Supplementary Materials for Bayesian Risk Markov
Decision Processes

A Nomenclature

* s: state in an MDP. s € S.

* a: action in an MDP. a € A.

* ‘P: transition probability in an MDP.

¢ C: cost function in an MDP.

e T': time horizon in an MDP.

+ ¢: the randomness in the system. £ € = C RF. £ ~ f(-;60°).

* §°: the unknown parameter in the true distribution of £. ¢ € © C R,

e u: the posterior distribution on . p € M.

* py: the risk functional taken with respect to 6 ~ .

* g:(st, ar, &): state transition function at time stage t. s;1 = g¢(S¢, ag, &t)-
* Vi*(st, p1t): the optimal value function at time stage ¢.

* 7y (s, pit): the optimal deterministic Markovian policy.

* a: risk level in CVaR risk functional.

* wu: additional variable to optimize in CVaR minimization representation.

* a(s,0): a-function. V;*(s¢, p1) = ming, er, [g oe(se,0)pue(0)do.

* Q7 (¢, fut, ar, u): optimal Q function. V;*(sy, pty) = ming, e 4,u,er QF (¢, fit, ar, uy).
o Vi(st, pe) := ming, Q7 (8¢, fie, ag, ug): “optimal” value function for a given u;.
* V,(st, ut): lower bound for V; (s, ps).

* a, € I';: lower bound for a. V., (s¢, p1¢) := ming er, Jo ai(st,0)1:(0)d6.
o Vi(s¢, j1¢): upper bound for Vi (s, i)

 @; € T'y: upper bound for ay. Vi (s, ) := ming, cp, f@ a (s, 0)pe(6)do.

. ‘N/t(st, ¢ ): approximate for Vi (s, ).

s oy € ft: approximate for ay. ‘N/t(st,pt) =ming 5 f@ a (s, 0) e (6)d6.

B Proof details

B.1 Proof of Proposition 4.1

Proof. We prove by induction. For t = T', we have V(st, ur) = Cr(sr). Fort =T — 1, let

Q;"—1(ST71, Hr—1,0T-1, qul)

- /@ {UT—l + ﬁ (/5 f(&0) (Cr-1(sT—1,ar-1,€) + Cr(sT)) d€ — uT_1)+} pir—1(0)do.

ar—_1(sr—1,0lar_1,ur—_1)
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Then V}_ (s7—1, pr—1) = ming, e Aup_,er @5_1(S7-1, tr—1,a7_1,ur_1) takes the desired
form. For t <T — 2, assuming V;" | (S¢+1, f¢+1) takes the desired form, then by induction we have

Q:(Shﬂhatvut)

1 n
= / {Ut t1—o ( f(&0) (C(se,ae, &) + Vi (sta1, pe)) d€ — Ut) }m(é))de
(—) =

:/@ {ut—i— ﬁ( NCU (ct(st,ahg)+gtli+r}/eat+1(st+he)% 9) df—ut>+}ut(9)d0.

at(st, 0lat, ut)

Then V;* (s, 1) = ming, e A u,er QF (St, fit, at, ue) takes the desired form. O

B.2 Proof of Proposition 4.2

Proof. For the lower bound, we have fort < T — 1,

Q (St7ut7at7ut

:ut—f— /
—aJe

/ < t(s¢,at,£) + min /@ az+1(8t+179)M 9) d¢ — Ut)+ u (0)do
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where the last inequality is justified by Jensen’s inequality as we exchange min and summation over
6. Therefore, V., (s, pt¢) 1= ming, e 4 Qt(st, e, agyu) < Vi(sy, ue). For the upper bound, we have
fort <T —1,

Qt(5t7Mt7Gt7Ut)

; St,a min a s 7( )f(£:6) —u "
slest) (exnan )+ min [ v (s, 0) PUE D) a6 =) (o)

+
f(&0) (Colst, a1, €) + aiya(se41,0) — ur) d§> 11e(0)d6

(
(L
<up + i f(&0) (Ce(se, ar, §) — ur) d ' p1¢(0)do + i min [ arp1(ser1,0)f(850)pe(0)d6 | de
1 a/@(/ ) 1 a/g(“t+1/@ )
(

160 @ornan) ~u ) m(@)0+ o min [ ([ avsstornr,016 006 ) (o100

where o}, | (s;41,0) attains the minimum of [g vy y1(si11,0)f(€; 0)14(6)d6. The last inequality is
justified by Jensen’s inequality as we exchange min and integral over §. Therefore, Vi (s¢, j1s) :=
ming, e 4 Q¢(Se, e, at, ur) > Vi(se, pi). In the following, we derive another approximate value
function ‘N/t We start from the lower bound. By applying Jensen’s inequality and exchanging min



and integral over £, we have
Qt(5t7 Ht, Qt, ut)

=urt g i - / (/ (Ct(st,at,g) —u + min Oét+1(5t+170)> f(§;9)d§> 1(0)d6
<+ 7/ (/ Ce(st,at, &) f(&0)dE — ue + mln/at+1(5t+1, 0)f (f|9)df) 1(6)d0

<ut+i/

= Qt(St,Mt,at, f)

( sty ae, &) f (5;9)d57ut>+m(9)d9+ L /969 (mm/ ari1(st41,0) f (& 0)d§> +(0)do
)

/ Cilst, 00,76 0)dg e+ i [ ass(541,0) f(£;9)d£)

l1—« apy
- Qt(sta Mty Aty Ut
Therefore, V, (s¢, pue) < Vi(se, pe) = ming, e 4 Qe(se, f1r, a, ur) < Vi(sg, p1r)- O
B.3 Proof of Theorem 4.3

Proof. We prove by induction. For t = T — 1, we have

= . 1 +
Vr_i(sr—1, pr—1,ur—1) = EHT}linl {UTI + I~ a /@ (/; (Cr—1(sr—1,ar-1,&) + Cr(sT)) f(&6)dE — UT—1> ,uT1(9)d9} .

Since Cr—1(s7—1,ar—1,&) is jointly convex in sp—; and ap_1, and state transition g(sp—1, ar—1, &)
is jointly convex in sp_; and ar_;, we have Cr_i(sr—1,ar—1,&) + Cr(st) is convex in
ap_1, and it follows that ap_q(sp—1,ar—_1,0) is jointly convex in ap_; and wp_;. Thus

Vr—1(sr—1, tbr—1,upr—1) is convex in up_;. Suppose now it holds for some ¢ < T — 2, i.e.,

ay1(8¢a1, atr1,0) is jointly convex in (uyy1, -+ ,ur—1) and a;y1. Note that

= . 1 : _ *

Vi(st, pte, ue:) = min {Ut + / (mm/ (Ce(styae, &) + arr1(St41,ae41,0)) f(&;0)dE — Ut) Mt(@)d@} .
at€A 11—« e \%+1 J=

By induction,  [- (Ci(s¢,ar,€) 4+ Qry1(Ses1,ae41,0)) f(E:0)dE  is  jointly convex in

(tgs1,-+ ,ur—1) and azr1. Also from the convex assumption on the state transition, we
have the joint convexity in a; and (u¢11, - ,ur_1) of the term inside (-)* operator. Therefore, the
convexity of Vi (s, fut, us.) W.r.t. ug. holds. O

B.4 Proof of Theorem 4.4

Proof. Fort =T — 1, clearly we have

in Vi1 (s7—1, pr—1,ur—1) = Vi_y (s7—1, pr—1)-
T—1

Fort =T — 2, we have
Vi_o(sT—2, pir—2)

+
( o(S7_2,ar—2,€) + min Vo1 (sr—1, pr—1, ur— 1)) f(£;0)d€fu:r_z)

ur—1

= min ur—_o +
ar_2,uT 2 1 - Oé

[m

<  min  min ur_2
ur—2,uT—1 a7 -2

+
( CT 2(sr—2,ar— 2,€)+VT 1(sT—1, br—1,ur— 1)) f(ﬁ;g)df—uT—z)

ar—2,§) + min ur_;
:' ar_1

/@(/:(CTfl(STfl,aT—l,f) + Cr(s7)) f(£;0)dE — ur—1) T pr_1(0)d0) £(&;0)dE — ur—2) T pr_2(0)do

= min min ur—_o
ur_2,uT—1 07 -2

1
11—«

+

rmn/ (Cr—2(sT—2,ar—-2,&) + ur—1

< min min ur_o +
UT —2,UT—1 0T -2 l-« ar—1

+ / (/ (Cror(sr1,ar1,€) + Cr(s2)) F(€ 0)d€ — wr 1) pr—1(6)d6) f(£:0)dE — wr—)* pr—»(6)d6
e

l-a /g /=

< Vr_a(sr—2, pr—2,Ur—2,UT—1).

pir—2(0)do

pr—2(0)do



Repeating the above process for t = T — 3, - - , 0, we have V;* (s;, pt) < miny, ...y, Va(St, e)-

C Implementing details

Code in Python for the numerical experiments is included in the supplementary. Computational time
is reported for a 1.4 GHz Intel Core i5 processor with 8 GB memory.

C.1 Parameter setup

In the gambler’s betting problem, the initial wealth so = 60, and the parameter space is set to
© = {0.1,0.3,0.45,0.55,0.7,0.9}. In CVaR BR-MDP with exact dynamic programming, to obtain
the “exact” (more precisely, should be close-to-exact) optimal value function, we discretize the
continuous state, i.e., the posterior distribution, with small step size 0.1, which results in very large
state space, and then we conduct dynamic programming on the discretized problem to obtain the
optimal value function. This is a brute-force way to compute the “exact” value function, and that’s
why the computational time for the exact BR-MDP formulation is extremely large compared to the
approximate formulation. In CVaR BR-MDP with approximate dynamic programming, the initial
u-vector u’ = (60, 50,40, 30,20, 10). The gradient descent is run for K = 100 iterations. The
learning rate is set to 1, = 112%. In the inventory control problem, the initial inventory level sy = 5,

the parameter space is set to © = {4,6,8,10,12,14,16}. The storage capacity is set to M = 15.
Maximal customer demand is set to M = 20. The holding cost is set to h; = 4, and the penalty
cost is set to p; = 6. In CVaR BR-MDP with exact dynamic programming, the posterior distribution
space M is a probability simplex with support over © and is discretized with gap 0.1. In CVaR
BR-MDP with approximate dynamic programming, the initial u-vector u° = (10, 10, 10, 10, 10, 10).
The gradient descent is run for K = 100 iterations. The learning rate is set to 7, = ﬁfk. In both
problems, the prior is set to uniform distribution with support over ©. Given the historical data, the
posterior is then updated by Bayes’ rule. The resulted posterior then serves as the prior input for
Algorithm 1, Algorithm 2, nominal approach and DR-MDP approach.

C.2 DR-MDP details

In the DR-MDP approach, as we have argued before, the construction of the ambiguity set requires
aprior knowledge of the probabilistic information, which is not readily available from a given data
set. However, we note that BRO has a distributionally robust optimization (DRO) interpretation. In
particular, for a static stochastic optimization problem, it is shown in [[1] that the BRO formulation
with the risk functional taken as VaR with confidence level a = 100% is equivalent to a DRO
formulation with the ambiguity set constructed for 6. Therefore, we adapt DR-MDP to our considered
problem as follows: we draw samples of § from the posterior distribution computed for a given data
set, and obtain the optimal policy that minimizes the total expected cost under the most adversarial 6.

C.3 Gradient descent details

In Algorithm 2, to accelerate the gradient computation and convergence of the algorithm, we can

instead use stochastic gradient descent. Let éo, 51, e 7£t—1 be a trajectory up to time ¢ — 1. Let the
subsequent states and actions along this trajectory be 51, 82, -- ,8; and a1, as, - - - , G, respectively.
Note that

day (30, ao, 0)
aut

_ 1

T 1l-a

! 1 {/_61(§17d17§1)f(§1;9)d51 — Uy +Il%izn/_52(§27d279)f(§1;9)d§1 > 0}

1—-a

(507517 T aétfl)

1 {/:Co(§o,&o,§o)f(§o;9)d€0 —up + I%iln/:&1(§1,d1,9)f(§0;9)d€0 > 0}




1_]1{/ Coo1(8t—1, -1, §¢—1) f(§e-150)dEe—1 — ue— 1+m1n/at(3t7atv 0)f(&—1;0)d&i— 1>0}

-(1— Mn{/Ect@t,at,st)f(ft; )dat—uﬁmm/_am(sm,am, V(6 0)de, zo}).

: 9ao(50,a0,0) _ 0ao(80,00,0) (& ¢ ¢ 9 (50,a0,6) 9 (s0,a0,0)

Since Dy =K Duy (f(),£17"' ,gtfl) , (T, ’W) can be sub-
. . . . 9 (s0,a0,0) 9a(80,a0,0) 2

stituted by an unbiased gradient estimator (=*5=== - - - %u; N (0,61, ér_2)).

C.4 Relative gaps between 170* (s0, po) and Vi (so, 1o)

Table 1: Relative gaps between V' (s, 110) and Vg (so, f10). Betting problem. N = 10. 6° = 0.45.

prior distribution 4o (1) Ho(2) o(3) Ho(4) #o(5) po(6)  po(7)  po(®)  p0(9)  po(10)  po(11)
relative gap (%)  32.98% 29.09% 2529% 18.78% 16.79% 12.34% 9.37% 3.38% 0.10% 0.08% 0.00%

BN CVaR BR-MODP (exact, a=0.1) B (CVaR BR-MDP jexact, a=0.1)
50 OWaR BR-MDFP (exact, a=0.4) 80 OWaR BR-MDFP (exact, a=0.4)
BN CYaR BR-MODP (exact, @ =0.99) BN (CVaR BR-MDP jexact, @ =0.99)
a0 B Nominal @ . Mominal
z z
g g
o o
£ £
2
| 0
10
. ||||,I||I.|,|. , , , eddn. _dildl
80 85 9% 100 105 48 50 52 54 56 58 B0
true performance true performance
(a) Histogram of actual performance over 100 repli- (b) Histogram of actual performance over 100 repli-
cations for CVaR BR-MDP (exact) with different c. cations for CVaR BR-MDP (exact) with different
0° = 12. a.0¢ = 4.

Figure 1: Inventory control problem.

C.5 Inventory control details

We report additional results for the inventory control problem in Figure [T} Figure [I] shows the
histogram of actual performance over 100 replications for the nominal approach and CVaR BR-MDP
(exact) with different confidence levels & = 0.1, 0.5, 0.99 under distributional parameter ¢ = 4 and
0¢ = 12 respectively. The same conclusions can be drawn as the gambler’s betting problem.
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