Estimated regression function 7}, training covariate samples X1, ..., X,;, CMM M.
Output: Estimated optimal stochastic threshold (p, ¢

Sample Z1,..., Zy ' Uniform([0, 1])

€1y ey n — N(X1), -0, 1(Xy)

(e1,21), ..., (€n, Zpn) < LexicographicSort((e1, Zn), .., (€n, Zn))

TP « % 21 Yi

FP — 1 —-TP

TN,FN « 0

~

(p;t) < (0,0)

TN FP
Muax < M ([FN TPD

fori =1;i <=n;i+ + do
TP — TP — Y;/n
FP — TP — (1—Y;)/n
TN «— TN + (1 - Y;)/n
FN < FN + Y;/n

TN FP
Muew — M <[FN TPD

if M,,,, > M, then
(ﬁai\) < (eivzi)

Mmax < Mpew

end
return (P, £)

F Experiments with Real Data: Case Study in Credit Card Fraud Detection

In this section, we explore theoretical predictions from the main paper in a real dataset, the Kag-
gle Credit Card Fraud Detection dataset (available at https://www.kaggle.com/datasets/
mlg-ulb/creditcardfraud under an Open Database License (ODbL)), a widely used bench-
mark dataset for imbalanced classification. This dataset contains 29 continuous features (computed
via PCA from an underlying set of features) for each of 284,807 credit card transactions, of which
492 (0.172%) are labeled as fraudulent, and the remaining are assumed to be non-fraudulent. The
supervised learning task is to predict whether a credit card transaction is fraudulent, given its 29
PCA features. Due to computational limitations, we down-sampled the negative set (non-fraudulent
transactions) by a factor of 0 before conducting our experiments; however, we expect our main
observations to hold on the full dataset as well. We also Z-scored each feature (to have mean 0 and
variance 1).

The main question we sought to investigate here was whether the theoretical finding, in Theorem 3]
that stochastic classification is sometimes necessary in order to obtain optimal prediction performance
under general performance metrics, would be visible in real data. To investigate this, we partitioned
the dataset randomly into a training subset (60% of samples), a validation subset (20% of samples),
and a test subset (20% of samples). We fit a k-nearest neighbor regressor (with Euclidean distance as
the underlying metric) to the training subset, used the validation subset to select optimal deterministic
and generalization thresholds, and then used the test subset to evaluate performance. We evaluated
performance in terms of I} score, since it is perhaps the CMM most widely used with imbalanced
datasets. We then repeated this experiment with 100 random train/validation/test splits and report
aggregate results over these independent trials.

We generally found that, as predicted by our theoretical results, stochastic thresholding generally
outperforms deterministic thresholding by a small but consistent margin. Figure [3|shows that, for
fixed nearest neighbor hyperparameter k = 4, this effect is robust across differing degrees of class
imbalance, for imbalance ratios ranging from 1 : 1 (perfect balance) to 57 : 1 (the full dataset),
where class imbalance here was manipulated by down-sampling the negative class. Similarly,

30


https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

0.910

0.905

0.900

0.895

F, Score

0.890

0.885

0.880

—— Deterministic Thresholding

Generalized Thresholding

100

10!

Imbalance ratio (# negative/# positive)

Figure 3: Mean F; scores (over 100 random training/validation/test splits) of optimal deterministic
and stochastic thresholding nearest neighbor classifiers, on the credit card fraud dataset, at various
degrees of class imbalance. Error bars denote standard errors, computed over the 100 random
training/validation/test splits.
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Figure 4: Mean F scores (over 100 random training/validation/test splits) of optimal deterministic
and stochastic thresholding nearest neighbor classifiers, on the credit card fraud dataset, for various
values of the nearest neighbor hyperparameter k. Error bars denote standard errors, computed over
the 100 random training/validation/test splits.

Figure ] shows that this effect is robust over different values of the nearest neighbor hyperparameter
ke {2,4,8,16,32,64,128}.
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