
A Proof of Theorem 3.1
Proof. Starting from our original objective

argmin
θ

Exu∼p(·|xo)

[
KL
(
qψ(z | xo,xu) || qθ(z | xo)

)]
, (8)

we proceed as follows:

= argmin
θ

Exu∼p(·|xo)

[∫
qψ(z | xo,xu) log

qψ(z | xo,xu)
qθ(z | xo)

dz

]
(9)

= argmin
θ

Exu∼p(·|xo)

∫

qψ(z | xo,xu) log
qψ(z | xo,xu)

pϕ(xu | z,xo)qθ(z | xo)
pϕ(xu | z,xo)

dz

 (10)

= argmin
θ

Exu∼p(·|xo)

∫

qψ(z | xo,xu) log
qψ(z | xo,xu)
pθ,ϕ(xu, z | xo)
pϕ(xu | z,xo)

dz

 (11)

= argmin
θ

Exu∼p(·|xo)

∫

qψ(z | xo,xu) log
qψ(z | xo,xu)

pθ,ϕ(xu | xo)qθ(z | xo,xu)
pϕ(xu | z,xo)

dz

 (12)

= argmin
θ

Exu∼p(·|xo)

∫ qψ(z | xo,xu) log
pϕ(xu | z,xo)qψ(z | xo,xu)
pθ,ϕ(xu | xo)qθ(z | xo,xu)

dz

 (13)

= argmin
θ

Exu∼p(·|xo)

∫ qψ(z | xo,xu)
(
log

qψ(z | xo,xu)
qθ(z | xo,xu)

+ log pϕ(xu | z,xo) − log pθ,ϕ(xu | xo)
)

dz

 (14)

= argmin
θ

Exu∼p(·|xo)

− log pθ,ϕ(xu | xo) +

∫
qψ(z | xo,xu)

(
log

qψ(z | xo,xu)
qθ(z | xo,xu)

+ log pϕ(xu | z,xo)
)

dz

 (15)

= argmin
θ

Exu∼p(·|xo)

[
− log pθ,ϕ(xu | xo) + KL

(
qψ(z | xo,xu) || qθ(z | xo,xu)

)
+ Ez∼qψ(·|xo,xu)

[
log pϕ(xu | z,xo)

]]
(16)

= argmin
θ

Exu∼p(·|xo)

[
− log pθ,ϕ(xu | xo) + KL

(
qψ(z | xo,xu) || qθ(z | xo,xu)

)]
. (17)

In the final step, we can ignore the term Ez∼qψ(·|xo,xu)
[
log pϕ(xu | z,xo)

]
since it does not depend

on θ.

B Likelihood Estimation

Often, it is of interest to evaluate likelihoods with generative models. In the VAE setting, the joint
likelihood is frequently estimated with importance sampling:

pψ,ϕ(x) = Ez∼qψ(·|x)

[
pϕ(x | z)p(z)
qψ(z | x)

]
. (18)

With Posterior Matching, we can estimate arbitrary conditional likelihoods by additionally estimating

pθ,ϕ(xo) = Ez∼qθ(·|xo)

[
pϕ(xo | z)p(z)
qθ(z | xo)

]
(19)

= Ez∼qθ(·|xo)

[∫
pϕ(x = (xo,xu) | z) dxu p(z)

qθ(z | xo)

]
(20)

in order to obtain pθ,ψ,ϕ(xu | xo) = pψ,ϕ(x)/pθ,ϕ(xo). This is the estimator we use in our
experiments that report likelihoods. Note that if the decoder is factorized (which it always is in our
experiments), then we can write Equation 20 as:

Ez∼qθ(·|xo)

[∏
i∈o pϕ(xi | z)p(z)
qθ(z | xo)

]
. (21)

If the decoder is not factorized, then the integral in Equation 20 needs to be estimated.

14

C Lookahead Posteriors

Partially Observed

Encoder
Decoder Partially Observed

Encoder

Lookahead
Encoder

Draw Samples

Lookahead Loss

Inference Time

Figure 8: Overview of how Posterior Matching is used to learn “lookahead” posteriors for greedy
active feature acquisition. The top path illustrates how samples are produced for use in the lookahead
Posterior Matching loss. At inference time, we obtain the entropy of the distributions outputted
by the rightmost networks. Taking the top path to obtain these entropies is the more expensive
sampling-based approach. Using the learned Lookahead Encoder on the bottom path is the much
faster approach that only requires a single network evaluation.

D Experimental Details

All experiments, except for VDVAE models (see Section D.2.2), were run on a single GeForce GTX
1080 Ti GPU, with the longest running models taking no more than 12 hours to train.

D.1 Real-valued Datasets

For experiments on the UCI datasets, we use multi-layer perceptrons (MLP) with residual connections
for all networks. For these experiments, we found that only optimizing LPM with respect to θ gave the
best results (i.e., we stop gradients on samples from qψ(z | xo) when computing LPM). We also use a
schedule for the β coefficient of the KL term in the ELBO, as this helped avoid degeneracy at the start
of training. For models where a cyclical schedule [12] was used, the period was 50000 training steps
and the schedule began after an initial 1000 steps where β was 0 (except for MINIBOONE, where the
period is 5000 and the delay is 2000). For models where a monotonic schedule was used, β was 0 for
the first 30000 training steps and then linearly annealed to 1 at the final training step. We used the
autoregressive distribution described in Section D.5, with 256 hidden units and 3 residual blocks, for
the partially observed posterior. During training, a small amount of Gaussian noise (σ = 0.001) is
added to each minibatch. We use the Adam [20] optimizer with an initial learning rate of 0.001 and
an exponential decay schedule with a rate of 0.9 every 5000 steps (except for MINIBOONE, where
the decay is every 1000 steps). During training and test time, observed masks were drawn from a
Bernoulli distribution with p = 0.5. At test time, likelihoods are computed with the estimator in
Appendix B. Additional hyperparameters are given in Table 3.

Table 3: Additional hyperparameters for UCI experiments. Hidden Units, Residual Blocks, and Layer
Normalization refer to the VAE encoder/decoder networks.

POWER GAS HEPMASS MINIBOONE BSDS

Batch Size 512 512 512 1024 1024
Latent Dimension 16 16 16 32 64
Hidden Units 256 256 256 256 256
Residual Blocks 2 2 2 5 5
Layer Normalization No No No Yes Yes
Training Steps 200000 200000 200000 22000 200000
β Schedule Cyclical Cyclical Cyclical Cyclical Monotonic

15

D.2 Image Inpainting

D.2.1 Vector Quantized-VAEs

We first train VQ-VAE models as described in Oord et al. [30]. The VQ-VAE encoder and decoder
are convolutional networks with residual blocks, following the implementation found at https:
//github.com/deepmind/dm-haiku/blob/main/examples/vqvae_example.ipynb. We use
two residual blocks with 32 hidden units in the residual layers. We use the exponential moving
average version of the VQ-VAE training procedure in order to update the quantized vectors. We use a
decay rate of 0.99 and a commitment cost of 0.25. The quantized vectors have a dimensionality of
64. Our decoder outputs a multivariate Gaussian with covarance matrix that is a scalar multiple of
the identity matrix, where the scalar is a learnable parameter. All models are trained with the Adam
[20] optimizer with learning rate 0.0003. Additional hyperparemeters for each of the datasets can be
found in Table 4.

We then train a conditional PixelCNN [29] for each pretrained VQ-VAE model, where the PixelCNN
is modeling the partially observed posterior. First, we use the VQ-VAE encoder to obtain the discrete
indices z that correspond to a given x. We then use an encoder network with the same architecture
as the VQ-VAE encoder to map xo to a 512-dimensional conditioning vector. This vector is then
used as conditioning input to the PixelCNN when computing the log-likelihood of z. This gives us
− log q(z | xo), which is our usual Posterior Matching loss. We use a learnable embedding lookup
as the first layer in the PixelCNN in order to map z to continuous values. The PixelCNN outputs
categorical logits (with as many classes as there are discrete latent vectors). Convolutional layers in
the PixelCNN use 128 filters. For CelebA, 12 residual blocks are used, and 8 are used for MNIST and
Omniglot. Dropout is used with a rate of 0.5. We use the Adam optimizer with an initial learning rate
of 0.0003 and decay of 0.999995 every step. The batch size is 32. Models are trained for 150000 steps.
When training and evaluating the PixelCNN models, we randomly generate the masks of observed
values according to the same distributions used by Li et al. [24]. When evaluating the models, we
compute PSNR by averaging over 10 decoded samples from the partially observed posterior.

Table 4: Dataset-dependent hyperparameters for VQ-VAE.

MNIST OMNIGLOT CELEBA

Batch Size 32 32 64
of Embeddings 256 256 512
Hidden Units 32 32 128
Training Steps 60000 60000 100000

D.2.2 Hierarchical VAEs

We use the hierarchical VAE architecture proposed by Child [8] by closely following their original
implementation at: https://github.com/openai/vdvae. However, we make the following
modifications to incorporate the partially observed posterior. First, a second encoder network is added
which accepts xo as input. We then also add an additional residual block in each top-down block
in the decoder to output q(zi | z<i,xo). These new residual blocks are identical to the ones used to
output the posteriors, except they accept the activations from the partially observed encoder instead
of the fully observed encoder.

We use Gaussians for the partially observed posteriors, and so we directly compute the KL-divergence
between the posterior and partially observed posterior at each level in the hierarchy. In the hierarchical
setting, the full Posterior Matching KL-divergence can be computed as

KL
(
qψ(z | xo,xu) || qθ(z | xo)

)
=

L∑
i=1

E z<i∼qψ(·|xo,xu)

[
KL
(
qψ(zi | z<i,xo,xu) || qθ(zi | z<i,xo)

)]
, (22)

and so during training we approximate this by simply summing the individual KL terms from all of
the levels (this is analogous to how the KL term in the ELBO is computed for VDVAE). We stop
gradients in the model such that the Posterior Matching loss is only computed with respect to the
parameters of the partially observed encoder and the residual blocks that output the partially observed
posteriors (i.e. only the new parameters that we introduced to the model).

16

https://github.com/deepmind/dm-haiku/blob/main/examples/vqvae_example.ipynb
https://github.com/deepmind/dm-haiku/blob/main/examples/vqvae_example.ipynb
https://github.com/openai/vdvae

We follow the training setup used by Child [8] as well. Our MNIST and OMNIGLOT models have 20
levels in the hierarchy, and convolutions use 192 filters. The models were trained for 500000 steps on
8 TPU-v2 cores, which took about 3 days. Our CELEBA model has 46 levels in the hierarchy, and
convolutions use 384 filters. The model was trained for 1000000 steps on 8 TPU-v3 cores, which
took about 5.5 days. TPUs were provided by Google’s TPU Research Cloud program.

When evaluating likelihoods, we used the importance sampling estimator described in Appendix B
with 10,000 samples (estimates had converged with this number of samples).

D.3 Partially Observed Clustering

We implemented and trained VaDE models as described in Jiang et al. [19]. However, we use convo-
lutional encoders and decoders in our experiments instead of fully-connected networks. Otherwise,
all hyperparameters are the same as in Jiang et al. [19]. In a straightforward adaptation of how VaDE
typically predicts the cluster for x, we predict the cluster based on xo with:

q(c | xo) = Ez∼q(·|xo)

[
p(z | c)p(c)∑
c′ p(z | c′)p(c′)

]
. (23)

We use 50 samples when estimating the expectation in Equation 23.

Training the partially observed posterior network is then done as usual. We use the same network
architecture as the VaDE model’s encoder for this network. We use the autoregressive distribution
described in Section D.5 for the partially observed posterior, with 256 hidden units and 2 residual
blocks. Observed masks are sampled from a uniform distribution during training.

The supervised baseline is trained by first using the pretrained VaDE model to predict the class label
for each instance (based on fully observed information). Those labels are then used as the ground
truth to train a supervised model (that accepts partially observed inputs) with a standard cross-entropy
loss. We use the same network architecture as the VaDE encoder and the partially observed posterior
network for the supervised classifier. As before, observed masks are randomly generated during the
training of this classifier.

D.4 Very Fast Greedy Feature Acquisition

In the feature acquisition experiments, we use relatively simple VAE models. For flattened MNIST,
our encoder and decoder are MLPs with hidden layers of sizes 50, 100, and 200. We use this
same architecture for EDDI as well. For the convolutional model, the encoder has four layers
with the following (hidden units, kernel, stride): (32, 3, 1), (32, 3, 2), (64, 3,
2), (64, 1, 1). The decoder has the layers (64, 8, 1), (64, 5, 2), (32, 5, 1), (32,
5, 1), (1, 3, 1). For both versions, the encoder outputs a diagonal Gaussian posterior, and the
decoder outputs Bernoulli distributions. The latent dimension is 10 for all models.

For the partially observed posterior, we use a network with the same architecture as the fully observed
encoder. Since we want to be able to compute the posterior entropy analytically when computing the
information gains, we also use a Gaussian for the partially observed posterior. However, rather than
letting it be diagonal, we parameterize the Gaussian with a lower triangular matrix L such that the
covariance matrix is C = LL⊤. We do not stop gradients on samples from the VAE encoder when
computing the Posterior Matching loss.

We first train the VAEs with Posterior Matching, before learning the lookahead posteriors. During
training, we uniformly generate masks that set between 0% and 20% of the features as observed. Our
models are trained for 200000 steps with a batch size of 128. We use the Adam [20] optimizer with
an initial learning rate of 0.001 and an exponential decay schedule with a rate of 0.9 every 5000 steps.

After the VAE with Posterior Matching has been trained, we then freeze this model and train the
lookahead posterior network. This network outputs one diagonal Gaussian for each feature. Given
that the number of features can be relatively large and we are limited by the memory of the GPU, we
randomly select a subset of these distributions to update at each training step. That is, we subsample
the terms in the sum in Equation 7. For the MLP model, we subsample 128 indices, and for the
convolutional model we subsample 32 indices. We then estimate the expectation in Equation 7
over multiple samples from the already trained VAE model. We found using multiple samples to

17

be important for getting good performance. For the MLP model, we use 64 samples, and for the
convolutional model we use 16 samples. The MLP model is trained for 50000 steps with a batch size
of 64 and the convolutional model is trained for 60000 steps with a batch size of 32. We again use the
Adam optimizer with an initial learning rate of 0.001 and an exponential decay schedule with a rate
of 0.9 every 5000 steps.

D.5 Autoregressive Posterior Details

As described in the main text, one of the advantages of Posterior Matching is the freedom to use
highly expressive distributions for the partially observed posterior, as we do not require it to be
reparameterizable. Here, we describe an autoregressive distribution that we use in some of our
experiments. It is based on the proposal distributions used in Strauss and Oliva [38] and Nash
and Durkan [28], which were shown by Strauss and Oliva [38] to outperform prior state-of-the-art
arbitrary conditioning methods for likelihoods and imputation, despite being very simple.

The distribution consists of an MLP with residual connections that outputs a mixture of Gaussians for
each covariate. This network accepts partially observed inputs as well as a conditioning vector as
input. In our case, the conditioning vector is the output of the partially observed posterior encoder.
We then compute q(z | xo) in an autoregressive fashion as

q(z | xo) =
D∏
i=1

q(zi | xo, z<i),

where D is the dimensionality of z. Each q(zi | xo, z<i) term is obtained from a separate evaluation
of the autoregressive distribution’s network, where the partially observed inputs change to reflect
the appropriate z<i. The conditioning vector that represents xo remains constant for all of these
evaluations though. Note that when computing likelihoods, these evaluations can be done efficiently
in parallel. Sampling, however, requires an O(D) sequential procedure. However, we do not need to
sample this distribution during training, and D is generally small anyway.

We chose this particular distribution for its combination of simplicity and good performance. However,
we did not experiment extensively with other types of autoregressive distribution for the partially
observed posterior. As previously noted, though, there is a large degree of flexibility in this choice.

E Zero Imputation with Base VAE

One approach to imputation with VAEs that could be considered is to simply replace missing values
with zeros before passing the input to the original VAE encoder and then subsequently using the
decoder to obtain a reconstruction/imputation. While this method is straightforward and doesn’t
require any additional components in the model, it suffers greatly from distribution shift because the
original VAE encoder was never trained to encounter those types of inputs. Thus, it is expected that
this approach generally has worse performance. We include some simple results in Figure 9 illustrating
this, where we use the base VAE from our MNIST experiments. We see that the reconstructions of
the zero-imputed inputs faithfully reproduce the zeros (i.e. do not impute anything) and/or degrade
the quality of the observed pixels’ reconstructions.

Figure 9: Demonstration of the zero-imputing approach to imputation with VAEs. In each image, the
left column shows the inputs to a base VAE’s encoder, and the right column shows the corresponding
outputs. We show the masked regions of the inputs on the bottom row in green for clarity, even
though those values are actually zero when passed to the encoder.

18

F Additional Image Samples

Figure 10: VDVAE OMNIGLOT inpaintings.

19

Figure 11: VDVAE MNIST inpaintings.

20

Figure 12: VDVAE CELEBA inpaintings.

21

Figure 13: VQ-VAE OMNIGLOT inpaintings.

22

Figure 14: VQ-VAE MNIST inpaintings.

23

Figure 15: VQ-VAE CELEBA inpaintings.

24

(a) OMNIGLOT (b) MNIST

(c) CELEBA

Figure 16: VQ-VAE image samples from the joint distribution, a special case obtained by sampling
qθ(z | xo = ∅). Note that the models were not explicitly trained to model the joint and never saw
xo = ∅ during training.

25

