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Abstract

The need for interpretable models has fostered the development of self-explainable
classifiers. Prior approaches are either based on multi-stage optimization schemes,
impacting the predictive performance of the model, or produce explanations that
are not transparent, trustworthy or do not capture the diversity of the data. To
address these shortcomings, we propose ProtoVAE, a variational autoencoder-
based framework that learns class-specific prototypes in an end-to-end manner
and enforces trustworthiness and diversity by regularizing the representation space
and introducing an orthonormality constraint. Finally, the model is designed to
be transparent by directly incorporating the prototypes into the decision process.
Extensive comparisons with previous self-explainable approaches demonstrate the
superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse
explanations, while not degrading predictive performance.

1 Introduction

Despite the substantial performance of deep learning models in solving various automated real-world
problems, lack of transparency still remains a crucial point of concern. The black-box nature of these
high-accuracy achieving models is a roadblock in critical domains such as healthcare [1, 2], law [3], or
autonomous driving [4]. This has led to the emergence of the field of explainable artificial intelligence
(XAI) which aims to justify or explain a model’s prediction in order to increase trustworthiness,
fairness, and safeness in the application of the complex models henceforward.

Consequently, two lines of research have emerged within XAI. On the one hand, there are general
methodologies explaining a posteriori black-box models, so-called post-hoc explanation methods
[5, 6, 7]. While on the other hand, there are models developed to provide explanations along with
their predictions [8, 9, 10]. The latter class of models, also known as self-explainable models
(SEMs), are the focus of this work. Recently, many methods have been developed for quantifying
post-hoc explanations [11]. However, there is still a lack of a concise definition of what SEMs should
encompass, thus a lack of comparability of recent methods [12].

Methodologically, a large number of SEMs follow the approach of concept learning, analogous to
prototype or basis feature learning, where a set of class representative features are learned [8, 9]. In
this paper we gauge SEMs through the prism of three properties. First and foremost, the prototypes
should be visualizable in the input space, and these transparent concepts should directly be employed
by a glass-box classification model. Many of the existing approaches try to imitate prototype
transparency by using nearest training samples to visualize the prototypes [8, 13], while some flatly
use training images as prototypes preventing an end-to-end optimization and limiting the flexibility
of the model [9, 14]. Secondly, the prototypes should exhibit both inter-class and intra-class diversity.
Methods failing to ensure this property [9] are prone to prototype collapse into a single point which
necessarily undermines their performance. Finally, SEMs should perform comparable to their black-
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box counterparts while producing robust and faithful explanations. Previous approaches have a
tendency to achieve self-explanability by sacrificing the predictive performance [9, 14, 13].

To address the aforementioned shortcomings of current SEMs, we introduce ProtoVAE, a prototypical
self-explainable model based on a variational autoencoder (VAE) backbone. The architecture and the
loss function are designed to produce transparent, diverse, and trustworthy predictions, as well as
explanations, while relying on an end-to-end optimization. The predictions are linear combinations of
distance-based similarity scores with respect to the prototypes in the feature space. The encoder and
decoder are trained as a mixture of VAEs sharing the same network but each with its own Gaussian
prior centered on one of the prototypes. The latter are enjoined to capture diverse characteristics of
the data through a class-wise orthonormality constrain. Consequently, our learned prototypes are truly
transparent global explanations that can be decoded and visualized in the input space. Further, we are
able to generate local pixel-wise explanations by back-propagating relevances from the similarity
scores. Empirically, our model corroborates trustworthiness both in terms of performance as well as
the quality of its explanations.

Our main contributions can be summarized as follows:
• We define three properties for SEMs, based on which we present a novel prototypical self-

explainable model with a variational auto-encoder backbone, equipped with a fully transparent
prototypical space.

• We are able to learn faithful and diverse global explanations easily visualizable in the input space.
• We provide an extensive qualitative and quantitative analysis on five image classification datasets,

demonstrating the efficiency and trustworthiness of our proposed method.

2 Predicates for a self-explainable model

For the benefit of an efficient and comprehensible formalization of SEMs, we here define three
properties that we consider as prerequisites for SEMs.

Definition 1 An SEM is transparent if:
(i) its concepts are utilized to perform the downstream task without leveraging a complex black-box

model;
(ii) its concepts are visualizable in input space.

Definition 2 An SEM is diverse if its concepts represent non-overlapping information in the latent
space.

Definition 3 An SEM is trustworthy if:
(i) the performance matches to that of the closest black-box counterpart;

(ii) the explanations are robust, i.e., similar images yield similar explanations.
(iii) the explanations represent the real contribution of the input features to the prediction.

Note that these definitions echo properties and axioms found in other works. However, the view
of such properties is diverse across the literature which leads to failure of encompassing the wide
research of SEMs in general. For example, transparency is known as ‘completeness’ in [15] and
‘local accuracy’ in [16]. In the next section, we provide a comparison of existing SEMs based on the
fulfillment of the proposed predicates.

3 Categorization of related self-explainable works

Self-explainable models optimize for both explainability and prediction, making the network in-
herently interpretable. As our main contribution is a prototypical model, we review and categorise
existing prototypical SEMs according to the above-mentioned properties.

SENN [8] introduces a general self-explainable neural network designed in stages to behave locally
like a linear model. The model generates interpretable concepts, to which sample similarities
are directly aggregated to produce predictions. This generalized approach has been followed by
most of the prototypical and concept-based self-explainable methods, and is also mirrored by our
approach. SENN, however uses training data to provide interpretation of learned concepts, therefore
approximating transparency, unlike our model which by-design has a decoder to visualize prototypes.
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Table 1: Summary of the SEM properties satisfied by the baselines. The optimization scheme is also
indicated. The symbol ∼ indicates that the concepts cannot be directly visualized in the input space
and that the nearest training data serve as ersatz.

Transparency Diversity Trustworthiness Optimization

SENN[8] ∼ ✓ ✓ End-to-end

ProtoPNet[9] ✓ Alternating

TesNET[14] ✓ ✓ Alternating

SITE[17] ✓ ✓ End-to-end

FLINT[13] ∼ ✓ End-to-end

ProtoVAE ✓ ✓ ✓ End-to-end

ProtoPNet [9] is a representative of a line of works [9, 14, 18, 19, 20], where a prototypical layer is
introduced before the final classification layer. For maintaining interpretability, the prototypes are
set as the projection of closest training image patches after every few iterations during training. Our
method is closely related to ProtoPNet with the distinction of decode-able learned prototypes yielding
a smooth and regularized prototypical space, thus allowing more flexibility in the model. TesNet
[14] extends ProtoPNet and improves diversity at class level using five loss terms. Similarly to our
approach, they distribute the base concepts among the classes and include an orthonormal constraint.
However, the basis concepts are still projections from the nearest image patches, which leads to loss
in predictive performance, similar to ProtoPNet. SITE [17] generates class prototypes from the input
and introduces a transformation-equivariant model by constraining the interpretations before and after
transformation. Since the prototypes are dynamic and generated for each test image, this method only
provides local interpretations and lacks global interpretations. FLINT [13] introduces an interpreter
model (FLINT-g) in addition to the original predictor model (FLINT-f ). Although FLINT-f has
been introduced by the authors as a framework that learns in parallel to the interpretations, it is not
an SEM on its own. Therefore, we focus on FLINT-g, henceforward referred to as FLINT. FLINT
takes as input features of several hidden layers of the predictor to learn a dictionary of attributes.
However, the interpreter is not able to approximate the predictor model perfectly, therefore losing
trustworthiness. Unlike prior approaches, ProtoVAE is designed to fulfill all three SEM properties.
We summarize the discussed methods and their categorization in Table 1.

4 ProtoVAE

In this section, we introduce ProtoVAE, which is designed to obey the aforementioned SEM properties.
Specifically, transparency is in-built in the architecture and further enforced along with diversity
through the loss function. Also, we describe how our choices ensure the trustworthiness of our
method.

4.1 Transparent architecture

In a transparent self-explainable model, the predictions are interpretable functions of concepts
visualizable in the input space. To satisfy this property, we rely on an autoencoder-based architecture
as backbone and a linear classifier. In order to have consistent, robust, and diverse global explanations,
we consider prototypes in a greater number than classes. Unlike previous prototypical methods [9,
14], which update the prototypes every few iterations with the embeddings of the closest training
images, ProtoVAE is trained end-to-end to learn both the prototypes in the feature space and the
projection back to the input space. This gives ProtoVAE the flexibility to capture more general
class characteristics. To further alleviate situations where some of the optimized prototypes are
positioned far from the training data in the feature space, possibly causing poor reconstructions and
interpretations, we leverage a variational autoencoder (VAE). VAEs are known to learn more robust
embeddings and thus generate better reconstructions from out-of-distribution samples than simple
autoencoders [21]. A schematic representation of the network is depicted in Fig. 1.

Details of the operations The downstream task at hand is the classification into K > 0 classes of the
image dataset X = {(xi,yi)}Ni=1, where xi ∈ Rp is an image and the one-hot vector yi ∈ {0, 1}K

3



Figure 1: Schematic representation of the architecture of ProtoVAE. The input image x is encoded
by f into a tuple (µ,σ). A vector z is sampled from N (µ,σ) which, on one side, is decoded by g
into the reconstructed input x̂ and, on the other side, is compared to the prototypes ϕkj resulting in
the similarity scores s. The latter are passed through the classifier h to get the final prediction ŷ.

encodes its label. The network consists of an encoder f : Rp → R
d ×Rd, a decoder g : Rd → R

p

(d < p), M prototypes per class Φ = {ϕkj}k=1. .K
j=1. .M , a similarity function sim : Rd → R

M and a
glass-box linear classifier h : RM → [0 , 1]K . An image xi is first transformed by f into a tuple
(µi,σi) = f(xi) which, in the VAE realm, are the parameters of the posterior distribution. A feature
vector zi is then sampled from the normal distribution N (µi,σi) and is used twice. On the one hand,
it is decoded as x̂i = g(zi). On the other hand, it is compared to the prototypes. We use the same
similarity function as in [9] and obtain the resulting vector si ∈ RK×M as:

si(k, j) = sim(zi,ϕkj) = log

(
||zi − ϕkj ||2 + 1

||zi − ϕkj ||2 + ϵ

)
, (1)

with 0 < ϵ < 1. Finally, si is used to compute the predictions: ŷi = h(si). Moreover, the similarity
vector si captures the distance to the prototypes but also indicates the influence of each prototype on
the prediction.

4.2 Diversity and trustworthiness

Unlike transparency, diversity cannot be achieved solely through the architectural choices. It needs to
be further enforced during the optimization. Our architecture implies two loss terms: a classification
loss and a VAE-loss. Without further regulation, our model is left vulnerable to the curse of prototype
collapse [14, 22] which would undermine the SEM diversity property. We prevent such a situation
with a third loss term enforcing orthonormality between prototypes of the same class. The loss
function of ProtoVAE can thus be stated as follows:

LProtoVAE = Lpred + Lorth + LVAE. (2)

We detail now each term and discuss how they favor diversity and trustworthiness.

Inter-class diversity through classification Although the prototypes are assigned to a class, the
classifier is blind to that information. Thus, the prediction problem is a classic classification that we
solve using the cross-entropy loss.

Lpred =
1

N

N∑
i=1

CE(h(si);yi). (3)

Since h is linear, the loss pushes the embedding of each class to be linearly separable, yielding a
greater inter-class diversity of the prototypes.

Intra-class diversity through orthonormalization The inter-class diversity is guaranteed by the
previous terms. However, without further regularization, the prototypes might collapse to the center
of the class, obviating the possibilities offered by the extra prototypes. To prevent such a situation
and foster intra-class diversity, we enforce the prototype of each class to be orthonormal to each other
as follows:

Lorth =

K∑
k=1

||Φ̄T
k Φ̄k − IM ||2F , (4)
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where IM is the identity matrix of dimension M × M and the column-vectors of matrix Φ̄k are
the prototypes assigned to class k minus their mean, i.e., Φ̄k = {ϕkj − ϕ̄k, j = 1 . . M} with
ϕ̄k =

∑M
l=1 ϕkl. Beyond regularizing the Frobenius norm ||.||F of the prototype, this term favors the

disentanglement of the captured concepts within each class, which is one way to obtain intra-class
diversity.

Robust classification and reconstruction through VAE The VAE architecture ensures the ro-
bustness of the embedding and of the decoder. In its original form, the VAE loss considers a single
standard normal distribution as a prior and is trained to minimize:

||x− x̂||2 +DKL

(
pf (z|x)||N (0d, Id)

)
, (5)

where Id is the identity matrix of dimension d × d. Such an objective enjoins the embedding to
organize as if generated by a single Gaussian distribution, thus making it difficult to split it with the
linear classifier h. To help the classifier, we consider instead a mixture of VAEs sharing the same
network each with a Gaussian prior centered on one of the prototypes. Since, each prototype has a
label, only data-points sharing that label are involved in the training of the associated VAE. The loss
function of our mixture of VAEs is (derivation in the supplementary material Sec. S2):

LVAE =
1

N

N∑
i=1

||xi − x̂i||2 +
K∑

k=1

M∑
j=1

yi(k)
si(k, j)∑M
l=1 si(k, l)

DKL

(
N (µi,σi)||N (ϕkj , Id)

)
. (6)

In addition to training the decoder, this loss enjoins the embedding to gather closely around their
class prototypes.

4.3 Visualization of explanations

ProtoVAE is designed to have the inherent capability to reconstruct prototypes via the decoder, which
is trained to approximate the input distribution. Additionally, to generate faithful pixel-wise local
explanation maps, we build upon the concepts of Layer-wise relevance propagation (LRP) [23] which
is a model-aware XAI method computing relevances based on the contribution of a neuron to the
prediction. Following [12], we generate explanation maps, where for each prototype, the similarity of
an input to the prototype is backpropagated to the input image according to the LRP rules. For an
input image xi, the point-wise similarity between the transformed mean vector µi with a prototype
ϕkj is first calculated as:

γikj =
1

dikj + η
with dikj = (µi − ϕkj) ∗ (µi − ϕkj), (7)

where ∗ is the Hadamard element-wise product and η > 0. The similarity γikj is then backpropagated
through the encoder following LRP composite rule, which is known as best practice [24] to compute
local explanation maps. Following this, the LRPαβ rule is applied to the convolutional layers and the
Deep Taylor Decomposition based rule DTDzB [25] is applied to the input features.

5 Experiments

In this section, we conduct extensive experiments to evaluate ProtoVAE’s trustworthiness, trans-
parency, and ability to capture the diversity in the data. More specifically, we demonstrate the
trustworthiness of our model in terms of predictive performance in Sec. 5.1. Qualitative evaluations
are then conducted in Sec. 5.2 to verify the diversity and transparency properties, followed by a
quantitative evaluation of the explanations corroborating its trustworthiness. Additionally, we provide
an ablation study for the terms in Eq. 2 and further study the effect of the L2 norm in Eq. 6 on the
prototype reconstructions in the supplementary material in Sec. S6.1 and Sec. S6.9, respectively.

Datasets and implementation: We evaluate ProtoVAE on 5 datasets, MNIST [26], FashionMNIST
[27] (fMNIST), CIFAR-10, [28], a subset of QuickDraw [29] and SVHN [30]. We use small encoder
networks with 4 convolution layers for MNIST, fMNIST and CIFAR-10, 3 for QuickDraw and
8 for SVHN. These convolution layers are followed by 2 linear layers which gives us the tuple
(µi,σi) for each image i. The decoder mirrors the encoder’s architecture. Similar to [9], we fix
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Table 2: Performance results of ProtoVAE compared to other state-of-the-art methods (measured in
accuracy (in %)). The reported numbers are means and standard deviations over 4 runs. Best and
statistically non-significantly different results are marked in bold. *Results for SITE are taken from
the original paper and thus based on more complex architectures.

Black-box encoder FLINT [13] SENN [8] *SITE [17] ProtoPNet [9] ProtoVAE

MNIST 99.2±0.1 99.4±0.1 98.8±0.7 98.8 94.7±0.6 99.4±0.1
fMNIST 91.5±0.2 91.5±0.2 88.3±0.3 - 85.4±0.6 91.9±0.2
CIFAR-10 83.9±0.1 79.6±0.6 76.3±0.2 84.0 67.8±0.9 84.6±0.1
QuickDraw 86.7±0.4 82.6±1.4 79.3±0.3 - 58.7±0.0 87.5±0.1
SVHN 92.3±0.3 90.8±0.4 91.5±0.4 - 88.6±0.3 92.2±0.3
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Figure 2: Visualization of learned prototypes for different classes for MNIST, fMNIST, SVHN and
CIFAR-10.

the prototypes per class, M , to 5 for MNIST and SVHN and 10 for the other datasets. Further
details about the datasets and additional implementation details, such as the detailed architecture and
hyperparameters, are provided in the supplementary material Sec. S3 and S4. Our code is available at
https://github.com/SrishtiGautam/ProtoVAE.

Baselines To ensure a fair comparison, we modified the publicly available code of ProtoPNet,
FLINT and SENN to use the same backbone network as ProtoVAE and when relevant the same
number of prototypes per class as used for ProtoVAE. We also provide the results for the predictive
performance of SITE as reported in [17], since the code is not publicly available. We also report
the performance of our model with a ResNet-18 backbone in the supplementary material Sec. S6.2.
Further, we compare ProtoVAE using FLINT’s encoders as provided in [13] for both FLINT and
SENN in Sec. S6.3 in the supplementary material. Finally, we also compare with the black-box
counterpart of our model, i.e, a classical feed-forward CNN based on the same encoder as ProtoVAE
but followed by a linear classifier and trained end-to-end with the cross-entropy loss. This black-box
encoder model is thus free from all regularization necessary for self-explainability.

5.1 Evaluation of predictive performance

In the Table 2, we can observe that ProtoVAE surpasses all other SEMs in terms of predictive
performance on all five datasets, which is based on its increased flexibility in the architecture. For
ProtoPNet, we observe a gap in performance, which is due to the low number of optimal class-
representatives in the actual training data. This creates a huge bottleneck at the prototype layer and
therefore limits its performance. Further, and more importantly, when compared to the true black-box
counterpart, ProtoVAE achieves no loss in accuracy and is even able to perform better on all the
datasets. We believe this is due to an efficient over-clustering of the latent space with the flexible
prototypes, as well as the natural regularizations achieved through the VAE model. These results
strengthens the trustworthiness of ProtoVAE in terms of the predictive performance.

5.2 Evaluation of explanations

Qualitative evaluation The demonstrated results in this section strengthen the fulfilment of the
transparency property by providing human-understandable explanations for ProtoVAE. We visualize
the decoded prototypes for different datasets, which act as global explanations for the corresponding
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Figure 3: UMAP representations for the prototypical space for MNIST (left), decoded prototypes
overlayed for classes 2, 4 and 7 (right), and interpolation between prototypes of the same class (2)
and between prototypes of different classes (2-7) (bottom).

classes, in Fig. 2 1. The prototypes for MNIST demonstrate that class 2 consist of 2’s with flat
bottom line or with rounded bottom lines. For fMNIST, the sandals class consists of both heels and
flats. The class prototypes thus directly help visualizing the components of the classes by looking
at a fixed number of prototypes per class instead of all the training data. Interestingly, although
SVHN often contains multiple digits of different classes in the same training image, our prototypes
efficiently capture only one digit representing its class. Moreover, a blurring effect is observed in
our prototypes which captures more variability and therefore suggests efficient representation of
the true “mean" of a subset of a given class, as opposed to other methods [9, 14, 13] which show
the closest training images and are therefore sharper. This behavior supports our claim of more
flexibility in the network, therefore enhancing predictive capability along with the ability to provide
more faithful explanations. This blurring effect is observed to be more prominent in CIFAR-10,
which is due to the high complexity in each class in the dataset and can be reduced by using a larger
number of prototypes per class.2 Additionally, to provide more clear visualization of the learned
transparent prototypical space, we show UMAP representations of the prototypes and the training
data for MNIST in Fig. 3. This visualization further illustrates the inter-class as well as the intra-class
diversity of the prototypes. Moreover, due to the regularized prototypical space, we are efficiently
able to interpolate between prototypes both within a class and between classes, therefore making the
latent space fully transparent. In Fig. 3, we interpolate between 2 different prototypes of class ‘2’
and from a prototype of class ‘2’ to a class ‘7’ prototype.

The local explanability maps for a test image according to the three closest, i.e. most similar,
prototypes for both ProtoVAE and ProtoPNet are shown in Fig. 4, along with the corresponding
similarity scores. As seen, different prototypes of the same class activate different parts of the same
test image, which therefore helps in achieving better performance. The ProtoPNet maps are extremely
coarse which therefore makes them challenging to interpret. Therefore, we overlay the heatmaps
over the input image for ProtoPNet. As observed, the most activated prototypes do not belong to
the same class as the test image. This might happen because of ProtoPNet focusing on patches in
prototypes, therefore losing contextual information. The 3 closest prototypes shown for the image
‘apple’ belong to class ‘lion’. Further, an uninformative training image, which is not seen in the
ProtoVAE prototypes, has been selected by ProtoPNet to represent 5 out of 10 prototypes for class
‘lion’. The remaining 5 prototypes are represented by 1 other same training image. This effect is seen
predominantly in ProtoPNet where the prototypes of the same class collapse to one point and are thus
represented by the same training image, therefore dissatisfying the diversity property, as opposed
to ProtoVAE. The prototypes for class ‘lion’ for both the models are included in the supplementary
material in Sec. S6.4.

1As a reference to gauge the quality and sharpness of the pictures of Fig. 2, reconstructions of test images are
provided in Sec. S6.11.

2We demonstrate this behavior in Sec. S6.8 and show in Sec. S6.7 how local explainability maps can be used
to gather additional information about pixel-wise relevances thereby counterbalancing blurry prototypes.
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Figure 4: Three maximally activated prototypes, the corresponding prototypical activations, and
corresponding similarity scores for a test image of class 5 (for MNIST) and apple (for QuickDraw),
for both ProtoVAE and ProtoPNet models.

0.096 0.098 0.108Test Image

D
og

A
nt

A
pp

le

C
at

Test Image

Nearest prototypes from different classes

0.080 0.076 0.082

Nearest prototypes from different classes

9

7 0 5

Figure 5: Maximally activated prototypes from three random classes, along with the prototypical
explanations for MNIST (left) and QuickDraw (right) datasets.

We also show the closest prototypes from 3 different random classes and their corresponding ex-
plainability maps to demonstrate the behavior of explanations for different class prototypes in Fig. 5.
Interestingly, the ‘dog’ image from the QuickDraw dataset resembles an ‘ant’ prototype for the legs,
an ‘apple’ prototype for the face and a ‘cat’ prototype for the ears. This information provided by the
local explainability maps thus aligns well with human-understandable concepts.

To compare the efficacy of the mapping to the input space learned by our decoder, to methodologies
with training-data projection of prototypes [9, 14], we show prototypes along with the 3 closest
training images for different datasets in Fig. 6. The prototypes are observed to be the representative
of a subset of the respective class. For example, the prototype shown for class ‘4’ of MNIST is
representing the subset of ‘4’ with an extended bar, while the ‘banana’ prototype represents the
left facing ‘banana’ subset, and the ‘dog’ prototype represents the subset of white dogs on a darker
background.

Finally, in order to demonstrate the scalability of ProtoVAE and its applicability on complex higher-
resolution real world datasets, we provide an analysis on the CelebA dataset [31] in Sec. S6.10. Note
that the less important and fairly diverse features (such as background) appear blurry, while the more
important features (skin color, hair color, hair style or age) are crisp and clearly visible.

Quantitative evaluation To quantify the trustworthiness of the explanations provided by the
proposed model, we calculate the Average Drop (AD) and Average Increase (AI) with respect to local
explanation maps and similarity scores for all prototypes [32, 2]. The AD measures the decrease in
similarity scores with respect to each prototype when the 50% least important pixels are removed
from the images, while AI estimates the ratio of increasing similarity scores. A low AD and a high
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Figure 6: The three closest training images to the learned prototypes for MNIST (class ‘4’), Quick-
Draw (class ‘Banana’), fMNIST (class ‘Sandals’) and CIFAR-10 (class ‘Dog’), proving our prototypes
representing a “real mean" of subset of classes.

Table 3: AD and AI for quantitative evaluation of explanations of ProtoVAE and ProtoPNet. The re-
ported numbers are means and standard deviations over 5 runs. Best and statistically non-significantly
different results are marked in bold.

MNIST fMNIST CIFAR-10 QuickDraw SVHN
AD AI AD AI AD AI AD AI AD AI

ProtoPNet 3.4±0.3 0.6±0.0 7.2±0.4 0.5±0.0 11.6±0.2 0.5±0.0 2.6±0.1 0.7±0.0 5.4±0.0 0.7±0.0
ProtoVAE 0.4±0.0 0.6±0.0 5.1±0.0 0.8±0.0 6.6±0.0 0.7±0.0 0.1±0.0 0.9±0.0 6.1±0.1 0.7±0.0

AI suggest better performance. These scores are computed as follows:

AD =
100

NKM

N∑
i=1

K∑
k=1

M∑
j=1

max
(
0, si(k, j)− s50%

i (k, j)
)

si(k, j)
, AI =

N∑
i=1

K∑
k=1

M∑
j=1

[[si(k, j) < s50%
i (k, j)]]

NKM
,

where si(k, j) is the similarity score of an image i with prototype j of class k (see Eq.1) and
s50%i (k, j) is the similarity score after masking the 50% least activated pixels according to the
prototypical explanation map of prototype j. Also, [[ · ]] are the Iverson brackets which take the value
1 if the statement they contain is satisfied and 0 otherwise.

We report the mean and standard deviation for AD and AI computed over 5 random subsets of
1000 test images for ProtoVAE and ProtoPNet in Table 3. For the grayscale datasets, MNIST and
fMNIST, the masked pixels are replaced by 0. For CIFAR-10 and SVHN, they are replaced by random
uniformly sampled values. ProtoVAE achieves considerably lower AD and higher or comparable AI
for all the datasets. For SVHN, ProtoPNet performs well which we believe is due to the abundance of
representative patches in the dataset, thereby improving its explanations.

Finally, we perform a relevance ordering test [33, 12], where we start from a random image and
monitor the predicted class probabilities while gradually adding a percentage of the most relevant
pixels to the random image according to the local explanation maps. We take 100 random test images
and report the average results of change in predicted class probability for all the prototypes in the
model. The rate distortion graphs are shown in Fig. 7 for MNIST, QuickDraw and SVHN. We also
include two baselines, Random-ProtoPNet and Random-ProtoVAE, where the pixel relevances are
ordered randomly. Larger area under the curve indicates better performance. As shown, ProtoVAE’s
local explanations are able to capture more relevant information than ProtoPNet for all three datasets.
Further, for MNIST, ProtoPNet is performing even worse than Random-ProtoPNet, highlighting the
lack of trustworthiness in ProtoPNet’s explanations.

6 Conclusion and Discussion

In this work, we define three properties that act as prerequisites for efficient development of SEMs,
namely, transparency, diversity, and trustworthiness. We then introduce ProtoVAE, a prototypical
self-explainable method, based on a variational auto-encoder backbone, which addresses these three
properties. ProtoVAE incorporates a transparent model and enforces diversity and trustworthiness
through the loss functions. In addition to providing faithful explanations, ProtoVAE is able to achieve
better predictive performance than its counterpart black-box models.
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Figure 7: Relevance ordering test for ProtoPNet and ProtoVAE, along with the respective random
baselines (Random-ProtoPNet and Random-ProtoVAE). Higher curve suggests better performance of
ProtoVAE for all 3 datasets of MNIST, QuickDraw and SVHN.

The main limitation of ProtoVAE is the fixed number of prototypes. This means that the model has
to grasp simple as well as more complex classes with the same number of prototypes. For example,
in MNIST, there are more variations to be captured by the prototypes in the class ‘4’ than in class
‘1’. A simple but effective solution is a distance-based pruning procedure, which will be explored
in future works. Another approach in sight is to use a prior on the distribution of the prototypical
similarities and prioritize some prototypes by controlling the frequency with which each prototype is
used in the predictions. Finally, since our global explanations can only be as good as the decoder, one
more promising research direction is to leverage more expressive generative models, such as "Very
Deep VAEs" [34] and normalizing flows [35] to further improve the scalability of the method to more
complex datasets.
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