
Appendix
A Performance Goal

We outline the general performance goal of Semi-Supervised Federated Learning. The performance
ceiling is obviously that of Fully Supervised Learning (FSL) (namely, assuming that all the server’s
and clients’ data are centralized and fully labeled). For our context where clients’ data are unlabeled,
a vanilla approach trains the labeled data only on the server-side, referred to as Partially Supervised
Learning (PSL). Clearly, the PSL performance can serve as a lower bound benchmark for other
approaches that employ additional unlabeled data. When the server contains a small amount of
labeled data and a substantial amount of unlabeled data (centralized), Semi-Supervised Learning
(SSL) seeks to use unlabeled data to improve over the PSL. It was shown that state-of-the-art SSL
methods such as FixMatch [32] could produce similar results as FSL.

Our work focuses on Semi-Supervised Federated Learning (SSFL), where the unlabeled data are
distributed among many clients. The general goal of SSFL is to perform similarly to the state-of-
the-art SSL and significantly outperform PSL and the existing SSFL methods. In other words, our
performance goal is to achieve FSL & SSL & SSFL� PSL.

B Static Batch Normalization

We utilize a recently proposed adaptation of Batch Normalization (BN) named Static Batch Normal-
ization (sBN) [9]. It was shown that this method greatly accelerates the convergence and improves
the performance of FedAvg [4] compared with other forms of normalization, including Instan-
ceNorm [45], GroupNorm (GN) [46], and LayerNorm [47]. During the training phase, sBN does not
track the running statistics with momentum as in BN. Instead, it simply standardizes the data batch
xb and utilizes batch-wise statistics µb and σb in the following way.

x̃b =
xb − µb√
σ2
b + ε

· γ + β, µb = E[xb], σ2
b = Var[xb]

In FL training, the affine parameters γ and β can be aggregated as usual. We note that FedAvg with
vanilla BN is not functional because the BN statistics µ and σ used for inference are averaged from
the tracked running BN statistics of local clients during training. Let xm represents the local data of
client m (with size Nm). For a total of M local clients, sBN computes the global BN statistics µ and
σ for inference by querying each local client one more time after training is finished, based on

µ =

∑M
m=1Nmµm∑M
m=1Nm

, µm = E[xm], σ2
m = Var[xm],

σ2 =

∑M
m=1

[
(Nm − 1)σ2

m +Nm(µm − µ)2
]

(
∑M
m=1Nm)− 1

.

In the context of SemiFL, we need to generate pseudo-labels at every communication round. Thus,
local clients need to upload BN statistics for every communication round. Fortunately, we can utilize
the server data xs to update the global statistics instead of querying each local client, where µ = E[xs]
and σ2 = Var[xs]. We provide experimental results of querying the sBN statistics from all the clients
and include an ablation study using only the server data in Table 3. In Table 3, we demonstrate
the ablation study of the sBN statistics on the CIFAR10 dataset. Compared with updating the sBN
statistics with only the server data, updating the sBN statistics with both server and clients does not
provide significant improvements.
Table 3: Ablation study of sBN statistics for the CIFAR10 dataset. The alternative way of using the
server data to update the global sBN statistics does not degrade the performance.

sBN statistics 250 4000

Non-IID, K = 2 IID Non-IID, K = 2 IID

server only 60.0(0.8) 86.3(0.2) 85.5(0.1) 93.1(0.2)
server and clients 60.0(0.9) 88.2(0.3) 85.3(0.3) 93.1(0.1)
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C Experimental Results

C.1 Experimental setup

In Table 4, we provide the hyperparameters used in the experiments. Similar to [32], we use SGD
as our optimizer and a cosine learning rate decay as our scheduler [48]. We also use the same
hyperparameters as [32], where the local learning rate η = 0.03, the local momentum βl = 0.9,
and the confidence threshold τ = 0.95. The Mixup hyperparameter a is set to be 0.75 as suggested
by [36].

We use the standard supervised loss to train the labeled server. For training the unlabeled clients, the
“fix” loss Lfix (proposed in FixMatch [32]) leverages the techniques of consistency regularization
and pseudo-labeling simultaneously. Specifically, the pseudo-labels are generated from weakly
augmented data, and the model is trained with strongly augmented data. The “mix” loss (adapted
from MixMatch [23, 36]) reduces the memorization of corrupted labels and increases the robustness
to adversarial examples. It was also shown to benefit the SSL [24] and FL [49] methods. We have
conducted an ablation study and demonstrated that the mix loss moderately improves performance.

Table 4: Hyperparameters used in our experiments.

Dataset CIFAR10 SVHN CIFAR100

Number of Supervised 250 4000 250 1000 2500 10000

Architecture WResNet28x2 WResNet28x8

Server

Batch size 10 250 10 250 10 250

Epoch 5

Optimizer SGD

Learning rate 3.0E-02

Weight decay 5.0E-04

Momentum 0.9

Nesterov 3

Client

Batch size 10

Epoch 5

Optimizer SGD

Learning rate 3.0E-02

Weight decay 5.0E-04

Momentum 0.9

Nesterov 3

Global
Communication round 800

Momentum 0.5

Scheduler Cosine Annealing
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C.2 SVHN and CIFAR100

In Figure 7 and 9, we demonstrate the results of SVHN and CIFAR100 datasets.

(a) 𝑁𝒮 = 250 (b) 𝑁𝒮 = 1000

Figure 7: Experimental results for SVHN dataset with (a) NS = 250 and (b) NS = 1000.

(a) 𝑁𝒮 = 2500 (b) 𝑁𝒮 = 10000

Figure 8: Experimental results for CIFAR100 dataset with (a) NS = 2500 and (b) NS = 10000.

C.3 Ablation studies

We perform an ablation study of the training techniques adopted in our experiments. We study the
efficacy of the number of local training epoch E, the Mixup data augmentation, and the global SGD
momentum βg [10] as shown in Table 5. Less local training epoch significantly hurts the performance
due to slow convergence. The Mixup data augmentation has around 2% Accuracy improvement for
the CIFAR10 dataset. It demonstrates that it is beneficial to combine strong data augmentation with
Mixup data augmentation for training unlabeled data. The global momentum marginally improves
the result.

Table 5: Ablation study on the CIFAR10 datasets with 4000 labeled data at the server.

E βg Mixup SemiFL

Non-IID, K = 2 IID

1 0.5 3 83.4(0.5) 88.9(0.3)
5 0.5 7 84.2(0.4) 91.3(0.2)
5 0 3 85.4(0.6) 92.4(0.1)
5 0.5 3 85.3(0.3) 93.1(0.1)
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(a) IID (b) Non-IID, 𝐾 = 2

Figure 9: Ablation study of the CIFAR10 dataset with 4000 labeled data at the server for the cases of
(a) IID and (b) Non-IID, K = 2 data partition.

D Theoretical Analysis of Strong Data Augmentation for SSL

D.1 Background of Classification

We take the binary classification task as an illustrating example. Let (Y,X) be a random variable
with values in Rd × {1, 0}. For the prediction task, we look for a classifier C : Rd → {1, 0} such
that the risk P(C(X) 6= Y ) is small, where P denotes the probability measure for (Y,X). Let
m(x)

∆
= E(Y = 1 | X = x) denote the conditional probability of Y given X = x. For example, the

standard logistic regression model is in the form of m(x) = 1/(1 + exp(−βTx)) for some β ∈ Rd.

When the underlying m is known, the risk-optimal classifier is known to be

C : x 7→ 1{m(x)− 1/2} (7)

for any given x. When the underlying m is unknown, we need to train a classifier Ĉn from observed
training data (Yi, Xi), i = 1, . . . , n, which are often assumed to be IID random variables following
the same distribution of (Y,X). A general approach is to first learn m̂n : Rd → R and then let
Ĉn(x)

∆
= 1{m̂n(x)− 1/2}. To evaluate the prediction performance of a learned Ĉn, we consider its

gap with the optimal classifier

R(Ĉn)
∆
= P(Y 6= Ĉn(X))− P(Y 6= C(X)) (8)

referred to as the classification risk of Ĉn.

D.2 Background of Semi-Supervised Learning

Suppose that we observe nl IID labeled data of (Y l, X l), denoted by Dl = {(Y l
i , X

l
i)}

nl
i=1, where X l

has probability distribution Pl and E(Y l | X l = x) = m(x). We also observe nu unlabeled data of
(Xu), denoted by {Xu

j}
nu
j=1, where each Xu has probability distribution Pu. Here, Pu may or may not

be the same as Pl. The Semi-Supervised Learning problem of interest concerns the case nu � nl and
solutions that can properly utilize the unlabeled data to boost the performance of a classifier trained
from labeled data. In other words, we look for a classifier Ĉssl

n (x) trained from observations of both
(Y l, X l) and Xu, so that its risk satisfies

R(Ĉssl)� R(Ĉ l)

where Ĉ l is the classifier trained from observations of (Y l, X l) only.

D.3 A new perspective of Semi-Supervised Learning

As we mentioned in Section 2, there has been a lot of empirical success in using new techniques such
as consistency regularization and strong augmentation to improve the classification risk of classical
Semi-Supervised Learning. Recently, the work of [50] provides a theoretical understanding of the
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consistency regularization in reducing classification risk. Its analysis is based on an “expansion”
assumption that a low-probability subset of data must expand to a large-probability neighborhood,
and there is little overlap between neighborhoods of different classes. To the best of our knowledge,
the existing theories do not explain why the strong augmentation technique works so well (to achieve
state-of-the-art performance) for Semi-Supervised Learning. Intuitively, strong augmentation is
a process that maps a data point (e.g., an image) from high quality to relatively low quality in a
unilateral manner (illustrated in Figure 10). Strong augmentation such as RandAugment [37] consists
of a set of data augmentation strategies, e.g., rotating the image, shearing the image, translating the
image, adjusting the color balance, and modifying the brightness. The low-quality data and their
high-confidence pseudo-labels are then used for training so that there are sufficient “observations”
near the difficult data regimes (e.g., near the decision boundary).

In line with the above intuition, we develop a theoretical understanding of how and when using
strong augmentation can significantly reduce the classification risk obtained from only labeled data.
Instead of studying Semi-Supervised Learning in full generality, we restrict our attention to a class of
nonparametric kernel-based classification learning and derive analytically tractable statistical risk-rate
analysis. Our theory is based on an intuitive “adequate transmission” assumption, which means that
the distribution of augmented data from high-confidence unlabeled data can adequately cover the
data regime of interest during the test. Consequently, reliable information exhibited from unlabeled
data can be “transmitted” to data regimes that may have been insufficiently trained with labeled data.

Figure 10: Examples of strong data augmentations based on the RandAugment technique [37]. As the
distortion magnitude increases, the strength of the augmentation increases. Here, “ShearX” means
shearing the image along the horizontal axis, and “AutoConstrast” means maximizing the image
contrast by setting the darkest (respectively lightest) pixel to black (respectively white).

In addition to the notations made in Subsections D.1 and D.2, we will let X̃ denote strongly-
augmented data fromXu, and Ỹ its corresponding label that follows the same conditional distribution,
namely P(Ỹ = 1 | X̃) = m(X̃). Recall that Pu and Pl are the probability measures of unlabeled Xu

and labeledX l, respectively. We suppose that the test data distribution for evaluating the classification
performance also follows Pl. In other words, the probability measure in (8) is the product of PY |X or
PỸ |X̃ (as determined by m(·)) and Pl. Let m̂0 denote an initial estimate of m. For generality, we
will assume m̂0 is learned from all or only part of the available labeled data. To develop theoretical
analyses, we consider the following generic SSL classifier with strong augmentation.
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Generic Semi-Supervised Learning with Strong Data Augmentation
• Step 1. From {Xu

i }
nu
i=1, we pick up those “high-confidence” x satisfying

min{1− m̂0(x), m̂0(x)} ≤ δ (9)

for some δ (to be quantified), and denote the set as X aug.
• Step 2. For each X ∈ X aug, we calculate the pseudo-label Ŷ = 1{m̂0(X) − 1/2};
meanwhile, we generate the strongly augmented data X̃ . Consequently, we obtain a set of
data (Ŷ , X̃) and denote that set as Daug.
• Step 3. Train an estimate of m, denoted by mssl, and the associated classifier Cssl using the
labeled and augmented data Dssl ∆

= Dl ∪Daug.

Note that if m̂0 is learned from data independent with Dl, the data in Dssl are independent but not
necessarily identically distributed (since Pl and Pu may not be the same).

To show how SSL with strong augmentation can potentially enhance classification learning, we
consider a classical nonparametric classifier Ĉ defined in the following way. Let K : Rd → R+

denote the box kernel function that maps u to 1{‖u‖ ≤ 1}, where 1{·} denotes the indicator function.
With n labeled data (Yi, Xi), similarly to (7), we define

Ĉn : x 7→ 1{m̂n(x)− 1/2}, where m̂n(x) =

∑n
i=1K(h−1

n (x−Xi)) · Yi∑n
i=1K(h−1

n (x−Xi))
(10)

if
∑n
i=1K(h−1

n (x − Xi)) 6= 0, and m̂n(x) = 0 otherwise. Here, m̂n is known as the Nadaraya-
Watson kernel estimate [51, 52] of the underlying m, and hn > 0 is the bandwidth.

In our setting, we suppose that n0 > 0 labeled data are used to learn m̂0, and another nl ≥ 0 labeled
data along with nu > 0 unlabeled data to learn m̂ssl and thus the subsequent classifier Ĉssl. Note that
the nl is introduced only for generality. Our technical analysis includes nl = 0 as a special case. In
the main result to be introduced, the risk bound will only involve nu but eliminate nl during technical
derivations since we are interested in the regime of nu � n0 + nl.

Before starting the main result, we make the following additional technical assumptions and provide
the intuitions.

(A1) There exists positive constants c1 and s such that Pu(min{1−m(X),m(X)} ≤ δ) ≥ gs(δ) for
all sufficiently small δ > 0, where gs(δ)

∆
= c1δ

s.

Explanation of (A1): Recall that Pu is the probability measure of unlabeled data. This condition
requires a nontrivial amount of unlabeled data with high confidence (or large margin) in the sense
that m(X) is close to either zero or one. The function gs quantifies the “sufficiency” of data at the
tail part of X . Take logistic regression m(x) = 1/(1 + exp(−βTx)) as an example. It can be easily
verified that

Pu(1−m(X) ≤ δ) ≥ Pu(βTX ≥ − log δ), Pu(m(X) ≤ δ) ≥ Pu(βTX ≤ log δ),

so Pu(min{1−m(X),m(X)} ≤ δ) = Pu(1−m(X) ≤ δ)+Pu(m(X) ≤ δ) ≥ Pu(|βTX| ≥ − log δ)
for all δ ∈ (0, 1/2). For example, if |βTX| follows standard Exponential, we let gs : δ 7→ δ.

(A2) There exists a constant c3 ∈ (0, 1/2) such that the strong augmentation Xu → X̃ satisfies
P(Ỹ = 1 | X̃ = x̃, Xu = x) = m(x) for all x such that min{1− m̂0(x), m̂0(x)} ≤ c3.

Explanation of (A2): Let us think Xu as a high-confidence image, with m(Xu) close to either zero
or one. Meanwhile, X̃ is a strongly augmented version of Xu, e.g., by random masking or noise
injection, so m(X̃) is closer to 1/2 than m(Xu). The condition of (A2) means that if conditioning
on both images, the label Ỹ has a distribution that is only determined by the higher-quality image,
which is quite intuitive. A mathematically equivalent way to describe (A2) is that X̃ → Xu → Ỹ
follows a Markov chain.

(A3) There exist positive constants c2, c4, and a non-negative v such that for every Pl-measurable ball
B ⊆ Rd with Pl(B) ≤ c4, for the strong augmentation Xu → X̃ , we have Pu(X̃ ∈ B | min{1 −
m̂0(Xu), m̂0(Xu)} ≤ δ)/Pl(B) ≥ gv(δ) for all sufficiently small δ > 0, where gv(δ)

∆
= c2δ

v .
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Explanation of (A3): The above numerator is the probability of the augmented data X̃ falling
into B conditional on the original unlabeled data (with probability Pu) having high confidence.
This assumption ensures that for every regime of significant interest in evaluating the prediction
performance (since Pl is the measure for test data), there will be a sufficient probability coverage
of the augmented data. This is an intuitive condition since otherwise, the augmented data cannot
represent the test data of interest to boost the test performance. In this assumption, the function gv
determines the coverage as a function of tail probability δ. For example, if v = 0, a sufficiently small
δ (or higher confidence) gives a non-vanishing coverage. The combination of (A2) and (A3) can be
interpreted as an “adequate transmission” condition, under which a small amount of high-confidence
unlabeled data can induce augmented data that can accurately represent the test data regime of interest.
Such transmitted data can be basically approximated as labeled data for supervised training.

(A4) There exist positive constants c6 and α such that Pl(|m(X l)− 1/2| ≤ t) ≤ c6tα for all t > 0.
Moreover, X l ∈ [0, 1]d.

Explanation of (A4): The inequality is a margin condition that has been used in the classical learning
literature (see, e.g., [34, 35] and the references therein). It determines the difficulty of the underlying
classification task. Intuitively speaking, a larger α means more separability of the two classes under
the probability Pl. The boundedness of X l is for technical convenience.

(A5) There exist positive constants q and c7 such that |m(x) − m(x′)| ≤ c7‖x − x′‖q for all
x, x′ ∈ [0, 1]d, where ‖ · ‖ denotes the Euclidean norm.

Explanation of (A5): This condition assumes a Lipschitz-type condition of m(·), where q is allowed
to be different from one. Intuitively, it assumes the underlying classifier to learn cannot be too bumpy.
For q ∈ (0, 1], a larger q means more smoothness of m(·).

(A6) There exist positive constants r, c8, and ∆ such that |m̂0(x) − m(x)| ≤ c8n
−r
0 for all x

satisfying min{1− m̂0(x), m̂0(x)} ≤ ∆.

Explanation of (A6): This assumption requires that conditional on X falls into a large-margin area,
the estimation error of the initial function m̂0 is not too large.

(A7) For the constants s, v, α, q, and r defined in the above assumptions, we have
q · s

q · (α+ 3 + v + s) + d
<

1

2
, (11)

n−r0

n
−q/{q(α+3+v+s)+d}
u

→ 0, as min{n0, nu} → ∞. (12)

Explanation of (A7): The two inequalities will be technical conditions used in the proof. A sufficient
condition for (11) to hold is that α ≥ s. Intuitively, this requires that α, which describes the
separability of the decision boundary (the larger, the better), is not smaller than s, which quantifies the
sufficiency of tail samples (the smaller, the better). The inequality (12) means that the initial classifier
m̂0 cannot perform too poorly. This matches our empirical observations that the SSL training in
each round has to immediately follow a preceding round that uses some labeled data. Also, the
denominator in (12) favors relatively small s, d compared with α, v, q.

D.4 Main result

Our main result is provided below.

Theorem 1: Under Assumptions (A1)-(A7), the generic SSL classifier with strong augmentation
(namely the above Steps 1-3) satisfies

R(Ĉssl) ≤ Cn−q(α+1)/{q(α+3+v+s)+d}
u (13)

for some constant C that does not depend on the sample size.

Explanation of Theorem 1: The theorem gives an explicit rate of convergence for the SSL classification
risk using unlabeled data of size nu. It is the informal statement made in the main paper with ρ ∆

= v+s.
We interpret the power

q(α+ 1)

q(α+ 3 + v + s) + d
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as follows. If the margin parameter α is large, the classification is relatively easy, and the ratio can go
up to one, namely R(Ĉssl) ∼ n−1

u . This is reminiscent of an existing result that uses labeled data
and a large margin to achieve the n−1

l rate [33]. If the tail sufficiency parameter s or the coverage
parameter v is large, the ratio becomes approximately (α + 1)/(v + s). Intuitively, a larger s or
v indicates that there will be fewer high-confidence unlabeled data to be transmitted to benefit the
classification learning (on the evaluation measure Pl of interest), which is in line with a slower rate of
convergence n−(α+1)/(v+s)

u .

On the contrary, consider the other extreme that v = s = 0. Then, the ratio becomes q(α+1)/{q(α+
3) + d}, which matches an existing result in classification learning [34]. For comparison, we define
the baseline classifier that only uses nl labeled data based on the kernel estimation in (10). We
denote that classifier as Ĉ l. The risk would beR(Ĉ l) ≤ C ′n−q(α+1)/{q(α+3)+d}

l for some constant
C ′. Comparing this with (13), we can determine the region where employing SSL can significantly
improve supervised learning. To illustrate this point, let us suppose that

nl ∼ nζu
for some constant ζ ∈ (0, 1). It can be verified that the bound ofR(Ĉ l) is much larger than that of
R(Ĉssl) when

q(α+ 1)

q(α+ 3 + v + s) + d
>

ζq(α+ 1)

q(α+ 3) + d
,

or equivalently,

ζ <
q(α+ 3) + d

q(α+ 3 + v + s) + d
. (14)

The inequality (14) provides an insight into the critical region of nu where significant improvement
can be made from unlabeled data, as dependent on constants that describe the underlying function
smoothness (q), data dimension (d), task difficulty (α), and “adequate transmission” parameters (s, v).

D.5 Proof of Theorem 1

We first give a sketch of the proof. We first relate the risk bound ofR(Ĉssl) to the estimation error of
m̂ssl, and then decompose the error into a bias term and a variance term. Each term is then bounded
using concentration inequalities, in a way similar to the techniques used in [53, Ch. 5] and [34].
Different from the standard nonparametric analysis of classification learning with IID data, we will
use the aforementioned “adequate transmission” conditions to derive the rate of convergence from
data that are contributed from both labeled and pseudo-labeled data. The analysis involves a careful
choice of the tuning parameters, e.g., the δ in Assumption (A1) and the kernel bandwidth, so that the
biases introduced from pseudo-labeled data have a diminishing influence on the risk rate. Next, we
provide detailed proof.

We let n = nl + nu denote the total size of labeled and unlabeled data available to the SSL training.
For notational clarity, we sometimes put subscript n, e.g., δn instead of δ (in Step 1), to highlight a
quantity that is designed to vanish at some rate as n becomes large. Recall that Dssl = Dl ∪Daug.
Let nl and naug

u denote the sample sizes of Dl and Daug, respectively. Note that naug
u is random since

the Step 1 depends on n0 labeled data. We first consider the risk conditional on a fixed naug
u , denoted

byRnaug
u

(Ĉssl).

Direct calculations show that

Rnaug
u

(Ĉssl) = El

(
|2m(X)− 1| · 1{Ĉssl(X) 6= C(X)}

)
= T1 + T2, where (15)

T1 = 2El

(
|m(X)− 1/2| · 1

{
|m(X)− 1/2| ≤ tn, Ĉssl(X) 6= C(X)

})
T2 = 2El

(
|m(X)− 1/2| · 1

{
|m(X)− 1/2| > tn, Ĉ

ssl(X) 6= C(X)

})
for an arbitrary tn > 0 to be selected. From Assumption (A4), |m(X)−1/2| ≤ 1/2, and 1{|m(X)−
1/2| > tn, Ĉ

ssl(X) 6= C(X)} ≤ 1{|m(X)− m̂(X)| > tn}, we have

T1 ≤ 2tn · Pl
(
|m(X)− 1/2| ≤ tn

)
≤ 2c6t

1+α
n , T2 ≤ Pl

(
|m(X)− m̂(X)| > tn

)
. (16)
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Moreover, by the triangle inequality, we have
T2 ≤ Pl

(
|m(X)− m̄(X)| > tn/2

)
+ Pl

(
|m̄(X)− m̂(X)| > tn/2

)
, (17)

where we define the function m̄ by

m̄(x) =

∑
X∈Dssl K(h−1

n (x−X))m(X)∑
X∈Dssl K(h−1

n (x−X))

if the denominator is nonzero, and m̄(x) = 0 otherwise.

In the sequel, we bound each term in (17). First, we rewrite

Pl
(
|m(X)− m̄(X)| > tn/2

)
=

∫
x∈[0,1]d

P
(
|m(x)− m̄(x)| > tn/2

)
dPl(x), (18)

where P denotes the probability measure induced by Dssl (which is implicitly used to define m̄). For
each x, we define the event

Ex =

{
ω :

∑
X∈Dssl

K(h−1
n (x−X))

}
.

Then, from Assumption (A5) and the definition that K(u) = 1{‖u‖ ≤ 1}, we have

|m(x)− m̄(x)| =
|
∑
X∈Dssl K(h−1

n (x−X))(m(x)−m(X))|∑
X∈Dssl K(h−1

n (x−X))
· 1{Ex}+m(x)(1− 1{Ex})

≤
∑
X∈Dssl K(h−1

n (x−X))|x−X|q∑
X∈Dssl K(h−1

n (x−X))
· 1{Ex}+m(x)(1− 1{Ex})

≤ c7hqn +m(x)(1− 1{Ex}). (19)

Let Bx,h
∆
= {u ∈ Rd : ‖u − x‖ ≤ h} denote the Euclidean ball of center x and radius h. If we

choose
tn/2 > c7h

q
n, (20)

the above inequality (19) implies that

P(|m(x)− m̄(x)| ≥ tn/2) ≤ P
(
m(x)(1− 1{Ex}) ≥ tn/2− c7hqn

)
≤ P

{ ∑
X∈Dssl

K(h−1
n (x−X)) = 0

}

= P
{
‖x−X‖ > hn,∀X ∈ Dssl

}
= (1− Pl(Bx,hn))nl · (1− Pu(Bx,hn))n

aug
u (21)

≤ exp{−nlPl(Bx,hn)} · exp{−naug
u Pu(Bx,hn)} (22)

Let c9
∆
= maxv>0 ve

v. Let {zi}Mn
i=1 be a set of points in Rd such that [0, 1]d ⊆ ∪Mn

i=1Bzi,hn/2, with
Mn = c10h

−d
n for some c10. Taking (22) into (18), and invoking Assumption (A3), we obtain

Pl
(
|m(X)− m̄(X)| > tn/2

)
=

∫
x∈[0,1]d

exp{−nlPl(Bx,hn
)} · exp{−naug

u Pu(X̃ ∈ Bx,hn
| X̃ ∈ Daug)}dPl(x)

≤
∫
x∈[0,1]d

exp{−nlPl(Bx,hn
)− gv(δn)naug

u Pl(Bx,hn
)}dPl(x)

=

∫
x∈[0,1]d

exp{−ñPl(Bx,hn
)}dPl(x)

≤ c9
∫
x∈[0,1]d

1

ñPl(Bx,hn
)
dPl(x)

≤ c9
Mn∑
i=1

∫
x∈[0,1]d

1{x ∈ Bzi,hn/2}
ñPl(Bx,hn)

dPl(x)

≤ c9ñ−1Mn = c9c10ñ
−1h−dn (23)
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where we let ñ ∆
= nl + gv(δn)naug

u . The technique of covering used in the last two inequalities was
from [53, Eq. 5.1].

To bound the second term in (17), we write

m̂(x)− m̄(x) =
∑

(Y,X)∈Dssl

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(Y −m(X)). (24)

Recall that Dssl = Dl ∪Daug. For every (Y l, X l) ∈ Dl, we have E(Y l | X l) = m(X).

For any δn that satisfies δn ≤ min{c3,∆, 1/4}, where c3 was introduced in Assumption (A2) and ∆
was introduced in Assumption (A6), we have

P(Ŷ = 1, Ỹ = 0 | X̃,Xu)

= P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≥ 1− δn | X̃,Xu) + P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≤ δn | X̃,Xu)

= P(Ŷ = 1, Ỹ = 0, m̂0(Xu) ≥ 1− δn | X̃,Xu)

≤ P(Ỹ = 0, m̂0(Xu) ≥ 1− δn,m(Xu) ≥ 1− δn − c8n−r0 | X̃,Xu)

+ P(m̂0(Xu) ≥ 1− δn,m(Xu) ≤ 1− δn − c8n−r0 | X̃,Xu)

≤ P(Ỹ = 0,m(Xu) ≥ 1− δn − c8n−r0 ) + 0

≤ δn + c8n
−r
0 ,

and similarly, P(Ŷ = 0, Ỹ = 1 | X̃,Xu) ≤ δn + c8n
−r
0 . Thus,

E(|Ŷ − Ỹ | | X̃) = E{E(|Ŷ − Ỹ | | X̃,Xu) | X̃} ≤ 2δn + 2c8n
−r
0 .

Consequently, for every (Ŷ , X̃) ∈ Daug, we have

E(Ŷ | X̃) = E(Ỹ | X̃) + κ(X̃) = m(X̃) + κ(X̃) (25)

where κ(X̃)
∆
= E(Ŷ − Ỹ | X̃) ≤ 2δn + 2c8n

−r
0 .

Back in (24), let u(Y ) = Y if (Y,X) ∈ Dl and u(Y ) = Ỹ if (Y,X) ∈ Daug, where Ỹ is the
pseudo-label random variable as in Assumption (A2) and equality (25). In this way, we have
E(u(Y ) | X) = m(X). We rewrite (24) as

m̂(x)− m̄(x) = T3(x) + T4(x), where

T3(x)
∆
=

∑
(Y,X)∈Dssl

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(u(Y )−m(X))

T4(x)
∆
=

∑
(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

(Y,X)∈Dssl K(h−1
n (x−X))

(Ŷ − Ỹ )

≤
∑

(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

(Ŷ ,X̃)∈Daug K(h−1
n (x−X))

(Ŷ − Ỹ ).
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Let X ssl ∆
= {X : (·, X) ∈ Dssl} and X aug ∆

= {X : (·, X) ∈ Daug}. Then, we can bound

P
(
|m̄(x)− m̂(x)| > tn/2 | X ssl) (26)

≤ P
(
|T3(x)| > tn/4 | X ssl)+ P

(
|T4(x)| > tn/4 | X ssl)

≤ 2 exp

{
− 2(tn/4)2∑

X∈X ssl K2(h−1
n (x−X))/{

∑
X′ K(h−1

n (x−X ′))}2

}
+ (27)

+ P
(∣∣∣∣ ∑

(Ŷ ,X̃)∈Daug

K(h−1
n (x−X))∑

X′∈X aug K(h−1
n (x−X ′))

(Ŷ − Ỹ − E(Ŷ − Ỹ | X̃))

∣∣∣∣ > tn/8 | X ssl
)

+

+ P
(∣∣∣∣ ∑

X̃∈X aug

K(h−1
n (x− X̃))∑

X′∈X aug K(h−1
n (x−X ′))

κ(X̃))

∣∣∣∣ > tn/8 | X aug
)

≤ 2 exp

{
−1

8
t2n

∑
X∈X ssl

K(h−1
n (x−X))

}
+ 2 exp

{
− 1

128
t2n

∑
X∈X aug

K(h−1
n (x−X))

}
+ (28)

+ P
(

2δn + 2c8n
−r
0 > tn/8

)
(29)

≤ 4 exp

{
− 1

128
t2n

∑
X∈X aug

K(h−1
n (x−X))

}
(30)

≤ 41

{ ∑
X∈X aug

K(h−1
n (x−X)) <

1

2
naug

u Pu(Bx,hn)− log2 naug
u

}
+

4 exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn

) +
1

128
t2n log2 naug

u

}
(31)

provided that

2δn + 2c8n
−r
0 ≤ tn/8. (32)

In the above derivation, (27) uses the Hoeffding’s inequality, the fact that K2(·) = K(·), and the
triangle inequality, (28) uses the Hoeffding’s inequality again, (29) follows from (25), (30) is from
X aug ⊆ X ssl, and (31) is by the definition of the indicator function. Consequently, with the choice of

tn log naug
u ≤ 1, (33)

we have

P
(
|m̄(x)− m̂(x)| > tn/2

)
(34)

≤ 4Pu

{ ∑
X∈X aug

K(h−1
n (x−X)) <

1

2
naug

u Pu(Bx,hn
)− log2 naug

u

}
+ 8 exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn)

}
. (35)

The first term in (35), according to the Bernstein inequality, can be upper bounded by

4 exp

{
−1

2

(naug
u Pl(Bx,hn)/2 + log2 naug

u )2

naug
u Pl(Bx,hn

) + (naug
u Pl(Bx,hn

)/2 + log2 naug
u )/3

}}
≤ 4 exp

{
− 3

14
(naug

u Pl(Bx,hn)/2 + log2 naug
u )

}
≤ 4 exp

{
− 3

14
log2 naug

u )

}
.

Therefore, we can bound the second term in (17) by

Pl
(
|m̄(X)− m̂(X)| > tn/2

)
≤
∫
x∈[0,1]d

P
(
|m̄(x)− m̂(x)| > tn/2

)
dPl(x)

≤ 4 exp

{
− 3

14
log2 naug

u )

}
+ 8

∫
x∈[0,1]d

exp

{
− 1

256
t2nn

aug
u Pu(Bx,hn

)

}
dPl(x).
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The second term in (35), according to the same arguments as in (23), can be upper bounded by
8 · 256 · c9c10/(gv(δn)t2nn

aug
u hdn). Therefore, we have

Pl
(
|m̄(X)− m̂(X)| > tn/2

)
≤ 4 exp

{
− 3

14
log2 naug

u )

}
+

211c9c10

gv(δn)t2nn
aug
u hdn

.

Combining inequalities (15), (16), (17), and (23), we obtain

Rnaug
u

(Ĉssl) ≤ 2c6t
1+α
n +

c9c10

(nl + gv(δn)naug
u )hdn

+ 4 exp

{
− 3

14
log2 naug

u )

}
+

211c9c10

gv(δn)t2nn
aug
u hdn

.

Finally, we use a probabilistic lower bound of naug
u to obtain the risk bound. Let E denote the event

min{1− m̂0(X), m̂0(X)} ≤ δn. By the triangle inequality, assumptions (A1) and (A6), we have

Pu(min{1− m̂0(X), m̂0(X)} ≤ δn)

≥ Pu(min{1−m(X),m(X)} ≤ δn − c8n−r0 )− Pu(|m(X)− m̂0(X)| > c8n
−r
0 , E)

≥ gs(δn − c8n−r0 )

Note that naug
u is a sum of nu IID Bernoulli random variables Z with probability P(Z = 1) =

Pu(min{1 − m̂0(X), m̂0(X)} ≤ δn). By the Hoeffding’s inequality, with probability at least
1− 2 exp{−nu(ñu/nu)2/2}, we have

3ñu

2
≥ naug

u ≥ ñu

2
, where ñu

∆
= gs(δn − c8n−r0 ) · nu.

Therefore, we have

R(Ĉssl) = ERnaug
u

(Ĉssl)

≤ 2c6t
1+α
n +

c9c10

(nl + gv(δn)ñu/2)hdn
+ 4 exp

{
− 3

14
(log ñu − log 2)2)

}
+

211c9c10

gv(δn)t2nñuhdn/2
+ exp

{
−nu

2

(
gs(δn − c8n−r0 )

)2}
, (36)

provided that the choices of (20), (32), and (33) are made, namely

tn/2 > c7h
q
n, 2δn + 2c8n

−r
0 ≤ tn/8, tn log(3ñu/2) ≤ 1.

Choosing hn, tn, and δn at the rate of

hn ∼ n−1/{q(α+3+v+s)+d}
u , tn ∼ hqn, δn ∼ hqn,

and invoking the assumption (A7), we can verify that the rate of convergence in (36) is at the order of

R(Ĉssl) ∼ n−q(α+1)/{q(α+3+v+s)+d}
u ,

which concludes the proof.
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