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Abstract

Releasing all pairwise shortest path (APSP) distances among vertices on general
graphs under weight Differential Privacy (DP) is known as a challenging task
that has gained increasing interest recently. Previous work achieved DP with
the maximal absolute error among all published pairwise distances bounded by
Õ(n) where n is the number of nodes. Whether the approximation error can
be reduced to sublinear in n is still an interesting open problem. In this paper,
we break the linear barrier on the distance approximation error in APSP release,
by proposing an algorithm that releases a constructed synthetic graph privately.
Computing all pairwise distances on the constructed graph only introduces Õ(n1/2)
error in answering all pairwise shortest path distances for fixed privacy parameter.
Our method is based on a novel graph diameter (link length) augmentation via
constructing “shortcuts” for the paths and the use of Laplace noise with non-zero
mean. Numerical examples are also provided. Additionally, we also propose a DP
algorithm with error rate Õ(k), which improves the error of general graphs, when
the graph has small feedback vertex set number k = o(n1/2).

1 Introduction

In recent years, there has been a growing interest in private data analysis, from academic research
to industry practice. Typically, many industrial machine learning applications consist of two steps:
1) collecting data from users; 2) training models using the collected user data. One key question is:
throughout this process, how can we extract meaningful information from the data, without leaking
sensitive data of each user? In other words, how can we prevent an adversarial attacker from inferring
any user’s data, given the public information that can be accessed? This has been the overarching
question in a line of research that studies private algorithms under various settings. The concept of
differential privacy (DP) (Blum et al., 2005; Chawla et al., 2005; Dwork, 2006) has been a popular
approach for rigorously defining and resolving the problem of keeping useful information for model
learning, while protecting privacy for each individual. In the traditional setting, databases D and
D′ are collections of data records and are considered to be neighboring if they are identical except
for a single record (individual information). DP requires that the output of running a randomized
algorithm on D and D′ should have very close probability distributions. There are many types of
databases, and in this work, we will specifically focus on the differential privacy of graphs.

Weight private graphs. In general, there are three types of private graph models, regarding the
nodes, the edges and the edge weights, respectively. The node private model requires DP for two
adjacent graphs differing in one node. In the edge private model, two neighboring graphs are defined
such that they only differ by one edge, while sharing the same set of nodes.
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In this paper, we focus on the weight private graph model, which was first proposed by Sealfon
(2016). In the weight private graph problem, the topology of the graph is public, which means that
the adjacent graphs (databases) when considering DP have same nodes and edges, while this is not
the case in other two DP models. Specifically, in the weight private model we consider two graphs as
being adjacent if the difference between the sums of their edge weights is no more than one unit. One
example application of this problem is where one tries to release the transportation volume between
several places of interest with privacy constraints, where the roads are regarded as edges. In some
sense, it might be hard to keep the graph structure private in practice, since one may easily obtain the
map by modern tools like Google Earth. However, in some cases, information like traffic flows could
also be sensitive and needs to be kept private. Releasing such private information is well suited for
the setting of weight private graph model.

1.1 Open Problem, and Previous Results

In this paper, we study the problem of releasing all pairwise shortest-path (APSP) distances with
weight privacy. Two standard strategies in DP are: 1) adding Laplace noise to each edge, 2) adding
Laplace noise to the output distance matrix. As discussed in Sealfon (2016), the errors of these
two strategies are roughly O(ϵ−1n log n) by adding noise to each edge and O(ϵ−1n

√
log(1/δ))

using DP composition theorems, respectively, where n is the number of nodes in the graph and
(ϵ, δ) are the DP parameters. Here, the approximation error is measured by the largest absolute
difference among all released pairwise distances and the ground truth. As we see, both of these
errors are roughly O(n), i.e., linear in n when ϵ and δ are fixed. Whether we can achieve differential
privacy with error sublinear in n is still an open problem, as recognized by the online repository
(https://differentialprivacy.org/open-problem-all-pairs/) focusing on the research
of DP, quoted “... Is this linear dependence on n inherent, or is it possible to release all-pairs
distances with error sublinear in n ?”

While this linear barrier seems to hold for general graphs, we can derive improved results on several
special types of graph. Firstly, for a graph with weights bounded in [0,M ], Sealfon (2016) picked a
subset Z ∈ V of vertices as the “k-covering set” to approximate the original graph. Each vertex u can
map to its closest vertex zu in the covering set. For any node pair u, v, their distance is approximated
by the distance between zu and zv plus O(kM) additional error. Then, the author proposed to use
O(|Z|2) pairs of distances to approximate all O(n2) pairwise distances, which leads to O(

√
nM)

approximation error for fixed privacy parameters eventually. Secondly, for grid graph with arbitrary
positive weights, Fan and Li (2022) proposed to select an intermediate vertex set and divide the
shortest path between any node pair into at most three parts depending on its traverse of the set.
By connecting the nodes in the intermediate set and applying the standard Laplace mechanism, the
authors constructed a DP algorithm with Õ(n3/4) approximation error. Thirdly, for trees, Sealfon
(2016) gave a recursive algorithm to release all-pairs distances with error O(log2.5 n), which was
improved to O(log1.5 n log1.5 h) by Fan and Li (2022), where h is the depth of tree and can be as
small as O(log n). The general idea was to build a collection T of subtrees of log n levels, where the
subtrees in each level are disjoint to each other such that each edge appears in at most O(log n) trees,
allowing us to only add O(log n) units of Laplace noise to each path in T. This leads to poly log n/ϵ
approximation error on trees.

1.2 Our Results and Techniques

In this paper, we propose an algorithm that is able to surpass the linear O(n) error of differentially
privately releasing all pairwise distances on general weighted graphs. We make use of the improved
and extended techniques from Fan and Li (2022) to general graphs to obtain Õ(n1/2) approximation
error. Moreover, when the graph exhibits some special property having small feedback vertex set
number, we develop a new algorithm with further improved error bound.

Breaking the linear error barrier for general graphs. Let G(V,E, w) denote an undirected graph,
where V is the set of nodes with |V| = n, E is the set of all edges, and w is the set of corresponding
weights. We use w(e) to denote the weight of a specific edge e ∈ E. The key challenge in this
problem is that, we need to bound the error of all shortest paths instead of just one. Since the shortest
paths could overlap with each other, the dependency among the shared edges (and the noises) hinders
us from applying standard concentration results. To achieve sublinear error in DP all pairwise distance
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release problem, our idea, intuitively, is to find “shortcuts” that will reduce the number of edges in
long shortest paths (consisting of many edges). The algorithm proceeds as follows. Denote d(u, v) as
the true shortest path distance between node u and v w.r.t. graph G(V,E, w). First, we randomly
sample n1/2 vertices from V to form a subset of vertices V1 ⊂ V. We then create an edge set
E1 = {(u, v) : u ∈ V1, v ∈ V1, u ̸= v} and assign each edge the weight w1(u, v) = d(u, v). Denote
E0 =: {(u, v) ∈ E : u /∈ V1 or v /∈ V1} as the edge set between nodes that are not both in V1. Next,
we add noise to the edges in E0 and E1, respectively. For e ∈ E0, we add Laplace noise following
Lap(µ0, σ0) where σ0 = O(1/ϵ), µ0 = σ log(n/γ); for e ∈ E1, the noise is from Lap(µ1, σ1) with
σ1 := O(n1/2

√
log(1/δ))/ϵ) and µ1 = σ1 log(n/γ). Note that, the mean of the Laplace noise is

non-zero in our approach. We will show that this novel design guarantees that the APSP distances
computed directly from the synthetic and noisy graph G′ are lower bounded by the true distances for
all node pairs (w.h.p.), and the approximation error is at most Õ(n1/2) (Theorem 3.6).

Graph with small feedback vertex set number. A feedback vertex set (FVS) of a graph, also
called a loop cutset (Freuder, 1982), is a set of vertices whose removal leaves a graph without cycles,
and the feedback vertex set number of a graph is the size of a smallest feedback vertex set. The
feedback vertex set problem is NP-hard (Lewis, 1978) and the best known approximation algorithm
on undirected graphs is by a factor of two (Becker and Geiger, 1996). Beyond the results derived
for general weighted graphs, we also consider the problem for graphs with small feedback vertex
set. We design a new algorithm that releases the distances privately with Õ(k) error where k is the
feedback vertex set number, improving the error bound when k = o(n1/2) compared with the result
for general weighted graphs.

1.3 More Related Work

The topic of private graphs has attracted substantial research interests in the recent years, including
edge privacy, node privacy and weight privacy (Hay et al., 2009; Rastogi et al., 2009; Gupta et al.,
2010; Karwa et al., 2011; Gupta et al., 2012; Blocki et al., 2013; Kasiviswanathan et al., 2013; Bun
et al., 2015; Sealfon, 2016; Ullman and Sealfon, 2019; Borgs et al., 2018; Arora and Upadhyay,
2019; Fan et al., 2022; Fan and Li, 2022). Our work focuses on the weight private problem (Sealfon,
2016) as described above. We generalize the previous work (Fan and Li, 2022) which focused on
trees and grid graphs to general weighted graphs. We are also aware of two concurrent works (Chen
et al., 2022; Ghazi et al., 2022). Both these two papers claim Õ(n1/2) error upper bound same as our
result, using a similar high-level idea of constructing “shortcuts”. However, our approach is novel
and different in that the Laplace noise we add has non-zero mean. As will be shown in the paper, this
allows us to simply publish the constructed synthetic graph, upon which standard APSP computation
leads to the desired error level. However, in both Ghazi et al. (2022) and Chen et al. (2022), the noise
is centered and one has to use some specifically designed calculation (optimization) to obtain the
estimated distances. In other words, only the estimated distances, but not the graph itself, can be
published. Typically, releasing the graph (ours) is more difficult than releasing the distances only.

2 Background: Differential Privacy (DP) on Graph

Consider a connected graph G = (V,E, w), with w the collection of the weights of E. We use w(e)
to denote the weight of an edge e ∈ E. Denote n = |V|, m = |E|, with n ≤ m+ 1.

We first define the notion of neighboring graphs. In weight private model, since the nodes and edges
of the graph G are unchanged, we can simply use edge weights to represent the graph.
Definition 2.1 (Neighboring). Graph G = (V,E, w) and G′ = (V,E, w′) are called neighboring,
noted as G ∼ G′, if

||w − w′||1 :=
∑
e∈E

|w(e)− w′(e)| ≤ 1.

The Differential Privacy (DP) introduced by Dwork (2006) is defined below adapted to our problem.
Definition 2.2 (Differential Privacy (Dwork, 2006)). If for any two neighboring graphs G = (V,E, w)
and G′ = (V,E, w′), a randomized algorithmA, and a set of outcomes O ⊂ Range(A),

Pr[A(G) ∈ O] ≤ eϵPr[A(G′) ∈ O] + δ,

we say algorithmA is (ϵ, δ)-differentially private.
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If δ = 0, we say that the algorithm is ϵ-DP. The parameter δ is usually interpreted as the probability
allowed for bad cases where ϵ-DP is violated. Intuitively, differential privacy requires that after
changing the database by a little (the total weights in our case), the output should not be too different
from that of the original database. Differential privacy may be achieved through the introduction of
noise to the output. To attain general (ϵ, δ)-DP, we may add Gaussian noise to the output. To achieve
ϵ-DP, the noise added typically comes from the Laplace distribution. Smaller ϵ and δ indicate stronger
privacy, which, however, usually sacrifices utility. Thus, one of the central topics in the differential
privacy literature is to reduce the scale of noise added, while satisfying the privacy constraint. In
this work, we focus on the popular approach to achieve DP by adding Laplace noises. The Laplace
distribution with parameter b has density function f(x) = 1

2b exp(−|x|/b).
Lemma 2.1 (Dwork (2006)). For a function f : G → R with G the input space of graphs, define the
sensitivity

△f = max
G∼G′

||f(G)− f(G′)||1,

where G,G′ are two neighboring graphs. Let X be a random noise drawn from Lap(0,△f/ϵ). The
Laplace mechanism outputs

Mf,ϵ(G) = f(G) +X,

which achieves ϵ-differential privacy.

One important and attractive property of DP is that, different DP algorithms can be easily combined
together, also with strict DP guarantee.

Lemma 2.2 (Advanced Composition Theorem (Dwork et al., 2010)). For any ϵ, δ, δ′ ≥ 0, the
adaptive composition of k times (ϵ, δ)-differentially private mechanisms is (ϵ′, kδ + δ′)-differentially
private for

ϵ′ =
√

2k log(1/δ′) · ϵ+ k · ϵ(eϵ − 1),

which is O(
√
k log(1/δ′) · ϵ) when k ≤ 1/ϵ2. In particular, if ϵ′ ∈ (0, 1), δ, δ′ > 0, the composition

of k times (ϵ, 0)-differentially private mechanism is (ϵ′, δ′)-differentially private for

ϵ = ϵ′/(
√

8k log(1/δ′)).

Finally, we introduce a high probability upper bound on the maximum of Laplace random variables
which will be used in the error analysis.

Lemma 2.3. Consider n i.i.d. random variables Z1, Z2, ..., Zn from Lap(b). With probability at
least 1− γ, ∀0 < γ < 1, all n Laplace random variables have magnitude bounded by b log(n/γ).

Proof. For each Zi, P (|Zi| ≤ t) = 1− exp(− t
b ). Thus,

P [ max
i=1,...,n

|Zi| ≤ t] = (1− exp(− t

b
))n.

Let t = b log(n/γ). With n ≥ 1, the probability becomes (1− γ
n )

n ≥ 1− γ as claimed.

3 Private Synthetic Graph Release for APSP Distance

We formally define the problem of interest and some basic concepts as below.

Definition 3.1. (Approximate Distances Release) Given an graph G(V,E, w), our task is to release
all pairwise shortest path distances privately. Let d̂(·, ·) be the output (approximate) distance function.
Our object is to minimize the maximal absolute error over all pairs, namely, max{|d̂(u, v)−d(u, v)| :
u, v ∈ V}, with d̂(u, v), ∀u, v ∈ V being DP to weight w. We call |d̂(u, v) − d(u, v)| the additive
error of node pair (u, v).

Definition 3.2 (Path). A path P̃v1,vL between v1, vL ∈ V is defined as P̃v1,vL = {(vi, vi+1), 1 ≤ i ≤
L− 1}, the collection of edges between connected node sequence v1, v2, ..., vk, with some L ≤ n. A
segment of path P̃ is defined as a consecutive sub-path, {(vi, vi + 1), s ≤ i ≤ t− 1} for some s, t.
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Definition 3.3 (Shortest path). Let Su,v be the set of all paths between u, v ∈ V. For a path P ∈ Su,v

and weights w, denote d(P,W) =
∑

e∈P w(e). The shortest path of u, v ∈ V w.r.t. weights w is

Pu,v = argmin
P∈Su,v

d(P,w),

and the shortest path distance is d(Pu,v, w).
Definition 3.4 (Canonical shortest path). For a given graph G(V,E, w), let V1 ⊆ V be a subset of V.
Let Px,y = {x, v1, v2, ..., vL, y} be the shortest path between x, y ∈ V. Then a canonical shortest
path PV1

x,y is defined by either of the following:

1. PV1
x,y ≡ Px,y , if Px,y contains at most one vertex in V1;

2. PV1
x,y = {x, v1, ..., p, q, ..., vL, y}, if p, q are the closest nodes in Px,y to x, y respectively,

and p, q ∈ V1.

Intuitively, the canonical shortest path finds a shortcut by directly connecting two nodes in a set V1.
This definition will be the key in our algorithm and construction. One important fact is that, if we
connect each pair of nodes in V1 and assign the true pairwise distance between them as the edge
weight (as in our main algorithm), then d(Pu,v, w) ≡ d(PV1

u,v, w) by definition.

3.1 Challenges and the New Algorithm

First, we revisit the prior approach to release all pairwise distances in the private weight model
and the challenges. Since neighboring (total) weights differ by at most one unit in l1 norm, the
distance between any two nodes also changes by at most one unit. Releasing a single path can be
done by computing the accurate shortest path distance between pairs of inputs and adding Laplace
noise proportional to 1/ϵ, which is a trivial task in DP. However, releasing all distances privately is
much more challenging, since the Laplace mechanism requires Lap(n2/ϵ) noise (because of the n2

queries), resulting in the O(n) error eventually. As introduced in Section 1.1, in prior literature, there
are two ways (e.g., Sealfon (2016)) to achieve this error level, either by adding noise to each edge or
to the output distances. In this paper, we will focus on the first strategy.

The simple approach is as follows: 1) add Lap(1/ϵ) noise to each edge, i.e., w′ = w + Lap(1/ϵ),
to get graph G′ = (V,E, w′); 2) report all pairwise distances on G′ (note that, the shortest paths on
G′ found might be different from the true shortest paths in G). By the Laplace mechanism (Dwork,
2006), all the weights in graph G become differentially private. By the post-processing property of
DP, all the output pairwise distances are also DP. Note that there are O(n2) pairs of vertices, so the
number of edges is bounded by O(n2). By Lemma 2.3, with probability 1− γ, all O(n2) Laplace
random variables will have magnitude bounded by (1/ϵ) log(n2/γ), so the length of every path in
the released synthetic graph is within n log(n/γ)/ϵ additive error, thus roughly O(n).

Statistically, the general problem can be described informally and approximately as: given a set of n2

i.i.d. Laplace random variables, we want to bound the sum of the n variables among n2 size-n subsets
simultaneously. Since the graph topology can be arbitrary, it is not hard to find examples where
getting a sublinear error seems impossible, and a straightforward additive bound exactly leads to the
previous O(n) error as mentioned above. In this section, we propose an algorithm that leverages
the concept of canonical shortest paths (Definition 3.4), which finally leads to Õ(n1/2) additive
approximation error.

As summarized in Algorithm 1, for a general weighted graph G(V,E, w), our proposed algorithm
proceeds as follows:

1) Sample n1/2 vertices from V uniformly to form set V1;
2) Create an edge set E1 := {(u, v) : u ∈ V1, v ∈ V1, u ̸= v}. For each e = (u, v) ∈ E1, set

w(e) = d(u, v) as the true shortest path distance;
3) Add Lap(µ1, σ1) noise to each edge e ∈ E1, i.e., w′ = w + Lap(µ1, σ1);
4) Add Lap(µ0, σ0) noise to each edge e ∈ E0, i.e., w′ = w+Lap(µ0, σ0) where E0 := E\E1;
5) Obtain and release the merged graph G′ = (V,E′ = E0 ∪E1, w

′). One can simply compute
all pairwise distances on G′ as the estimation.
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Input: General graph G = (V,E, w), private parameter ϵ, δ, γ.
ϵ′ = ϵ/2.
Sample (n1/2) vertices from V uniformly and add them to V1.
Create an edge set E1 := {(u, v) : u ∈ V1, v ∈ V1, u ̸= v}.
For each e ∈ E1, let APSP (e) be the exact shortest path distance in G between (u, v) where
e = (u, v).

for each edge e ∈ E1 do
Let σ1 := (2

√
2n1/2

√
log(1/δ))/ϵ′ and µ1 := σ1 log(n/γ).

Draw Xe ∼ Lap(µ1, σ1).
w′(e) := APSP (e) +Xe.

E0 := E \ E1

for each edge e ∈ E0 do
Let σ0 := 1/ϵ′, µ0 := σ0 log(n

2/γ).
Draw Xe ∼ Lap(µ0, σ0).
w′(e) := w(e) +Xe.

Compute all pairwise distances in graph G′ = (V,E′ = E0 ∪ E1, w
′).

Output :All pairwise distances of G′.
Algorithm 1: Private all pairwise shortest paths distance release.

Comments. Note that in Algorithm 1, the final estimated distances are calculated by using standard
APSP distance computation on graph G′. One implication of this construction is that, beyond
outputting the pairwise distances with privacy, we can in fact also publish the graph G′(V,E′, w′)
privately and allow the users to compute the private distances using standard algorithms by themselves.
This is due to the positive mean of the Laplace noises. If we instead add zero-mean (centered) Laplace
noises as in most standard approaches, then computing the APSP distances on G′ would not ensure
the desired approximation error rate. We will provide more discussion on the role of the shifted
noises at the end of this section.

Next, we provide theoretical analysis of our proposed algorithm. Firstly, recall that V1 contains n1/2

uniformly sampled nodes from V. Our analysis starts with the following fact.

Lemma 3.1 (Sampling Intersection). Suppose U ⊆ V is a fixed vertex set and |U | = n1/2 log(n2/γ).
With probability at least 1− γ/n2, we have that U ∩ V1 ̸= ∅.

Proof. Suppose we pick a random vertex v from V each time, the probability that v is not in
V1 is 1 − 1/n1/2. Then the probability of interest is bounded by Pr[U ∩ V1 = ∅] ≤ (1 −
1/n1/2)(

√
n log(n2/γ)) = γ/n2.

3.2 Privacy Analysis and Sublinear Error Bound

Lemma 3.2. Algorithm 1 achieves (ϵ, δ)-DP.

Proof. The privacy budget is divided into two parts:

(Part 1) The noise added to E0. It is obvious that for two neighboring inputs differ in the total weights
of edges in E0 by 1, by adding Laplace noises according Lap(µ0, 1/ϵ

′), it achieve (ϵ′, 0)-DP. Note
that adding a constant µ0 independent of the edge weights to the edges does not affect weight privacy.

(Part 2) The noise added to edges in E1. Similar arguments hold. There are at most n1/2 · n1/2 = n
pairs in E1. Applying Laplace mechanism with composition theorem (Lemma 2.2), we know that
adding noise following Lap(µ1, σ1) with σ1 =

√
8n log(1/δ)/ϵ′ = 2

√
2n1/2

√
log(1/δ)/ϵ′ suffices

to achieve (ϵ′, δ)-DP. Applying simple DP composition theorem again proves the (2ϵ′, δ)-DP. We
conclude by noticing that ϵ′ = ϵ/2.

We have the following fact that, any “long path” in G would contain at least two nodes in V1 with
high probability.

Lemma 3.3. For a given path in G(V,E, w) with number of edges larger than 2n1/2 log(n2/γ), it
contains at least two vertices in V1 with probability 1− 2γ/n2.
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Proof. Let us divide the path into three parts, such that two of them have at least n1/2 log(n2/γ)
edges. Based on Lemma 3.1, we have that each part above intersects with V1 with at least one vertex,
each with probability at least 1− γ/n2. As a result, by union bound, the whole path contains at least
two nodes in V1 with probability 1− 2γ/n2.

Recall G′ = (V,E′ = E0 ∪ E1, w
′) is the constructed synthetic graph with noisy weights. From

now on we denote w as the weight set containing the constructed shortcut weights, and define
G′

w = (V,E′, w) as the graph with nodes V, edges E′ and weights w (notice that it is different
from G′ = (V,E′, w′)). Consider those canonical shortest paths found by the true weights w
on G′

w(V,E′, w). We show that each canonical shortest path PV1
u,v, u, v ∈ V in G′

w has error
|d(Pu,v, w

′)− d(Pu,v, w)| bounded by Õ(n1/2), where d(Pu,v, w) is defined by Definition 3.3.

Lemma 3.4. For any u, v ∈ V, let PV1
u,v be the canonical shortest path (Definition 3.4) found by the

true weights w. Then, it holds that |d(PV1
u,v, w

′) − d(PV1
u,v, w)| = O(n1/2

√
log(1/δ) log2(n/γ)/ϵ)

with probability 1− 4γ for ∀u, v ∈ V.

Proof. Firstly, we have |d(PV1
u,v, w

′)− d(PV1
u,v, w)| = |

∑
e∈P

V1
u,v

(w′(e)− w(e))|, and w′(e)− w(e)

is the corresponding Laplace noise added to edge e in PV1
u,v . The key observation in the proof is that,

each canonical shortest path PV1
u,v can be divided into three parts (u, ..., p), (p, q), (q, ..., v), where

p, q are the closest nodes in V1 to u, v, respectively, and the edge (p, q) is the constructed shortcut
provided by V1 and E1. Note that, PV1

u,v also might not contain a shortcut, but this does not matter in
our analysis in the sequel. Denote Pu,v, as the shortest path between u and v. Consider two cases:

• |Pu,v| ≤ 2n1/2 log(n2/γ). In this case, we know that the total length of (u, ..., p) and
(q, ..., v) is bounded by 2n1/2 log(n2/γ). That is, PV1

u,v contains at most 2n1/2 log(n2/γ)
edges from E0. By Laplace mechanism, with probability 1 − γ, every edge in
E0 leads to at most O(log(n/γ)/ϵ) error. Thus, edges in E0 contribute at most
O(n1/2 log2(n/γ)/ϵ) error. PV1

u,v also contains at most one shortcut edges from V1, which
gives O(n1/2 log(n/γ)

√
log(1/δ)/ϵ) error, with another probability 1 − γ. Thus, with

probability 1− 2γ, the error is bounded by O(n1/2 log2(n/γ)/ϵ).

• |Pu,v| > 2n1/2 log(n2/γ). In this case, by Lemma 3.3 and union bound, we know that
with probability 1− 2γ

n2n
2 = 1− 2γ, PV1

u,v contains a shortcut (p, q), and both the lengths
of (u, ..., p) and (u, ..., q) are upper bounded by n1/2 log(n2/γ). The remaining proof is
similar to the arguments above. We have that with probability at least 1−4γ, |d(PV1

u,v, w
′)−

d(PV1
u,v, w)| is bounded by O(n1/2 log2(n/γ)/ϵ).

In summary, we have shown that with probability at least 1 − 4γ, |d(PV1
u,v, w

′) − d(PV1
u,v, w)| is

bounded by O(n1/2 log2(n/γ)/ϵ). The proof is complete.

Additionally, we have the following result stating that the estimated distance is no smaller than the
true distance for all pairs of vertices, with high probability.

Lemma 3.5. Let Pu,v be the shortest path between u, v ∈ V on G, and P ′
u,v the shortest path found

on G′. Then with probability 1− 2γ, d(P ′
u,v, w

′) ≥ d(Pu,v, w) for all u, v ∈ V.

Proof. By adding each edge in E1 with noise according to Lap(µ1, σ1) where σ1 =

2
√
2n1/2

√
log(1/δ)/ϵ′ and µ1 = σ1 log(n/γ), with high probability 1 − γ, every Lap(µ1, σ1)

variable is greater or equal to µ1 − σ1 log(n/γ) ≥ 0 with probability 1− γ based on Lemma 2.3.

Similarly, for edges in E0, we add to each of them Lap(µ0, σ0) noise where σ0 = 1/ϵ′, µ0 =
σ0 log(n

2/γ). Then with another high probability 1 − γ, every variable according to Lap(µ0, σ0)
is non-negative based on Lemma 2.3. Therefore, since with high probability the added noises on
all the edges are positive, the noisy shortest path distance must be larger than the true distance, i.e.,
d(P ′

u,v, w
′). This proves the claim.
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Figure 1: Empirical approx. error rate vs. graph size n (solid curve), with predicted growth rate of
O(n) and O(n1/2 log2 n) (dash and dotted curves). δ = 10, γ = 0.01. Left: each edge weight is
Unif(2000, 3000). Right:edge weight from Unif(104, 105). Averaged over 200 repetitions.

Now, we are in the position to present the main error guarantee of this work.

Theorem 3.6. Let G = (V,E, w) be general graph with n vertices. For some ϵ, δ > 0, running
Algorithm 1 publishes the graph G′ with (ϵ, δ)-differential privacy w.r.t. the weights w. Let d̂(u, v)
be the estimated shortest path distance between u, v ∈ V computed on G′. Then, with probability
1− 4γ, we have |d̂(u, v)− d(u, v)| ≤ O(ϵ−1n1/2 log2(n/γ)

√
log(1/δ)) for all u, v ∈ V.

Proof. Let P ′
u,v be the shortest path between u and v in the synthetic graph G′(V,E′, w′), then

trivially, d(P ′
u,v, w

′) ≤ d(PV1
u,v, w

′). By Lemma 3.4, we know that |d(PV1
u,v, w

′) − d(PV1
u,v, w)| is

bounded by O(n1/2
√
log(1/δ) log2(n/γ)/ϵ) with probability 1 − 4γ, ∀u, v ∈ V. In this event,

we have d(P ′
u,v, w

′) ≥ d(Pu,v, w) based on Lemma 3.5. Notice that, d(Pu,v, w) ≡ d(PV1
u,v, w) by

definition. Therefore, with probability 1− 4γ,

|d̂(u, v)− d(u, v)| = |d(P ′
u,v, w

′)− d(Pu,v, w)| ≤
(a)

|d(PV1
u,v, w

′)− d(PV1
u,v, w)|

≤ O(n1/2
√
log(1/δ) log2(n/γ)/ϵ), (1)

which verifies the claim.

Comments. As we see, the positive mean of Laplace noises implies Lemma 3.5 which provides a
key inequality in the proof of Theorem 3.6. This result in fact allows us to only consider the error
on the positive side. On the contrary, if we use mean-zero Laplace noises, then we can no longer
bound |d(P ′

u,v, w
′) − d(u, v)| by |d(PV1

u,v, w
′) − d(u, v)| as in Lemma 3.4, since it is possible that

d(P ′
u,v, w

′) ≤ d(PV1
u,v, w

′) < d(u, v). Thus, if we simply add zero-mean noises, directly computing
the APSP distances on the constructed graph G′ would not guarantee the desired error level.

3.3 Numerical Example

We present a numerical example on a multi-stage graph to justify the theory. We simulate a multi-
stage graph, where each edge weight is generated from i.i.d. uniform distribution. The graph contains
concatenated blocks, each with 1 start node, 1 end node, and 9 nodes in the middle connected to
both the start node and the end node. The end node then becomes the start node of the next block.
We consider multi-stage graphs here because in some sense it is one of the “hardest” cases for
private APSP computation, since many shortest paths contain O(n) edges. In Figure 1, we present
the empirical largest absolute error over all pairwise distances against the size of graph n. For the
theoretical bounds, we start with the first empirical error (black) associated with n = 100, and
increase at the rate of n (dash) and n1/2 log2 n (dotted), respectively. We validate that the empirical
error grows with rate slower than n1/2 log2 n, as given by our theory, for all ϵ values. Note that the
error bound becomes tighter with large edge weights (right) than with small weights (left). When
the edge weights follow Unif(104, 105) which is much larger than the noise magnitude, the shortest
path P ′

u,v found on G′ would be the same as Pu,v (or PV1
u,v) in most cases. Thus, the LHS and the

RHS of (a) in (1) would be close, making the bound tighter.
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4 Graph with Small Feedback Vertex Set

Input: General graph G = (V,E, w), private parameter ϵ, δ, ϵ′ = ϵ/3.
Compute the FVS S using the 2-approx. algorithm in Becker and Geiger (1996). // Step 1)
Let G′ be the induced subgraph of vertex set V \ S in G. Let k := |S|.
Compute the differentially private all pairwise shortest path distances d̂(u, v) on trees/forest G′

using Algorithm 1 in Sealfon (2016) with privacy parameter ϵ′. // Step 2)
Compute d(u, v) for u, v ∈ S, where d(u, v) is the exact shortest path distance in G. // Step 3)
for each u ∈ S, v ∈ S do

Let σ1 := (2
√
2k

√
log(1/δ))/ϵ′.

Draw Xe ∼ Lap(0, σ1).
d̂(u, v) := d(u, v) +Xe.

for each vertex u ∈ S do
for each vertex v /∈ S adjacent to u do
// Step 4): To deal with the edges between S and V \ S
Let σ0 := 1/ϵ′.
Draw Xe ∼ Lap(0, σ0).
w′(u, v) := w(u, v) +Xe.
d̂(u, v) := w′(u, v).

for each vertex u in V \ S do
for each vertex v in S do

// Step 4): To deal with the case that only the last vertex of shortest path is in S

d̂(u, v) := minp/∈S{d̂(u, p) + w′(p, v)}.
for each vertex u in V \ S do

for each vertex v in S do
// Step 5): To deal with the case that shortest path passes a vertex p in S

d̂(u, v) := minp∈S{d̂(u, p) + d̂(p, v)}.
for each pair u, v ∈ V \ S do

// Step 6): To deal with the case that shortest path passes some vertex u in S

d̂(u, v) := minp∈S{d̂(u, p) + d̂(p, v)}.
Output :All pairwise distances d̂(u, v).
Algorithm 2: Differentially private all pairwise shortest path distances release for graph with
small feedback vertex number.

In previous section, we have investigated the problem of DP all pairwise shortest distance problem on
general weighted graphs. In this section, we consider a more special type of graph with small feedback
vertex set (FVS), which is a common concept in graph analysis, e.g., (Kratsch and Schweitzer, 2010;
Papadopoulos and Tzimas, 2020). We will design a new algorithm based on FVS computation that
privately releases all pairwise distances. We will show that this method improves the error on general
graphs when the FVS number is small. To begin with, the definition of FVS is given as below.

Definition 4.1 (Feedback Vertex Set (Becker and Geiger, 1996)). Let G = (V,E) be an undirected
graph. A set X ⊆ V is called a feedback vertex set (FVS) if G \X is a forest, where G \X is the
induced graph by V \ X . The feedback vertex set number is the minimal cardinality over all the
possible feedback sets.

In words, a feedback vertex set (FVS) of a graph is a subset of vertices X such that after removing
these nodes from the graph, the subgraph induced by V \X contains no cycles (i.e., is a forest). The
FVS number is the smallest size of all the FVS’s.

Next, we propose a differentially private algorithm that releases the APSP distances of graphs based
on the feedback vertex set computation. The steps of Algorithm 2 are summarized below:

1) We compute a feedback vertex set S of G by using the 2-approximation algorithm in Becker
and Geiger (1996), with |S| = k; the induced subgraph G′ of vertex set V \ S is a forest;

9



2) We use Algorithm 1 in Sealfon (2016) to obtain the private all pairwise shortest path
distances in G′. For any pair (u, v) in G whose shortest path does not pass any vertex in S,
d̂(u, v) on G′ is already a good estimation for d(u, v);

3) For the k2 (recall k = |S|) pairwise distances of the node pairs in S, we can compute
the APSP distances directly and add Lap(0, σ1) to achieve DP. We still use the d̂(u, v) to
represent them;

4) For each edge (u, v) with u ∈ S, v ∈ V \ S, we add noise according Lap(0, σ0 = 1/ϵ′)
to w(u, v). For a pair in {(u, v)|u ∈ V \ S, v ∈ S}, if the shortest path between u and
v does not pass other vertex in S except v, then there exist some neighbor p of v such
that dG(u, v) = dG′(u, p) + w(p, v) based on Lemma A.1, where dG(u, v), dG′(u, v)
represent the shortest path distance between u and v in G and G′ respectively. Hence we
use d̂(u, v) := minp/∈S{d̂(u, p) + w′(p, v)} to estimate d(u, v);

5) For a pair in {(u, v) : u ∈ V \ S, v ∈ S}, if the shortest path between u and v passes some
vertex p ∈ S except v, then there exist p ∈ S, p′ /∈ S such that dG(u, v) = dG(u, p) +
dG(p, v), and the shortest path between u and p does not pass any vertex in S except p based
on Lemma A.1. We obtained d̂(u, p) in step 4). We then use d̂(u, v) := minp∈S{d̂(u, p) +
d̂(p, v)} to estimate d(u, v);

6) For pairs in {(u, v) ∈ (V\S)2}, if the shortest path between u and v passes some vertex p in
S, then dG(u, v) = dG(u, p)+dG(p, v). We can use d̂(u, v) := minp∈S{d̂(u, p)+ d̂(p, v)}
to estimate d(u, v), also d̂(u, p), d̂(p, v) had been computed in 4), 5).

The auxiliary lemma mentioned in step 4) and 5) is given Lemma A.1 in the Appendix.

4.1 Privacy and Error Analysis

Lemma 4.1. Algorithm 2 achieves (ϵ, δ)-DP.

The proof is placed in the Appendix. The error bound of Algorithm 2 is given as below.

Theorem 4.2. Let G = (V,E, w) be a general graph with n vertices. For some ϵ, δ > 0, running
Algorithm 2 publishes all APSP distances that is (ϵ, δ)-differentially private w.r.t. the weights
w. With probability 1 − 3γ, the additive error is bounded by O(ϵ−1k log(k/γ)

√
log(1/δ) +

ϵ−1(log2.5 n) log(1/γ)).

Comments. We see that when k = |S| = o(n1/2), the error in Theorem 4.2 is smaller than the
O(n1/2 log2 n) error in Theorem 3.6 for the general weighted graphs. Therefore, our result implies
improved error bounds when the graph has small feedback vertex set such that k = o(n1/2). Further,
if k = o(log n), i.e., the graph is “almost” a forest, then the first term vanishes and the error reduces
to Õ(log2.5 n) for trees (Sealfon, 2016).

5 Conclusion

In literature, to achieve (ϵ, δ)-differential privacy (DP) in general weight private graphs, releasing
all pairwise shortest path (APSP) distances incurs maximal approximation error Õ(n), linear in the
number of vertices. Recently, Fan and Li (2022) studied this problem on grid graphs and trees, but the
linear error barrier for general weighted graphs is still an open problem (Sealfon, 2020). In this work,
we propose a differentially private algorithm to release a carefully constructed graph, and computing
the APSP distance on the synthetic graph achieves Õ(n1/2) error sublinear in n, thus answering
the open question. With improved and extended techniques from Fan and Li (2022), the idea of
our approach is to augment the diameter of graph by a set of shortcuts along with adding shifted
Laplace noise. Moreover, for graphs with small feedback vertex set number k, we also propose a
DP algorithm to answer all pairwise shortest path distances each with error Õ(k). This improves the
result for general graphs when k, the feedback vertex set number, is small.
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