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Abstract

We consider finite-horizon Markov Decision Processes where parameters, such as
transition probabilities, are unknown and estimated from data. The popular distri-
butionally robust approach to addressing the parameter uncertainty can sometimes
be overly conservative. In this paper, we propose a new formulation, Bayesian
risk Markov decision process (BR-MDP), to address parameter uncertainty in
MDPs, where a risk functional is applied in nested form to the expected total cost
with respect to the Bayesian posterior distributions of the unknown parameters.
The proposed formulation provides more flexible risk attitudes towards parameter
uncertainty and takes into account the availability of data in future time stages.
To solve the proposed formulation with the conditional value-at-risk (CVaR) risk
functional, we propose an efficient approximation algorithm by deriving an analyti-
cal approximation of the value function and utilizing the convexity of CVaR. We
demonstrate the empirical performance of the BR-MDP formulation and proposed
algorithms on a gambler’s betting problem and an inventory control problem.

1 Introduction

Markov decision process (MDP) is a paradigm for modeling sequential decision making under
uncertainty. From a modeling perspective, some parameters of MDPs are unknown and need to
be estimated from data. In this paper, we consider MDPs where transition probability and cost
parameters are not known. A natural question would be: given a finite and probably small set of data,
how does a decision maker find an “optimal” policy that minimizes the expected total cost under the
uncertain transition probability and cost parameters?

A possible approach that mitigates the parameter uncertainty (also known as epistemic uncertainty)
lies in the framework of distributionally robust MDPs (DR-MDPs, [[1]). DR-MDP regards the
unknown parameters as random variables and assumes the associated distributions belong to an
ambiguity set that is constructed from the data. DR-MDP then finds the optimal policy that minimizes
the expected total cost with the parameters following the most adversarial distribution within the
ambiguity set. However, distributionally robust approaches might yield overly conservative solutions
that perform poorly for scenarios that are more likely to happen than the worst case. Moreover, as
pointed out in [2], DR-MDP does not explicitly specify the dynamics of the considered problem in
the sense that the distribution of the unknown parameters does not depend on realizations of the data
process, and therefore is generally not time consistent (we refer the reader to [2] for details on time
consistency).
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In view of the aforementioned drawbacks of DR-MDP, we propose a new formulation named as
Bayesian risk MDP (BR-MDP), to address the parameter uncertainty in MDPs. BR-MDP takes
a similar perspective as Bayesian risk optimization (BRO), which is a new framework proposed
by [3} 4] for static (single stage) optimization. They quantify the parameter uncertainty using a
Bayesian posterior distribution to replace the ambiguity set in DRO, and impose a risk functional on
the objective function with respect to the posterior distribution. To extend to BRO to MDPs and also
ensure time consistency, we propose to use a nested risk functional taken with respect to the process
of Bayesian posterior distributions, where the posterior is updated with all realizations of randomness
up to each time stage. We show the proposed BR-MDP formulation is time consistent, and derive
the corresponding dynamic programming equation with an augmented state that incorporates the
posterior information. The proposed framework works for an offline planning problem, where the
decision maker, after loaded with the learned optimal policy and put to the real environment, acts like
it adapts to the environment.

To solve the proposed BR-MDP formulation, we develop an efficient algorithm by drawing a
connection between BR-MDP and partially observable MDP (POMDP) and utilizing the convexity
of CVaR. The connection between BR-MDP and POMDP is motivated by the observation that the
posterior distribution in BR-MDP is exactly like the belief state (which is the posterior distribution
of the unobserved state given the history of observations) in a POMDP. The optimal value function
of a POMDP (in a minimization problem) can be expressed as an lower envelope of a set of linear
functions (also called a-functions, see [S]). We show a similar a-function representation of the
value function for BR-MDP, where the number of a-functions grow exponentially over time. To
have computationally feasible algorithm, we further derive an analytical approximation of the value
function that keeps a constant number of a-functions over time.

To summarize, the contributions of this paper are two folds. First, we propose a new time-consistent
formulation BR-MDP to handle the parameter uncertainty in MDPs. Second, we propose an efficient
algorithm to solve the proposed formulation with a CVaR risk functional, and the algorithm can be
easily extended to other coherent risk measures (see [6] for an overview on coherent risk measures).

2 Related Literature

One possible approach that mitigates the parameter uncertainty in MDPs lies in the framework of
robust MDPs (e.g. [[7,18} 19,110} [11]). In robust MDPs, parameters are usually assumed to belong to a
known set referred to as the ambiguity set, and the optimal decisions are chosen according to their
performance under the worst possible parameter realizations within the ambiguity set. [[1]] further
extends the distributionally robust approach to MDPs (DR-MDPs) with parameter uncertainty and uti-
lizes the probabilistic information of the unknown parameters. Different from all the aforementioned
works, we take a Bayesian perspective in the BR-MDP formulation and seek a trade-off between the
posterior expected performance and the robustness in the actual performance.

It is worth noting that applying the Bayesian approach to MDPs has been considered in [[12], which
proposes a Bayes-adaptive MDP (BAMDP) formulation with an augmented state composed of the
underlying MDP state and the posterior distribution of the unknown parameters. In BAMDP, each
transition probability is treated as an unknown parameter associated with a Dirichlet prior distribution,
and an expectation is taken with respect to the Dirichlet posterior on the expected total cost. In
contrast, our BR-MDP formulation imposes a risk functional, taken with respect to the posterior
distribution (which could be chosen as Dirichlet distribution but is more general), on the expected
total cost in a nested form. On a related note, risk-averse decision making has been widely studied in
MDPs. Apart from the robust MDPs that address the parameter uncertainty, risk-sensitive MDPs (e.g.
[[L3L 14, (15} [16]) address the intrinsic uncertainty (also known as aleatoric uncertainty) that is due
to the inherent stochasticity of the underlying MDP, by replacing the risk-neutral expectation (with
respect to the state transition) by general risk measures, such as conditional value-at-risk (CVaR, see
[L7]). Most of the existing literature on risk-sensitive MDPs consider a static risk functional applied
to the total return (e.g. [18 19} 20} 21])). There are two recent works closely related to ours, both of
which apply a risk functional to BAMDP. Specifically, [22] formulates the risk-sensitive planning
problem as a two-player zero-sum game and then applies a static risk functional to the expected total
cost, which adds robustness to the incorrect priors over model parameters; [23] optimizes a CVaR risk
functional over the total cost and simultaneously addresses both epistemic and aleatoric uncertainty.
In contrast, we consider a nested risk functional due to the time consistency consideration discussed



in previous section. Also note that our problem setting relies on partial knowledge of the model (state
transition equation, cost function etc.) and works in an offline planning setting with no interaction
with the environment, and hence is different from Bayesian reinforcement learning (e.g. [24} 25]).

3 Preliminaries and Problem Formulation

3.1 Preliminaries: BRO and CVaR

Bayesian risk optimization (BRO, see [34]) considers a general stochastic optimization problem:
min, Epc[h(x, £)], where x is the decision vector, £ is a random vector with distribution P¢, h is
a deterministic cost function. The true distribution P¢ is rarely known in practice and often needs
to be estimated from data. It is very likely that the solution obtained from solving an estimated
model performs badly under the true model. To avoid such a scenario, BRO seeks robustness in
the actual performance by imposing a risk functional to the expected cost function and solving the
following problem: min, pp, {Ep, [h(x,&)]}, where p is a risk functional, and P,, is the posterior
distribution of f after observing n data points. It is assumed that the unknown distribution P belongs
to a parametric family {IPy|0 € O}, where O is the parameter space and 6¢ € © is the unknown true
parameter value. Taking a Bayesian perspective, 8¢ is viewed as a realization of a random vector 6.

In particular, conditional value-at-risk (CVaR), a common coherent risk measure (see [6]), is con-
sidered for the risk functional. For a random variable X defined on a probability space (2, F,P),
value-at-risk VaR“(X) is defined as the a-quantile of X, i.e., VaR*(X) := inf{¢ : P(X < t) > a},
where the confidence level « € (0, 1). Assuming there is no probability atom at VaR*(X'), CVaR
at confidence level « is defined as the mean of the a-tail distribution of X, i.e., CVaR,(X) =
E[X | X > VaR,(X)]. Itis shown in [17] that CVaR can be written as a convex optimization:

E[(X—u)ﬂ}, (1)

CVaR,(X) = min {u +

u€eR l1—«

where ()T stands for max(0, -).

3.2 New formulation: Bayesian risk MDPs (BR-MDPs)

Consider a finite-horizon MDP defined as (S, A, P, C), where S is the state space, A is the action
space, P is the transition probability with P(s;11]|s¢, a¢) denoting the probability of transitioning to
state s;41 from state s; when action a; is taken, C is the cost function with Cy(s¢, at, s¢+1) denoting
the cost at time stage ¢ when action a, is taken and state transitions from s; to s;4;. A Markovian
deterministic policy 7 is a function mapping from S to A. Given an initial state sq, the goal is to

find an optimal policy that minimizes the expected total cost: Ir;inE”*P’c [232—01 Ci (5¢,at,5i41)]

where E™7:C is the expectation with policy = when the transition probability is 7 and the cost is C.
In practice, P and C are often unknown and estimated from data.

To deal with the parameter uncertainty in MDPs, we propose a new formulation, Bayesian risk
MDP (BR-MDP), by extending BRO in static optimization to MDPs. We assume the state transition
is specified by the state equation s;11 = g¢(s¢, at, &) with a known transition function g;, which
involves state s; € S C R, action a; € A C R? and randomness §; € & C R*, where
s,a, k are the dimensions of the state, action, and randomness, respectively. We assume {{;,t =
0,---,T — 1} are independent and identically distributed (i.i.d.). Note that the state equation
together with the distribution of &; uniquely determines the transition probability of the MDP, i.e.,
P(sty1 € S'|st,a) = P({& € Z 1 ge(se,at,&) € S} se,ar), where S’ is a measurable set in S.
We refer the readers to Chapter 3.5 in [26]] for the equivalence between stochastic optimal control and
MDP formulation. We use the representation of state equations instead of transition probabilities in
MDPs, for the purpose of decoupling the randomness and the policy, leading to a cleaner formulation
in the nested form. We assume the distribution of &, denoted by f(; 6¢), belongs to a parametric
family {f(-;0)|0 € ©}, where © C R is the parameter space, d is the dimension of the parameter
0, and 6¢ € O is the true but unknown parameter value. The parametric assumption is satisfied in
many problems; for example, in inventory control the customer demand is often assumed to follow
a Poisson process (see [27]]) with unknown arrival rate. The cost at time stage ¢ is assumed to be a
function of state s;, action a;, and randomness &, i.e., C¢(s¢, at, &)-



We start with a prior distribution po over the parameter space ©, which captures the initial uncertainty
in the parameter estimate from an initial data set and can also incorporate expert opinion. Then given
an observed realization of the data process, we update the posterior distribution y; according to the
Bayes’ rule. Let the policy be a sequence of mappings from state s; and posterior y; to the action
space, i.e., m = {m|m : S x My = At =0,---,T — 1}, where M, is the space of posterior
distributions at time stage t. Now we present the BR-MDP formulation below.

min puoByi0) [Co(50,a0,80) + - + pur 1 Epior_y) [Croa(s7-1,ar-1,8r-1) + Cr(sT)]] ()

s.t. St+1 :gt(st7at7§t)a t:0a 3T717 (3)
pe(0) f (&5 0)

0) = =0, , T 1, 4

A N OGO @

where a; = (8¢, p1t), 0 is a random vector following distribution zi;, E 7(-;6,) denotes the expectation

with respect to £ ~ f(-;6;) conditional on 6;, and p,, denotes a risk functional with respect to

0; ~ p:. We assume the last-stage cost only depends on the state, hence denoted by Cr(sr).

Equation (3) is the transition of the state s;, and without loss of generality we assume the initial state
5o takes a deterministic value. Equation (d) is the updating of the posterior 1, given the prior fig.

3.3 Time consistency and dynamic programming

It is important to note that the BR-MDP formulation (2) takes a nested form of the risk functional. A
primary motivation for considering such nested risk functional is the issue of time consistency (see
[28, 1291 130, 12]), which means that the optimal policy solved at time stage O is still optimal for any
remaining time stage ¢ > 1 with respect to the conditional risk functional, even when the realization
of the randomness &; is revealed up to that time stage. In contrast, optimizing a static risk functional
can lead to “time-inconsistent” behavior, where the optimal policy at the current time stage can
become suboptimal in the next time stage simply because a new piece of information is revealed (see
(28] 29])).

To illustrate, consider the simple case of a three-stage problem where the risk functional p is CVaR
with confidence level . Our BR-MDP solves a nested formulation

min puoEj(100)[Co(50,a0,€0) + pur B (01 [Ca(s1, a1,61) + Ca(s2)]]

while the non-nested counterpart solves

min p,,,E[Co(s0, a0, o) + Ci(s1,a1,&1) + Ca(s2)],

aop,a1

where the expectation is taken with respect to (w.r.t.) the joint distribution of &, and &1, and the static
risk functional is applied to the total cost. Then we have the following relation between the two
formulations:

ProLs(00)[Co(s0,a0,80) + pui Eg(0,)[Ci(s1, a1,81) + Ca(s2)]]
> PuoEs(00)[Co(s0,a0,&0) + Eg, 1¢,C1(s1, a1, &1) + Ca(s2)]
= puoE[Co(s0, a0, &0) + C1(s1,a1,&1) + C2(s2)],

where the inequality is justified by CVaR being the right tail average of the distribution, and the
equality follows from the tower property of conditional expectation. The upper bound is used to show
that the static risk functional always yields a higher total expect cost than the nested risk functional,
illustrating the benefit of nested risk functional which originates from time consistency.

Another drawback of the static formulation for a general risk functional is the lack of dynamic
programming equation. In particular, [2]] points out that for the static formulation, the derivation of the
dynamic programming equation is based on the interchangeability principle and the decomposability
property of the risk functional, where such decomposability property holds only for expectation and
max-type risk functionals. On the other hand, for our nested formulation (2), the corresponding
dynamic programming equation is easily obtained as follows:

Vi (se, ) = (glell}A Pu B0, [Celse,ar, &) + Vi (seats g |se, pues ar) ,Vse, e, (5)

where s; and p; follow equation and (@), respectively. Therefore, our BR-MDP formulation
provides a time-consistent risk-averse framework to deal with epistemic uncertainty in MDPs. The
exact dynamic programming is summarized in Algorithm [I] for benchmark purpose.



Algorithm 1: Exact dynamic programming for finite-horizon BR-MDPs.

input: finite horizon 7', initial state sg, prior distribution f;
output: optimal value function V{*(so, pto) and corresponding optimal policy 7*;
set Vi (s, pr) = Cr(st),¥(s7, pur) € S X My;
fort < T —1to0Odo
for each (st, pt) € S x M; do
solve dynamic programming equation (3));
set my (¢, pit) := ay, where a} attains V;* (s, fit);
end
end

4 An Analytical Approximate Solution to BR-MDPs

Although the exact dynamic programming works for a general risk functional, there are two challenges
to carry it out. First, the expectation and the risk functional are generally impossible to compute
analytically and estimation by (nested) Monte Carlo simulation can be computationally expensive.
Second, the update of the posterior distribution p; does not have a closed form in general and often
results in an infinite-dimensional posterior. We circumvent the latter difficulty by using conjugate
families of distributions (see Chapter 5 in [31]]), where the posterior distribution falls into the same
parametric family as the prior distribution, and thus maintain the dimensionality of the posterior to be
the finite (and often small) dimension of the parameter space of the conjugate distribution. However,
the posterior parameters usually take continuous values and hence BR-MDP with the augmented state
(s, p) is a continuous-state MDP. We note that this continuous-state MDP resembles a belief-MDP,
which is the equivalent transformation of a POMDP by regarding the posterior distribution of the
unobserved state as a (belief) state (see [32]), and our posterior distribution (i, is just like the belief
state in POMDP in the sense that both are posterior distributions updated via Baye’s rule. This
observation motivates our algorithm development in this section.

Specifically, we derive an efficient approximation algorithm for the BR-MDP with the risk functional
CVaR. The main idea is that for CVaR, once we know the variable v in , it is reduced to an
expectation of a convex function. If there is a way to approximate the value function for a given
u, we can utilize the convexity of CVaR and apply gradient descent to solve for u. Hence, we
proceed by first deriving the approximate value function for a fixed u and time stage. Similar to
POMDP whose value function can be represented by a set of so-called a-functions, we first show an
a-function representation of the value function in BR-MDP, and then derive the approximate value
function based on this representation. All proofs of the propositions/theorems below can be found in
Appendix.

4.1 o-function representation of the value function

By the definition of CVaR (see (1)) with a confidence level o, we can rewrite the dynamic program-
ming equation (3)) for the BR-MDP as:

at€
utER

+
Vi (sey i) = miI}‘ {ut + ﬁ . i (6) (/: F(&;0) (Ce(st,ae, &) + Vi (sea1, pey1)) d€ — ut> d9} ,
(6)

where we assume that ¢ and 6 take continuous values, and the integration can be numerically
approximated by Monte Carlo sampling. If £ and 6 are discrete, the integral can be replaced by
summation. The next proposition shows that the optimal value function corresponds to the lower
envelope of a set of a-functions.

Proposition 4.1 (a-function representation). The optimal value function in (6) can be represented by
the lower envelope of a set of a-functions denoted by Ty = {t}a,c 4, €.,

V¥ (s¢, pt) = min / oy (s, 0) e (0)do,
S

ar€lt

. +
where a (s, 0) = w125 (fg f(&0) (Ct(st, at, ) +ming, ; fg ar1(se+1, Q)M%M) dé — Ut) :



Note that there is a major distinction between the a-function representations of a POMDP and a
BR-MDP: the optimal value function in the risk-neutral POMDP is piecewise linear and convex in
the belief state (see [5]), whereas the optimal value function in BR-MDP is no longer piecewise linear
in the posterior due to the (-)™ operator in CVaR. In addition, it is computationally impossible to
obtain the a-functions except for the last time stage. Specifically, denote the cardinality of the a4

set as |T's41]. Note that for each realization of £ there are |T';11| candidates for the minimizer a:ﬁ) ,

which attains the minimum of [ av¢y1(s¢41,6) %dﬁ. There are a total of | A||T;,1|/®l
Jo Kt ;

candidates for I';, let alone the optimization over u;. To deal with the difficulty in computing the
a-functions in POMDPs, [133] proposes several approximation algorithms, and later [34] extends the
analysis to a continuous-state optimal stopping problem by applying Jensen’s inequality to the exact
value iteration in different ways and obtains a more computationally efficient approximation to the
optimal value function. Inspired by these works, we derive an approximation approach next.

4.2 «-function approximation

In this section, we derive the a-function approximation for a fixed vector (ug,u1,- -+ ,ur—1).
Without loss of generality, we assume the cost function at each time stage is non-negative
(otherwise add a large constant to the cost at each time stage). For ease of exposition,
we rewrite (6) as Vi*(sy, pe) = ming,eau,er Qf (St fie, ar,ur), where Qf (s, i, ar,up) =
ur 4+ 725 fo e (0) (Jz £(£0) (Ce(se, ae, ©) 4+ Vi (se41s preg)) dE — Ut)+ df. Let Vi(s¢, pit) =
ming, QF (s, fit, at, ur) be the “optimal” value function for a given u;. Let V, (st pue) =
ming er, [o a;(se,0)pe(0)do, where Ty = {; }a,c4 and

us10) = e+ 2 [ (G101 OF(E0) - min a1, 0160 ) .

11—« =

V. (st, ut) serves as a lower bound for V;(s;, u:) (see Proposition , and is similar to the fast
informed bound in POMDPs (see [33]]). Note that the set I', has a constant cardinality of |.AJ.
However, it involves a minimum within an integral, which can be hard to compute numerically. Also,
the lower bound is loose in the sense that it could be negative, while the true CVaR value is always
non-negative (due to the non-negative cost). Next, let Vi (s, ) := ming, r, f@ ay(st, 0) e (0)do,
where T'y = {@t}4,e4 and

+
alond) =+ o (G0 —u) + o [anatunosos

Vi(st, 11t) serves as an upper bound for V; (s, u1¢) (see Proposition , and is similar to the unob-
servable MDP bound in POMDPs (see [33]]), obtained by discarding all observations available to
the decision maker. Suppose the cardinality at time stage ¢ + 1 is |I';1], then T'; has a total number
of | A||T'¢+1| candidates. In the following, we derive another approximate value function V; that is
bounded by V, and V4, and is at least better than one of the above bounds. It keeps a constant number
| A| of a-functions at each time stage, thus drastically reducing the computational complexity. Let

Vt(st; ,Ut) = ming T, f@ at(Sta Q)Mt(e)d‘gv where ft = {&t}a,,eA and

623

~ 1 ) +
ors8) = e+ 1 ([ Culonan 1160)06 — e i [ s (1 0)116:0)a )
) ) 0
Proposition 4.2. For allt < T and any given u; € R, the following inequalities hold:

Kt(stmut) S ‘Z(Sh/'[/t) S ‘Zﬁ(sta:u’t% Kt(shl'[/t) S ‘/t(stvﬂt) S ‘Zﬁ(stnut)'

To have an implementable algorithm, we need to use the approximate updating of a-functions
iteratively and replace the true a-functions at the ¢t + 1 time stage in by the approximate a-
functions from the previous iteration. It is clear that the iterative approximations preserve the
directions of the inequalities. Define us. := (uy, - ,ur—_1). The approximate value function
at time stage ¢ for a given uy. is given by Vi(sy, pig, ) = min f@ ay (s, 0) e (0)do, where

~ a€ely
Ft = {&t}atEA and



+
(50,0) = wa + 2 ( / Cu(st, 1,1 (6:0)d€ — e -+ min / Geir(se1,0)F(E: 9)d5> L ®

4.3 Approximate dynamic programming with gradient descent

In this section, we incorporate c-function approximation with gradient descent on (ug, w1, -+ , ur—1)
based on the convexity of the approximate value function w.r.t. (ug,us,--- ,ur—1), as formally
shown in the theorem below.

Theorem 4.3. Suppose the cost function Cy(s, a, &) is jointly convex in (s, a) for any fixed £, and the
state transition function g:(s, a, &) is jointly convex in (s, a) for any fixed . Then the approximate

value function Vi (8¢, e, ut.) is convex in uy., for all t < T.

The jointly convex assumption in Theorem [.3|is common for gradient-based algorithms for solving
multi-stage decision making problems (e.g. [35]). It is satisfied in many real-world problems such as
inventory control (e.g. [36]) and portfolio optimization (e.g. [37]). We present the full algorithm in
Algorithm

Algorithm 2: Approximate dynamic programming for finite-horizon CVaR BR-MDPs.

input: finite horizon 7', initial state sg, prior distribution i, initial vector
u® = (ud,uf,- -, ud_,), gradient descent step size ny for k = 0,1,---;

initialization: set ar(s7,0) = Cr(st),Vsr € S,V0 € O; setk = 0.
while some stopping criterion is met do

fort < T —1to0Odo

| for each action a; € A, compute & (s¢, 0) according to (8));
end
approximate the value function Vj(sg, uo, u*) := minao f® ao(sg,0)po(6)ds;

compute the gradient %, update the vector u* 1 = u* — 1, gq‘f,z ,setk =k +1.
end
output the approximate value function \70(50, 1o, u*) and the optimal policy
Ty(se, ) -= argming, ¢ 4 [o Qe(se, ar, 0)p(0)d6.

Note that in Algorithm 2] when applying the gradient descent, we need to compute the gradient of the
approximate value function w.r.t. the vector (ug, w1, - ,ur—1). For 3%8’ we have

oo = [ (1= it [ et 016016 — o+ min [ @1(52,0)7(6:0)d6 = 0} ) no(0)as,

where @ = argmin, ¢ 4 [ @0(50,0)po(6)d6. For %’ t=1,---,T —1, we have
Vo
T = Ly /Co 50,40, &) f(&; 9)d§—u0+mln/ an(s1,0)f(&0)dS = 0
Uy el—«a
oa
[ o f(es0)de| mal0)a0,

where 8‘11 can be computed recursively from aafjl forl=1,---,t—1.

The approximate value function output by Algorithm 2] provides an upper bound on the optimal value
function, which is shown in the theorem below.

Theorem 4.4. min,, ‘N/t(st, e, Ut ) IS an upper bound for the optimal value function V;* (g, pit).

Even though the approximate value function is an upper bound on the optimal value function, we
will later show in the numerical experiments that the gap between these two is small. As a final note,
even though we develop the algorithm for the risk functional CVaR, it can be extended easily to other
coherent risk measures. Consider a class of coherent risk measures which can be represented in the



following parametric form R(Z) := infycp E[¥(Z,\)], where ¥ : R x A — R is a real-valued
function and ¥(z, \) is convex in (z,A). CVaR is an example of such coherent risk measure. As
another example, consider the following coherent risk measure based on Kullback—Leibler divergence
[38], which is also an example given in [35]]. Here the risk functional takes the form

R.(Z) = inf {)\e oy 4 AeT AR {ez/’\} - )\} :
v¥,A>0

where ¢ is the user-defined ambiguity set size. It can be easily checked that this coherent risk measure

takes the required form R(Z) := infecp E[¥(Z, A)], for some A and ¥ function. We can write the

dynamic programming equation for the BR-MDP with the above coherent risk measure as:

V(50 1) = min { @2 [ 560 (€100, + Vi (1. p100) duode}.

at€A
A EA

Following the same procedure, we can use a-function to represent the value function, apply the same
technique to approximate the a-functions for a given vector Ay, - - - , Ar_1, and then apply gradient
descent on the approximate value function. The convergence is guaranteed due to the convexity.
Since the derivation of a-function representation and approximation (obtained by applying Jensen’s
inequality) are essentially the same, we omit the full procedures.

5 Numerical experiments

We illustrate the performance of our proposed formulation and algorithms with two offline planning
problems.

(1) Gambler’s betting problem. Consider a gambler betting in the casino with initial money
of sg. At each time stage the gambler chooses how much to bet from a set {0,1,2,3,5}.
The gambler bets for 7" = 6 rounds. The cost at each time stage is —a - £, where a stands
for action of how much to bet, £ = 2 stands for a win, & = —1 stands for a loss, and the
winning rate 0¢ = P({ = 2) is unknown. We add a constant ¢ = 10 to make the adjusted
cost ¢ — a - £ non-negative to run our algorithm (since the algorithm requires non-negative
stage-wise cost), and then subtract ¢I" from the resultant total adjusted cost to recover the
total cost. The data set consists of historical betting records with size V.

(2) Inventory control problem. Consider a warehouse manager with initial inventory level sg.
At each time stage the manager chooses how much to replenish from the set {0,1,--- , M —
s}, where M = 15 is the storage capacity. The customer demand is a random variable £
following a Poisson distribution with parameter ¢ truncated below Mo = 20, which is
the maximal customer demand the warehouse can handle. The state transition is given by
St4+1 = max(ss + ar — &, 0), the cost function is given by Ci(s¢, at, &) = hy - max(s; +
a; — &, 0) + py - max(& — s; — ay,0), where hy is the holding cost and p; is the penalty
cost. The final stage cost is set to 0 for simplicity. The manager has to plan for 7" = 6 time
stages. The data set consists of historical customer demands with size V.

We compare the following approaches.

(1) BR-MDP (e.): exact dynamic programming (Algorithm [I)), where the state s; and j; are
discretized to a fine grid to carry out the dynamic programming (see Appendix for details).

(2) BR-MDP (a.): approximate dynamic programming (Algorithm [2)).

(3) Nominal: maximal likelihood estimation (MLE) estimator 0y is computed from the given
data, and then a policy is obtained by solving the MDP with parameter Oy k.

(4) DR-MDP: distributionally robust MDP presented in [[1].

For each of the considered approaches, we obtain the corresponding optimal policy for a same data
set, and then evaluate the actual performance of the obtained policy on the true system, i.e., MDP
with the true parameter 0¢. This is referred to as one replication, and we repeat the experiments for
100 replications on different independent data sets. Results for the gambler’s betting problem can be
found in Table[Ta] Table[2] Figure[Ta)and Figure[Tb] Results for the inventory control problem can be
found in Table



Table 1

: Average time to solve each formulation, mean and variance of actual performance of the

solved policy on 100 replications. Data size N = 10.

¢ =0.45 0¢ =0.55 0c =12
time(s) mean variance mean variance time(s) mean variance

Approach

BR-MDP (e.,a =0.4) 6552 -882 992 -17.83 824 2951.12 81.63  5.15

BR-MDP (a.,a =0.4) 5.02 -826 1142 -17.16 6.50 22457 83.55 12.82

Nominal 0.74 -6.30 2646 -17.95 3422 2.58 8444 54.17
BR-MDP (e.,aa=1) 67.83 -238 7.02 -4.25 4.49 294720 83.25 3.46
DR-MDP 0.69  0.00 0.00 0.00 0.00 244 99.77  0.00

(a) Betting problem. (b) Inventory problem.

Table 2: Mean and variance of actual performance in the betting problem. Data size N varies from 5,
10, to 100. Experiments are run on 100 replications.

0° = 0.45 0° = 0.55
Approach N =5 N =10 N =100 N=5 N =10 N =100
mean variance mean variance mean varilance mean variance mean variance mean  variance
BR-MDP (e, =0.4) -7.83 14.67 -882 9.92 -9.26 7.51 -16.27  15.05 -17.83 8.24 -18.12 5.90
BR-MDP (a., « = 0.4) -7.21 15.44 -8.26 11.42 -9.13 7.73 -16.12 15.52 -17.16 6.50 -17.89 6.20
Nominal 588 5412 -630 2646 945 9.92 -1585 4692 -1795 3422  -18.25 6.92
BR-MDP (e, =1) -2.12 6.66 -2.38 7.02 -1.15 342 -3.65 8.35 -4.25 4.49 -1.36 2.46
DR-MDP -0.10 1.09 0.00 0.00 0.00 0.00 -0.12 1.31 0.00 0.00 0.00 0.00
Table [T] reports the average computation time to obtain the optimal policy and the mean and variance

of the actual performance of the obtained policy over the 100 replications. Table 2]reports the actual
performance of different formulations over 100 replications with different data size N = 5,10, 100.
We have the following observations.
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Robustness of BR-MDP: BR-MDP is the most robust in the sense of balancing the mean
(smaller mean cost) and variability (smaller variance) of the actual performance of its
solution. In contrast, the nominal approach has much larger variance, especially when the
data size is small, indicating it is not robust against parameter uncertainty. On the other
hand, DR-MDP is overly conservative since the variance of actual performance is 0 and the
mean is the largest (i.e., the worst) among all approaches. This conservativeness is often not
desirable: for example, in the betting problem, DR-MDP always chooses the conservative
action “not bet”, which is obviously not optimal when #¢ (probability of winning) is large
and the goal is to minimize the expected cost.

Efficiency of the approximation algorithm for BR-MDP: the computation time of the
approximation algorithm for BR-MDP is less than 1/10 of that of the exact algorithm, while
the performance (mean, variance) is not much different.

Larger data size reduces parameter uncertainty: as expected, as we have more data,
the uncertainty about model parameters reduces. Hence, the benefit of considering future
data realization in BR-MDP decreases compared to the nominal approach, resulting in their
similar performance when the data size is large (N = 100 in our examples). The reason is
that both the posterior distribution (used in BR-MDP) and the MLE estimator (used in the
nominal approach ) converge to the true parameter as data size goes to infinity.

Figure [Ta] shows the histogram of actual performance over 100 replications for the nominal approach
and CVaR BR-MDP (exact) with different confidence levels o = 0.1, 0.5, 0.99 under §¢ = 0.45. We
have the following observations combining Table[I]and Figure Ta}
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@

Robustness of BR-MDP: BR-MDP (both exact and approximate) produce more consistent
solution performance across a wide range of input data compared to the nominal approach,
which can be seen from the smaller variance in Table[Iland more concentrated distribution
of the actual performance in Figure[Ta]

Benefit of learning from future data realization (time consistency): Figure [Ta]shows
that in the betting problem with ¢ = 0.45, the nominal approach has 40 replications where
MLE estimator 0y < 0.33 and the gambler chooses not to bet, which is not the optimal
action. In contrast, BR-MDP formulation learns from the future data realization and updates
its posterior distribution on 6. As a result, in those 40 replications, the gambler initially
chooses not to bet, but after some time chooses to bet, which results in the left-shift of



100 B CvaR BR-MDP (exact, a=10.1) 0 N : * * * *
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actual performance pricr distribution

(a) Histogram of actual performance over 100 replica-  (b) Value functions of CVaR BR-MDP (exact and
tions for CVaR BR-MDP (exact) with different c. approx) under different priors.

the actual performance distribution. This illustrates time consistency (or in other words,
adaptivity to the data process) of our BR-MDP formulation. This illustration is even more
evident by the comparison between DR-MDP and BR-MDP with o = 1 (CVaR with =1
corresponds to the worst-case measure), where the only difference is that BR-MDP takes a
nested form of risk functional while DR-MDP uses a static one.

(3) Effect of risk level: risk level « affects the conservativeness of BR-MDP; as « increases,
the gambler is more likely to take a conservative action (which is not to bet), so the actual
performance distribution will shift more to the right.

(4) Effectiveness of the approximation algorithm for BR-MDP: Figure [Ib] plots the value
function Vi (s, 110) of BR-MDP (exact) and V" (so, po) of BR-MDP (approx) under differ-

ent prior distributions o with 8¢ = 0.45, verifying Theoremthat Vi (s0, o) is indeed
an upper bound for V{(so, o) but the difference between these two is small.

6 Conclusion

In this paper, we propose a new formulation, coined as Bayesian Risk MDP (BR-MDP), to provide
robustness against parameter uncertainty in MDPs. BR-MDP is a time-consistent formulation with a
dynamic risk functional that seeks the trade-off between the posterior expected performance and the
robustness in the actual performance. For finite-horizon BR-MDP with the CVaR risk functional,
we develop an efficient approximation algorithm by drawing a connection between BR-MDPs and
POMDPs and deriving an approximate alpha-function representation that remains a low computational
cost. Our experiment results demonstrate the efficiency of the proposed approximate algorithm, and
show the robustness and the adaptivity to future data realization of the BR-MDP formulation.

One of the limitations of our work is the parametric assumption on the distribution of randomness. In
the future work, we wish to extend the BR-MDP formulation to non-parametric Bayesian setting, and
evaluate the performance of the proposed formulation and algorithm on real-world data sets in more
challenging problems. In addition, the proposed alpha-function approximation algorithm provides an
upper bound of the exact value, while there is no theoretical guarantee on the gap between the two. In
future we will develop more efficient approximation algorithms with a convergence guarantee, such as
methods based on stochastic dual dynamic programming. There are also other interesting directions,
such as extending the BR-MDP formulation to an infinite horizon problem and utilizing function
approximation to improve the scalability of the proposed approach to more complex domains.
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