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A Experimental Setup

Implementation Details. At the inference stage, all the images are resized to 480×480 for ResNetv2-
101 [7] and SqueezeNet [12]. The source codes are implemented with Pytorch 1.10.1, and all
experiments are run on a single NVIDIA Quadro RTX 6000 GPU.

Evaluation Metrics. Following [10, 19, 11], we measure the performance using two main metrics:
(1) the false positive rate (FPR95) of OOD examples when the true positive rate of ID samples is at
95%; and (2) the area under the receiver operating characteristic curve (AUROC).

1 #Our RankFeat (SVD) is applied on each individual \\
2 #feature matrix within the mini -batch.
3 feat = model.features(inputs)
4 B, C, H, W = feat.size()
5 feat = feat.view(B, C, H * W)
6 u,s,vt = torch.linalg.svd(feat)
7 feat = feat - s[: ,0:1]. unsqueeze (2)*u[: ,: ,0:1]. bmm(vt[: ,0:1 ,:])
8 feat = feat.view(B,C,H,W)
9 logits = model.classifier(feat)

10 score = torch.logsumexp(logits , dim=1)

Figure 1: Pytorch-like codes of our RankFeat implementation.

Pseudo Code of RankFeat. Fig. 1 presents the Pytorch-like implementation of our RankFeat. We
use torch.linalg.svd to conduct SVD on each individual feature matrix in the mini-batch.

B More Evaluation Results

B.1 Large-scale Species Dataset

The Species [9] dataset is a large-scale OOD validation benchmark consisting of 71, 3449 images,
which is designed for ImageNet-1k [1] and ImageNet 21-k [13] as the ID sets. We select four
sub-sets as the OOD benchmark, namely Protozoa, Microorganisms, Plants, and Mollusks.
Table 1 present the evaluation results. Our RankFeat achieves the best performance, surpassing other
methods by 15.91% in the average FPR95 and by 3.31% in the average AUROC.

B.2 CIFAR100 with Different Architectures

We also evaluate our method on the CIFAR benchmark with various model architectures. The
evaluation OOD datasets are the same with those of the ImageNet-1k benchmark. We take ResNet-
56 [6] and RepVGG-A0 [2] pre-trained on ImageNet-1k as the backbones, and then fine-tune them
on CIAR100 [14] for 100 epochs. The learning rate is initialized with 0.1 and is decayed by 10 every
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Table 1: The evaluation results on four sub-sets of Species [9] based on ResNetv2-101 [7]. All values
are reported in percentages, and these post hoc methods are directly applied to the model pre-trained
on ImageNet-1k [1]. The best three results are highlighted with red, blue, and cyan.

Methods
Protozoa Microorganisms Plants Mollusks Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

MSP [8] 75.81 83.20 72.23 84.25 61.48 87.78 85.62 70.51 73.79 81.44
ODIN [16] 75.97 85.11 65.94 89.35 55.69 90.79 86.22 71.31 70.96 84.14
Energy [17] 79.49 84.34 60.87 90.30 54.67 90.95 88.47 70.53 70.88 84.03
ReAct [19] 81.74 84.26 58.82 85.88 36.90 93.78 90.58 76.33 67.02 85.06

RankFeat (Block 4) 66.98 70.19 39.06 86.67 46.31 79.98 80.14 59.92 58.12 74.19
RankFeat (Block 3) 58.99 88.81 49.72 90.04 47.01 91.85 80.37 79.61 59.02 87.58

RankFeat (Block 3 + 4) 52.78 88.65 37.21 92.82 38.07 92.88 76.38 78.13 51.11 88.37

Table 2: The evaluation results with different model architectures on CIFAR100 [14]. All values are
reported in percentages, and these post hoc methods are directly applied to the model. The best two
results are highlighted with red and blue.

Model Methods
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

RepVGG-A0 [2]

MSP [8] 61.55 85.03 91.05 69.19 65.45 82.10 86.68 65.56 76.18 75.47
ODIN [16] 50.20 87.88 88.00 66.56 61.85 79.34 84.87 63.89 71.23 74.42
Energy [17] 53.71 84.59 86.71 66.58 59.71 78.64 84.57 63.88 71.18 73.42

Mahalanobis [15] 81.43 74.81 89.77 67.12 79.49 73.06 64.95 82.19 78.91 74.30
GradNorm [11] 78.87 68.21 95.10 44.73 66.25 75.41 92.98 43.83 83.30 58.05

ReAct [19] 48.09 93.00 73.87 78.12 61.63 78.43 75.23 81.36 64.71 82.73
RankFeat 40.19 88.06 70.47 76.35 57.75 83.58 52.89 83.28 55.33 82.82

ResNet-56 [6]

MSP [8] 77.69 78.25 93.54 66.93 81.57 76.71 88.47 65.79 85.32 71.92
ODIN [16] 66.92 79.25 95.05 50.45 77.45 72.88 90.51 53.47 82.48 64.01
Energy [17] 65.24 79.13 95.05 49.33 77.10 72.32 90.39 52.68 81.95 63.37

Mahalanobis [15] 89.47 69.32 91.38 54.76 82.32 77.53 68.83 79.64 83.00 70.31
GradNorm [11] 96.72 42.09 94.19 47.97 94.61 48.09 89.14 50.18 93.67 47.08

ReAct [19] 50.59 90.56 69.23 85.79 55.38 87.98 82.60 75.51 64.50 84.96
RankFeat 34.62 88.21 61.82 80.50 53.79 89.71 30.89 91.31 45.28 87.43

30 epoch. Notice that this training process is to obtain a well-trained classifier but the ODO methods
(including ours) are still post hoc and do not need any extra training.

Table 2 compares the performance against all the post hoc baselines. Our RankFeat establishes
the state-of-the-art performances across architectures on most datasets and metrics, outperforming
the second best method by 9.38 % in the average FPR95 on RepVGG-A0 and by 19.22 % in the
average FPR95 on ResNet-56. Since the CIFAR images are small in resolution (i.e., 32×32), the
downsampling times and the number of feature blocks of the original models are reduced. Hence we
only apply RankFeat to the final feature before the last GAP layer.

B.3 One-class CIFAR10

To further demonstrate the applicability of our method, we follow [3, 4, 20] and conduct experiments
on one-class CIFAR10. The setup is as follows: we choose one of the classes as the ID set while
keeping other classes as OOD sets. Table 3 reports the average AUROC on CIFAR10. Our RankFeat
outperforms other baselines on most sub-set as well as on the average result.

Table 3: The average AUROC (%) on one-class CIFAR10 based on ResNet-56.

Methods Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

MSP 59.75 52.48 62.96 48.73 59.15 52.39 67.33 59.34 54.55 51.97 56.87
Energy 83.12 91.56 68.99 56.02 75.03 77.33 69.50 88.41 82.88 84.74 77.76
ReAct 82.24 96.69 78.32 76.84 76.11 86.80 86.15 90.95 89.91 94.17 85.82

RankFeat 79.26 98.54 82.04 80.28 82.89 90.28 89.06 95.30 94.11 94.02 88.58

2



C Baseline Methods

For the convenience of audiences, we brie�y recap the previouspost hocmethods for OOD detection.
Some implementation details of the methods are also discussed.

MSP [8]. One of the earliest work considered directly using the Maximum Softmax Probability
(MSP) as the scoring function for OOD detection. Letf (�) andx denote the model and input,
respectively. The MSP score can be computed as:

MSP(x) = max
�

Softmax(f (x))
�

(1)

Despite the simplicity of this approach, the MSP score often fails as neural networks could assign
arbitrarily high con�dences to the OOD data [18].

ODIN [16]. Based on MSP [8], ODIN [16] further integrated temperature scaling and input perturba-
tion to better separate the ID and OOD data. The ODIN score is calculated as:

ODIN(x) = max
�

Softmax(
f (�x )

T
)
�

(2)

whereT is the hyper-parameter temperature, and�x denote the perturbed input. Following the setting
in [11], we setT=1000. According to [11], the input perturbation does not bring any performance
improvement on the ImageNet-1k benchmark. Hence, we do not perturb the input either.

Energy score [17]. Liu et al. [17] argued that an energy score is superior than the MSP because
it is theoretically aligned with the input probability density,i.e., the sample with a higher energy
correspond to data with a lower likelihood of occurrence. Formally, the energy score maps the logit
output to a scalar function as:

Energy(x) = log
CX

i =1

exp(f i (x)) (3)

whereC denotes the number of classes.

Mahalanobis distance [15].Leeet al. [15] proposed to model the Softmax outputs as the mixture
of multivariate Gaussian distributions and use the Mahalanobis distance as the scoring function for
OOD uncertainty estimation. The score is computed as:

Mahalanobis(x) = max
i

�
� (f (x) � � i )T �( f (x) � � i )

�
(4)

where� i denotes the feature vector mean, and� represents the covariance matrix across classes.
Following [11], we use500samples randomly selected from ID datasets and an auxiliary tuning
dataset to train the logistic regression and tune the perturbation strength� . For the tuning dataset, we
use FGSM [5] with a perturbation size of 0.05 to generate adversarial examples. The selected� is set
as0:001for ImageNet-1k.

GradNorm [11]. Huanget al.[11] proposed to estimate the OOD uncertainty by utilizing information
extracted from the gradient space. They compute the KL divergence between the Softmax output and
a uniform distribution, and back-propagate the gradient to the last layer. Then the vector norm of the
gradient is used as the scoring function. Letw andu denote the weights of last layer and the uniform
distribution. The score is calculated as:

GradNorm(x) = jj
@DKL (ujjSoftmax(f (x)))

@w
jj1 (5)

wherejj � jj 1 denotes theL 1 norm, andDKL (�) represents the KL divergence measure.

ReAct [19]. In [19], the authors observed that the activations of the penultimate layer are quite
different for ID and OOD data. The OOD data is biased towards triggering very high activations,
while the ID data has the well-behaved mean and deviation. In light of this �nding, they propose to
clip the activations as:

f l � 1(x) = min( f l � 1(x); � ) (6)
wheref l � 1(�) denotes the activations for the penultimate layer, and� is the upper limit computed
as the90-th percentile of activations of the ID data. Finally, the Energy score [17] is computed for
estimating the OOD uncertainty.
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Figure 2: The top-5 singular value distribution of the ID dataset and OOD datasets. The �rst singular
valuess1 of OOD data are consistently much larger than those of ID data on each OOD dataset.

D Visualization about RankFeat

D.1 Singular Value Distribution

Fig. 2 compares the top-5 singular value distribution of ID and OOD feature matrices on all the
datasets. Our novel observation consistently holds for every OOD dataset: the dominant singular
values1 of OOD feature always tends to be signi�cantly larger than that of ID feature.

Figure 3: The score distributions ofEnergy [17] (top row) and our proposedRankFeat (rest rows)
on four OOD datasets. OurRankFeatapplies to different high-level features at the later depths of
the network, and their score functions can be further fused.

D.2 Score Distribution

Fig. 3 displays the score distributions ofRankFeat at Block 3 and Block 4, as well as the fused
results. OurRankFeat works for both high-level features. For the score fusion, when Block 3
and Block 4 features are of similar scores(dif f:< 5%), the feature combination could have further
improvements.
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