A Missing Proofs in Section 4

Lemma A.1. For a given graph $G(\mathbb{V}, \mathbb{E}, w)$, let G^{\prime} be the induced subgraph of G with vertex set $\mathbb{V} \backslash S$. For any pair $\{(u, v) \mid u \in \mathbb{V} \backslash S, v \in S\}: 1)$ if the shortest path between u and v does not pass other nodes in S, then there exist a neighbor p of v such that $\left.d_{G}(u, v)=d_{G^{\prime}}(u, p)+w(p, v) ; 2\right)$ if the shortest path $P_{u, v}$ between u and v does pass other nodes in S except v, then there exist vertices $p \in S, p^{\prime} \notin S$ such that $d_{G}(u, v)=d_{G}(u, p)+d_{G}(p, v)$ and $d_{G}(u, p)=d_{G^{\prime}}\left(u, p^{\prime}\right)+w\left(p^{\prime}, p\right)$.

Proof. 1) Note that the shortest path between u and v does not pass other nodes in S except v. Let the second last vertex from u to v be p, with $p \notin S$. Then we have $d_{G}(u, p)=d_{G^{\prime}}(u, p)$, thus $d_{G}(u, v)=d_{G}(u, p)+w(p, v)=d_{G^{\prime}}(u, p)+w(p, v)$. 2) Let p be the first vertex in S that $P_{u, v}$ passes through, and denote p^{\prime} as the vertex just before p in path $P_{u, v}$. We have that $d_{G}\left(u, p^{\prime}\right)=d_{G^{\prime}}\left(u, p^{\prime}\right)$. Then we know that $d_{G}(u, v)=d_{G}(u, p)+d_{G}(p, v)$ and $d_{G}(u, p)=d_{G^{\prime}}\left(u, p^{\prime}\right)+w\left(p^{\prime}, p\right)$.

A. 1 Proof of Lemma 4.1

Proof. The privacy budget ϵ is divided into three parts:
(Part 1) For the distances between all pairs in $\mathbb{V} \backslash S$, our method achieves $\left(\epsilon^{\prime}, 0\right)$-DP by the result on trees from (Sealfon, 2016).
(Part 2) For the k^{2} distances of all node pairs in S, by adding to each edge weights i.i.d. $\operatorname{Lap}\left(0, \sigma_{1}\right)$ noises with $\sigma_{1}=\sqrt{8 n \log (1 / \delta)} / \epsilon^{\prime}=2 \sqrt{2} n^{1 / 2} \sqrt{\log (1 / \delta)} / \epsilon^{\prime}$, we can achieve $\left(\epsilon^{\prime}, \delta\right)$-DP according to Lemma 2.2.
(Part 3) For each edge (u, v) with $u \in \mathbb{V} \backslash S, v \in S$, obviously by Laplace mechanism $w^{\prime}(u, v):=$ $w(u, v)+\operatorname{Lap}\left(1 / \epsilon^{\prime}\right)$, we achieve $\left(\epsilon^{\prime}, 0\right)$-DP to release all the pairwise distances.

Composing three privacy budges up and using simple composition theorem of DP, we show that Algorithm 2 achieves (ϵ, δ)-DP.

A. 2 Proof of Theorem 4.2

Lemma A. 2 (All pairwise distance on trees (Sealfon, 2016)). For a tree T with non-negative edge weights w and $\epsilon>0$, there is an ϵ-differentially private algorithm that releases APSP distances such that with probability $1-\gamma$, all released distances have approximation error bounded $O\left(\log ^{2.5} n \log (1 / \gamma) / \epsilon\right)$.

Proof. (of Theorem 4.2) For $u \in S, v \in S$, by adding $d(u, v)$ with $\operatorname{Lap}\left(0, \sigma_{1}\right)$ noise where $\sigma_{1}=$ $2 \sqrt{2} n^{1 / 2} \sqrt{\log (1 / \delta)} / \epsilon^{\prime}$, with probability $1-\gamma,|\hat{d}(u, v)-d(u, v)|=O(k \sqrt{\log (1 / \delta)} \log (k / \gamma)$ $\forall u, v \in S$. Based on Lemma A.2, we have that with probability $1-\gamma$, all released distances in G^{\prime} have approximation error $O\left(\log ^{2.5} n \log (1 / \gamma) / \epsilon\right)$. For those edges (u, v) with $u \in \mathbb{V} \backslash S, v \in S$, we add to each $w(u, v)$ a Laplace noise according to $\operatorname{Lap}\left(0, \sigma_{0}\right)$ with $\sigma_{0}=1 / \epsilon^{\prime}$. Thus, with another probability $1-\gamma,\left|w^{\prime}(u, v)-w(u, v)\right| \leq O(\log (n / \gamma) / \epsilon) \forall\{u \in \mathbb{V} \backslash S, v \in S\}$. Union bound implies that, with probability $1-3 \gamma$, the total error is bounded by $O\left(\epsilon^{-1} k \log (k / \gamma) \sqrt{\log (1 / \delta)}\right)+$ $O\left(\epsilon^{-1}\left(\log ^{2.5} n\right) \log (1 / \gamma)\right)$ as claimed.

