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In this appendix, we first provide more details for the derivation of iterative updating target domain
cluster parameters. We further provide more details of the hyperparameters used in TTAC. Finally,
we present evaluation of TTAC with transformer backbone, ViT [1], additional evaluation of TTAC
update epochs, the stability of TTAC under different data streaming orders and compared alternative
target clustering updating strategies.

A Derivations of Efficient Iterative Updating

The mean and covariance for each target domain cluster can be naively estimated through Maximum
Likelihood Estimation (MLE) as below. The existing solution in TTT++ [4] stores the recent one
thousand testing samples and their features for MLE.

µ =
1

N

N∑
i=1

f(xi), Σ =
1

N

N∑
i=1

(f(xi)− µ)⊤(f(xi)− µ) (1)

When N is very large, it is inevitable that a very large memory space must be allocated to store all
features F ∈ RN×D, e.g. the VisDA dataset has 55k testing samples and a naive MLE prohibits
efficient test-time training. In the manuscript, we propose to online update target domain feature
distribution parameters without caching sample features as Eq. 8. The detailed derivations are now
presented as follows. Formally, we denote the running mean and covariance at step t− 1 as µt−1 and
Σt−1, and the test minibatch at step t as Bt = {xi}i=1···NB

. The following is the derivation of µt.

µt =
1

N t

Nt∑
i=1

f(xi), s.t. N t = N t−1 + |Bt| (2)
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1
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(
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1

N t
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xi∈Bt

(f(xi)− µt−1)

(3)

To simplify the expression, we denote δt = 1
Nt

∑
xi∈Bt (f(xi)− µt−1), so µt = µt−1 + δt. The

following is the derivation of Σt. For the ease of calculation, we use the asymptotic unbiased estimator
of Σt as shown as below.
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(4)

Furthermore, we give the formulations of the running mean µt
k and covariance Σt

k for the kth target
domain cluster as below.
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1
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∑
xi∈Bt

FTC
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i 1(ŷi = k){(f(xi)− µt−1
k )⊤(f(xi)− µt−1

k )− Σt−1
k } − δtk

⊤
δtk

(5)

Similarly to Nclip for the threshold used to clip the N t protecting the gradient of new test samples,
we use Nclip_k as the threshold to clip the N t

k for each target domain cluster.

2



Table 1: Hyper-parameters are used in our method.
Dataset αk βk NC Nitr ξ τTC τPP Nclip Nclip_k λ

CIFAR10-C 0.1 0.1 4096 4 0.9 -0.001 0.9 1280 128 1.0
CIFAR100-C 0.01 0.01 4096 4 0.9 -0.001 0.9 1280 64 1.0
CIFAR10.1 0.1 0.1 4096 4 0.9 -0.001 0.9 1280 128 1.0
VisDA-C 1

12
1
12 4096 4 0.9 -0.01 0.9 1536 128 1.0

ModelNet40-C 0.025 0.025 4096 6 0.9 -0.1 0.5 1280 128 1.0
ImageNet-C 0.001 0.001 4096 2 0.9 -0.01 0.9 1280 64 1.0

Table 2: The results using ViT backbone on CIFAR10-C dataset.
Method Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg Std

TEST 2.29 16.24 4.83 9.45 13.60 6.73 24.52 18.23 24.48 12.63 7.63 14.57 23.02 5.29 3.50 12.47 7.36
BN 2.29 16.24 4.83 9.45 13.60 6.73 24.52 18.23 24.48 12.63 7.63 14.57 23.02 5.29 3.50 12.47 7.36
TENT 1.84 3.55 3.31 7.01 5.57 4.09 60.97 10.20 61.12 9.72 4.93 3.87 22.47 4.55 2.64 13.72 19.19
SHOT 2.00 3.13 3.46 6.63 5.79 4.06 11.65 9.39 10.58 9.69 5.03 3.63 10.05 4.35 2.70 6.14 3.15
TTT++ 1.91 4.14 3.88 6.58 6.27 4.00 10.08 8.59 8.85 9.66 4.68 3.62 9.17 4.28 2.74 5.90 2.64
TTAC (Ours) 2.15 4.05 3.91 6.62 5.67 3.75 9.26 7.95 7.97 8.55 4.75 3.87 8.24 3.93 2.94 5.57 2.24

B Hyperparameter Values

We provide the details of hyperparameters in this section. Hyperparameters are shared across multiple
TTT protocols except for NC and Nitr which are only applicable under one-pass adaptation protocols.
The details are shown as Tab. 1. αk and βk respectively represent the prevalence of each category,
here we set them to 1 over the number of categories. NC indicates the length of the testing sample
queue C under the sTTT protocol, and Nitr controls the update epochs on this queue. τTC and τPP

are the thresholds used for pseudo label filtering. Nclip and Nclip_k are the upper bounds of sample
counts in the iterative updating of global statistics and target cluster statistics respectively. Finally
λ is the coefficient of Lga, which takes the default value of 1. All models are implemented by the
PyTorch 1.10.2 framework, CUDA 11.3 with an NVIDIA RTX 3090 GPU.

C Additional Evaluation

C.1 Evaluation of TTAC with Transformer Backbone

In this section, we provide additional evaluation of TTAC with a transformer backbone, ViT [1].
In specific, we pre-train ViT on CIFAR10 clean dataset and then follow the sTTT protocol to do
test-time training on CIFAR10-C. The results are presented in Tab. 2. We report the average (Avg) and
standard deviation (Std) of accuracy over all 15 categories of corruptions. Again, TTAC consistently
outperform all competing methods with transformer backbone.

C.2 Impact of TTAC Update Epochs on Cached Testing Sample

Under the sTTT protocol, we perform multiple iterations of adaptation on cached testing sample
queue. Preserving a history of testing samples is a commonly practice in test-time training. For
example, T3A [2] preserves a support set, which contains testing samples and the pseudo labels, to
update classifier prototypes. TTT++ [4] preserves a testing sample queue to estimate global feature
distribution. For these methods, both raw testing samples and features must be cached simultaneously,
in comparison, we only cache the raw data samples and target domain clusters are estimated in an
online fashion.

Here, we analyze the impact of TTAC update epochs on cached testing samples. The results are
presented in Tab. 3, where we make the following observations. First, the error rate is decreasing as
the number of epochs increases, while at the cost of more computation time. But this can be solved
by allocating a separate device for model adaptation. Second, the error rate saturates at Nitr = 4
suggesting only a few epochs is necessary to achieve good test-time training on target domain.
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Table 3: The impact of TTAC update epochs under the sTTT protocol.
Nitr Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

1 6.57 8.20 8.57 15.82 11.61 11.60 17.46 22.66 20.99 11.97 10.44 13.79 15.40 10.96 7.49 12.90
2 6.82 8.12 8.77 15.96 11.79 11.17 15.49 23.53 19.78 12.28 10.19 13.22 16.28 10.84 7.49 12.78
3 6.80 8.11 8.53 15.94 11.36 10.89 14.87 22.67 18.94 11.77 9.83 12.51 15.91 10.58 7.35 12.40
4 6.41 8.05 7.85 14.81 10.28 10.51 13.06 18.36 17.35 10.80 8.97 9.34 11.61 10.01 6.68 10.94
6 6.42 7.64 7.97 14.66 10.66 10.59 13.30 18.29 17.61 10.86 8.94 9.36 11.76 10.03 6.73 10.98

Table 4: The performance of TTAC under different data streaming orders.
Random Seed 0 10 20 200 300 3000 4000 40000 50000 500000 Avg

Error (%) 10.01 10.06 10.05 10.29 10.20 10.03 10.31 10.36 10.37 10.13 10.18±0.13

C.3 Impact of Data Streaming Order

The proposed sTTT protocols assumes test samples arrive in a stream and inference is made instantly
on each test sample. The result for each test sample will not be affected by any following ones. In this
section, we investigate how the data streaming order will affect the results. Specifically, we randomly
shuffle all testing samples in CIFAR10-C for 10 times with different seeds and calculate the mean
and standard deviation of test accuracy under sTTT protocol. The results in Tab. 4 suggest TTAC
maintains consistent performance regardless of data streaming order.

C.4 Alternative Strategies for Updating Target Domain Clusters

In the manuscript, we presented target domain clustering through pseudo labeling. A temporal
consistency approach is adopted to filter out confident samples to update target clusters. In this
section, we discuss two alternative strategies for updating target domain clusters. Firstly, each target
cluster can be updated with all samples assigned with respective pseudo label (Without Filtering).
This strategy will introduce many noisy samples into cluster updating and potentially harm test-time
feature learning. Secondly, we use a soft assignment of testing samples to each target cluster to
update target clusters (Soft Assignment). This strategy is equivalent to fitting a mixture of Gaussian
through EM algorithm. Finally, we compare these two alternative strategies with our temporal
consistency based filtering approach. The results are presented in Tab. 5. We find the results with
temporal consistency based filtering outperforms the other two strategies on 13 out of 15 categories
of corruptions, suggesting pseudo label filtering is necessary for estimating more accurate target
clusters.

C.5 Sensitivity to Hyperparameters

We evaluate the sensitivity to two thresholds during pseudo label filtering, namely the temporal
smoothness threshold τTC and posterior threshold τPP . τTC controls how much the maximal
probability deviate from the historical exponential moving average. If the current value is lower
than the ema below a threshold, we believe the prediction is not confident and the sample should be
excluded from estimating target domain cluster. τPP controls the the minimal maximal probability
and below this threshold is considered as not confident enough. We evaluate τTC in the interval
between 0 and -1.0 and τPP in the interval from 0.5 to 0.95 with results on CIFAR10-C level 5
glass blur corruption presented in Tab. 6. We draw the following conclusions on the evaluations.
i) There is a wide range of hyperparameters that give stable performance, e.g. τTC ∈ [0.5, 0.0.9]
and τPP ∈ [−0.0001,−0.01]. ii) When temporal consistency filtering is turn off, i.e. τTC = −1.0,
because the probability is normalized to between 0 and 1, the performance drops substantially,
suggesting the necessity to apply temporal consistency filtering.

Table 5: Comparison of alternative strategies for updating target domain clusters.
Strategy Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

i. Without filtering 7.19 8.98 9.29 17.28 11.90 11.72 17.19 22.47 20.83 12.27 10.11 12.39 13.85 11.56 7.97 13.00
ii. Soft Assignment 6.77 8.02 7.93 14.77 10.87 10.68 13.65 18.69 17.58 11.26 9.33 9.54 11.70 10.56 6.93 11.22
Filtering (Ours) 6.41 8.05 7.85 14.81 10.28 10.51 13.06 18.36 17.35 10.80 8.97 9.34 11.61 10.01 6.68 10.94
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Table 6: Evaluation of pseudo labeling thresholds on CIFAR10-C level 5 glass blur corruption.
Numbers are reported as classification error (%).

τTC\τPP 0.5 0.6 0.7 0.8 0.9 0.95

0.0 23.03 22.26 21.96 22.50 21.14 28.55
-0.0001 20.03 20.53 20.45 20.40 19.49 27.00
-0.001 19.66 20.51 19.49 20.48 19.42 26.83
-0.01 20.71 20.78 20.73 20.65 20.29 27.58
-0.1 24.10 21.47 21.46 22.36 21.45 28.71
-1.0 30.75 24.08 23.40 24.33 22.21 28.77

C.6 Improvement by KL-Divergence

Minimizing KL-Divergence between two Gaussian distributions is equivalent to matching the first
two moments of the true distributions [3]. TFA or TTT++ aligns the first two moments through
minimizing the L2/F norm, referred to as L2 alignment hereafter. Although L2 alignment is derived
from Central Moment Discrepancy [5], the original CMD advocates a higher order moment matching
and the weight applied to each moment is hard to estimate on real-world datasets. An empirical weight
could be applied to balance the mean and covariance terms in TTT++, at the cost of introducing
additional hyperparameters. We also provide a comparison between KL-Divergence and L2 alignment
on CIFAR10-C level 5 snow corruption in Tab. 7 using the original code released by TTT++. The
performance gap empirically demonstrates the superiority of KL-Divergence. Nevertheless, we
believe a theoretical analysis into why KL-Divergence is superior under test-time training would be
inspirational and we leave it for future work.

Table 7: Comparing KL-Divergence and L2 alignment as test-time training loss with the original
code released by TTT++ (Y-M) on CIFAR10 level 5 snow corruption.

Feature Alignment Strategy Error (%)

L2 alignment (original TTT++) 9.85
KL-Divergence 8.43

D Limitations and Failure Cases

We discuss the limitations of our method from two perspectives. First, we point out that TTAC
implements backpropagation to update models at test stage, therefore additional computation overhead
is required. Specifically, as Tab. ??, we carried out additional evaluations on the per-sample wall
clock time. Basically, we discovered that TTAC is 2-5 times computationally more expensive than BN
and TENT. However, contrary to usual recognition, BN and TENT are also very expensive compared
with no adaptation at all. Eventually, most test-time training methods might require an additional
device for test-time adaptation.

We further discuss the limitations on test-time training under more severe corruptions. Specifically,
we evaluate TENT, SHOT and TTAC under 1-5 levels of corruptions on CIFAR10-C with results
reported in Tab. 8. We observe generally a drop of performance from 1-5 level of corruption. Despite
consistently outperforming TENT and SHOT at all levels of corruptions, TTAC’s performance at
higher corruption levels are relatively worse, suggesting more attention must be paid to more severely
corrupted scenarios.

E Detailed results

We further provide details of test-time training on CIFAR10-C, CIFAR100-C and ModelNet40-C
datasets in Tab. 9, 10 and 11 respectively. The results in Tab. 9 and 10 suggest TTAC has a powerful
ability to adapt to the corrupted images, and obtains the state-of-the-art performances on almost all
corruption categories.
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Table 8: Classification error under different levels of snow corruption on CIFAR10-C dataset.
Level 1 2 3 4 5

TEST 9.46 18.34 16.89 19.31 21.93
TENT 8.76 11.39 13.37 15.18 13.93
SHOT 8.70 11.21 13.16 15.12 13.76
TTAC 6.54 8.19 9.82 10.61 9.98

Table 9: The results of CIFAR10-C under the sTTT protocol
Method Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

TEST 7.00 13.28 11.84 23.38 29.42 28.25 48.73 50.79 57.01 19.46 23.38 47.88 44.00 21.93 10.84 29.15
BN 8.21 8.36 9.73 19.43 20.16 13.72 17.46 26.34 28.11 14.00 13.90 12.22 16.64 16.00 8.03 15.49
TENT 8.22 8.07 9.93 18.29 15.65 14.14 16.60 24.10 25.80 13.39 12.34 11.06 14.75 13.87 7.87 14.27
T3A 8.33 8.70 9.70 19.51 20.26 13.83 17.27 25.61 27.63 14.05 14.26 12.12 16.37 15.78 8.13 15.44
SHOT 7.58 7.78 9.12 17.76 16.90 12.56 15.99 23.30 24.99 13.19 12.59 11.37 14.85 13.75 7.51 13.95
TTT++ 7.70 7.91 9.24 17.55 16.39 12.74 15.49 22.57 22.86 13.02 12.52 11.46 14.45 13.90 7.51 13.69
TTAC (Ours) 6.41 8.05 7.85 14.81 10.28 10.51 13.06 18.36 17.35 10.80 8.97 9.34 11.61 10.01 6.68 10.94
TTAC+SHOT (Ours) 6.37 6.98 7.79 14.80 11.04 10.52 13.58 18.34 17.68 10.94 8.93 9.20 11.81 10.01 6.79 10.99

Table 10: The results of CIFAR100-C under the sTTT protocol
Method Bird Contr Defoc Elast Fog Frost Gauss Glass Impul Jpeg Motn Pixel Shot Snow Zoom Avg

TEST 28.84 50.87 39.61 59.53 68.10 60.21 80.77 82.27 87.75 49.98 54.20 72.27 77.84 54.57 38.36 60.34
BN 31.78 33.06 33.86 48.65 54.23 42.28 48.02 57.08 60.14 39.09 40.72 37.76 45.83 46.31 31.91 43.38
TENT 30.45 31.47 32.48 45.84 44.85 41.39 45.59 52.31 56.16 38.94 38.41 35.55 43.40 42.89 31.10 40.72
T3A 31.66 32.63 33.62 47.60 53.06 41.95 46.63 55.51 58.92 38.89 40.26 37.21 45.32 46.08 31.43 42.72
SHOT 29.36 30.49 31.33 43.41 45.14 39.31 43.35 50.98 53.75 36.07 36.11 34.54 42.16 40.99 29.52 39.10
TTT++ 30.79 31.48 33.04 44.95 47.74 40.19 43.94 52.06 54.08 37.26 38.10 35.40 42.28 42.97 30.58 40.32
TTAC (Ours) 28.13 32.55 29.45 41.54 39.07 36.95 40.01 48.30 49.21 34.55 33.29 32.69 38.62 37.69 27.61 36.64
TTAC+SHOT (Ours) 27.73 32.19 29.25 41.26 38.67 36.67 40.01 47.87 49.21 34.13 32.98 32.52 38.62 37.35 27.36 36.39

Table 11: The results of ModelNet40-C under the sTTT protocol
Method Background Cutout Density Inc. Density Dec. Inv. RBF RBF FFD Gaussian Impulse LiDAR Occlusion Rotation Shear Uniform Upsampling Avg

TEST 57.41 23.82 16.17 27.59 21.19 22.85 19.89 27.07 37.48 85.21 65.24 41.61 16.33 22.93 34.44 34.62
BN 52.88 18.07 13.25 20.42 16.57 17.50 17.75 17.30 18.60 70.75 58.51 26.94 14.51 15.48 19.37 26.53
TENT 51.94 17.38 13.25 17.99 14.14 16.65 15.68 16.49 17.10 81.44 64.18 22.33 13.29 14.59 19.25 26.38
T3A 52.51 16.37 13.09 18.23 14.26 15.48 15.88 14.14 15.68 69.12 54.82 24.80 13.01 14.14 17.06 24.57
SHOT 15.64 14.34 12.24 15.48 13.37 13.82 12.64 13.13 13.43 66.05 47.41 18.80 11.79 12.44 15.11 19.71
TTAC (Ours) 24.88 17.14 12.44 19.12 15.07 16.29 16.45 14.95 16.37 63.49 52.19 22.41 13.70 13.78 16.21 22.30
TTAC+SHOT (Ours) 18.67 14.89 10.88 15.58 13.12 14.19 14.04 12.15 14.08 57.35 47.48 18.93 11.99 11.92 12.88 19.21
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