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Abstract

In this paper we show that our Machine Learning (ML) approach, CoMLSim
(Composable Machine Learning Simulator), can simulate PDEs on highly-resolved
grids with higher accuracy and generalization to out-of-distribution source terms
and geometries than traditional ML baselines. Our unique approach combines
key principles of traditional PDE solvers with local-learning and low-dimensional
manifold techniques to iteratively simulate PDEs on large computational domains.
The proposed approach is validated on more than 5 steady-state PDEs across
different PDE conditions on highly-resolved grids and comparisons are made with
the commercial solver, Ansys Fluent as well as 4 other state-of-the-art ML methods.
The numerical experiments show that our approach outperforms ML baselines in
terms of 1) accuracy across quantitative metrics and 2) generalization to out-of-
distribution conditions as well as domain sizes. Additionally, we provide results for
a large number of ablations experiments conducted to highlight components of our
approach that strongly influence the results. We conclude that our local-learning
and iterative-inferencing approach reduces the challenge of generalization that
most ML models face.

1 Introduction

Engineering simulations utilize solutions of partial differential equations (PDEs) to model various
complex physical processes like weather prediction, combustion in a car engine, thermal cooling on
electronic chips etc., where the complexity in physics is driven by several factors such as Reynolds
number, heat source, geometry, etc. Traditional PDE solvers use discretization techniques to ap-
proximate PDEs on discrete computational domains and combine them with linear and non-linear
equation solvers to compute PDE solutions. The PDE solutions are dependent on several conditions
imposed on the PDE, such as geometry and boundary conditions of the computational domain as well
as source terms such as heat generation, buoyancy etc. Moreover, many applications in engineering
require highly-resolved computational domains to accurately approximate the PDEs solutions as
well as to capture the intricacies of conditions such as geometry and source terms imposed on the
PDEs. As a result, traditional PDE solvers, although accurate and generalizable across various PDE
conditions, can be computationally slow, especially in the presence of complicated physics and
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Figure 1: CoMLSim performance vs Ansys Fluent for a high Reynolds number, steady-state turbulent
flow over a car (never seen during training) at 90 mph. The vectors and contours predictions match
reasonably with MAE of 0.0145. High flow gradients that affect the wake pattern are resolved
accurately and comparable to Fluent.

large computational domains. In our work, we specifically aim to increase the speed of engineering
simulations using ML techniques on complex PDE conditions used for enterprise simulations.

The idea of using Machine Learning (ML) with PDEs is not unique and has been explored for several
decades [1, 2]. ML approaches are computationally fast, but they fall short in terms of accuracy,
generalization to a wide range and out-of-distribution PDE conditions and in their ability to scale to
highly-resolved computational grids, when compared to traditional PDE solvers. A few shortcomings
of the current methods are outlined below and subsequently are motivations for this work.

1. ML approaches use static inferencing to predict PDE solutions as a function of the PDE
conditions. In many cases, solutions and conditions have high-dimensional and sparse repre-
sentations, which are challenging to generalize with such black-boxed static inferencing.

2. Most engineering applications require highly-resolved computational grids to capture de-
tailed solution features, such as hot spots on an electronic chip surface. This adversely
impacts training in terms of GPU memory, computational time and data requirements.

3. Most ML approaches fail to use powerful information from traditional PDE solvers related
to solver methods, numerical discretization etc.

In this work, we introduce a novel ML approach, Composable Machine Learning Simulator (CoML-
Sim) to work with high-resolution grids without compromising accuracy. To achieve that, our method
decomposes highly-resolved computational grids into smaller local subdomains with Cartesian grids.
PDE solutions and conditions on each subdomain are represented by lower-dimensional latent vectors
determined using autoencoders. The latent vectors of solutions corresponding to conditions are
predicted in each subdomain and stitched together to maintain local consistency, analogous to flux
conservation in traditional solvers. In this paper, we describe our method (shown in fig. 2) for
building CoMLSim for different PDEs, showcase different experiments to compare accuracy and
generalizability with different ML methods and provide an extensive ablation study to understand the
impact of CoMLSim’s different components on the results.

Significant contributions of this work:

1. The CoMLSim approach combines traditional PDE solver strategies such as domain dis-
cretization, flux conservation, solution methodologies etc. with ML techniques to accurately
model numerical simulations on high-resolution grids.

2. Our approach operates on local subdomains and solves PDEs in a low-dimensional space.
This enables generalizing to out-of-distribution PDE conditions and scaling to bigger do-
mains with large mesh sizes.

3. The iterative inferencing algorithm is self-supervised and allows for coupling with traditional
PDE solvers.

Related Works: The use of ML for solving PDEs has gained tremendous traction in the past few
years. Much of the research has focused on improving neural network architectures and optimization
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techniques to enable generalizable and accurate learning of PDE solutions. More recently, there
has been a lot of focus on learning PDE operators with neural networks (NNs) [3, 4, 5, 6, 7, 8, 9].
The neural operators are trained on high-fidelity solutions generated by traditional PDE solvers on a
computational grid of specific resolution and do not require any knowledge of the PDE. However,
accuracy and out-of-distribution generalizability deteriorates as the resolution of computational grid
increases (for example, 20482 in 2-D or 2563 in 3-D). Furthermore, these methods are limited by an
upper cap on GPU memory.

A different research direction focuses on training neural networks with physics constrained optimiza-
tion [10, 11]. These method use Automatic Differentiation (AD) [12] to compute PDE derivatives.
The physics-based approaches have been extended to solve complicated PDEs representing complex
physics [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. More recently, alternate
approaches that use discretization techniques using higher order derivatives and specialize numerical
schemes to compute derivatives have shown to provide better regularization for faster convergence
[31, 32, 33, 34]. However, the use of optimization techniques to solve PDEs, although accurate,
has proved to be extremely slow as compared to traditional solvers and hence, non-scalable to high
resolution meshes.

Domain decomposition techniques have been successfully used in the context of ML applied to PDEs
[35]. These techniques enable local learning from smaller restricted domains and have proved to
accelerate learning of neural networks. In [36, 35], the authors proposed a hybrid method combining
ML with domain decomposition to reduce the computational cost of finite element solvers. Similarly,
domain decomposition has been extensively used in the context of physics informed neural networks
to reduce training costs by enabling distributed training on multiple GPUs [37, 38]. [39] and [40]
learn on localized domains but infer on larger computational domains using a stitching process. [41]
and [42] learn coefficients of numerical discretization schemes from high fidelity data, which is
sub-sampled on coarse grids. [43] learn surrogate models for smaller components to allow for cheaper
simulations. [44] learn local prolongation operators from discretization matrices, to improve the rate
of convergence of the multigrid linear solvers. Alternatively, other methods such as [45, 46, 47] make
us of graph-based models to improve generalization by learning on local elements. In this work, we
use a Cartesian grid to discretize each subdomain. However, GNNs [48, 49, 50, 51, 52] as well as
FEM use other discretizations such as triangle or polygonal meshes. In future, these ideas can be used
to handle unstructured meshes in subdomains.Additionally, other ML methods improve the learning
of ML models by compressing PDE solutions on to lower-dimensional manifolds. This has shown to
improve accuracy and generalization capability of neural networks [53, 54, 55, 56, 57, 58]. Although,
here we propose an iterative inferencing approach in the context of solving PDEs, it is inspired from
the implicit deep learning approach used in a variety of machine learning tasks [59, 60, 61, 62]. In
this work, domain decomposition is combined with latent space learning is employed to accurately
represent solutions on local subdomains and allow scalability to bigger computational domains.

2 CoMLSim approach

2.1 Similarities with traditional PDE solvers

Consider a set of coupled steady-state PDEs with n solution variables (n = 2 for example). The
coupled PDEs are defined as follows:

L1(u, v)− F1 = 0;L2(u, v)− F2 = 0 (1)

u(x, y, z) and v(x, y, z) are defined on a computational domain Ω with boundary conditions specified
on the boundary of the computational domain, Ωb. Here, L1, L2 denote PDE operators, F1, F2

Figure 2: CoMLSim solution algorithm
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represent PDE source terms and u = ub, v = vb for Ω = Ωb. The PDE operators can vary for
different PDEs. For example, in a non-linear PDE such as the unsteady, incompressible Navier-
Stokes equation the operator, L = a⃗.∇⃗ − ∇⃗.∇⃗ Traditional FVM/FDM based PDE solvers solve
PDEs in Eq. 1 by computing solutions variables, u, v, and their linear/non-linear derivatives on a
discretized computational domain. Iterative solution algorithms are used to conserve fluxes between
neighboring computational elements and determine consistent PDE solutions over the entire domain
at convergence. The CoMLSim approach is designed to perform similar operations but at the level of
subdomains (n3 elements) using ML techniques. Additional details are provided in supplementary
materials sections A.4.

2.2 Solution algorithm for steady-state PDEs

The solution algorithm of CoMLSim approach is shown in Fig. 2 and described in detail in Alg. 1.
Similar to traditional solvers, the CoMLSim approach discretizes the computational domain into
smaller subdomains contain np computational elements, where p refers to spatial dimensionality
and n is predetermined. Each subdomain has a constant physical size and represents both PDE
solutions and conditions. For example, a subdomain cutting across the cylinder in Fig. 2 represents
the geometry and boundary conditions of the part-cylinder as well as the corresponding solution. In
a steady-state problem, the solutions on the domain are initialized either with uniform solutions or
they are generated from coarse-grid PDE solvers. The initial solution p⃗ = (u(x⃗), v(x⃗)) is shown
with randomly oriented flow vectors in Fig. 2. Pretrained encoders ep⃗, eg, eb, es are used to encode
the initial solutions as well as user-specified PDE conditions into lower-dimensional latent vectors,
ηp⃗ corresponding to PDE solutions and ηg, ηb, ηs corresponding to geometry, boundary conditions
and source terms, respectively. Solution and condition latent vectors on groups of neighboring
subdomains are concatenated together evaluated using a pre-trained flux conservation autoencoder
(Θ) to get a new set of solution latent vectors (η′p⃗) on each subdomain, which are more locally
consistent than the original vectors. The new solution latent vectors are iteratively passed through
Θ to improve their local consistency and the iteration is stopped when the L2 norm of change in
solution latent vectors meets a specified tolerance, otherwise the iteration continues with the updated
latent vectors. The latent vectors of the PDE conditions are not updated and help in steering the
solution latent vectors to an equilibrium state that is decoded to PDE solutions using pretrained
decoders (gp⃗) on the computational domain. The converged solution in Fig. 2 is represented with
flow vectors that are locally consistent with neighboring subdomains.The iterative procedure used
in the CoMLSim approach can be implemented using several linear or non-linear equation solvers,
such as Fixed point iterations [59], Gauss Seidel, Newton’s method etc., that are used in commercial
PDE solvers. Out of those we have explored Point Jacobi and Gauss Seidel, which are described
below. The use of autoencoders for compressed solution and condition representation in tandem with
iterative inferencing solution algorithm is inspired from [58, 31] but the main difference in this work
is that the solution procedure is carried out on local subdomains as opposed to entire computational
domains to align with principles used in traditional PDE solvers. Supplementary material section G
explains our algorithm in more details using an example.

Algorithm 1: Solution methodology of CoMLSim approach
1 Domain Decomposition: Computational domain Ω→ Subdomains Ωc

2 Initialize solution on all Ωc: p⃗(x⃗) = 0.0 for all x⃗ ∈ Ωc

3 Encode solutions on Ωc: ηp⃗ = eu(p⃗(Ωc))
4 Encode conditions on Ωc:
5 ηg = eg(g(Ωc)), ηb = eb(b(Ωc)), ηs = es(s(Ωc))
6 Set convergence tolerance: ϵt = 1e−8

7 while ϵ > ϵt do
8 for Ωc ∈ Ω do
9 Gather neighbors of Ωc: Ωnb = [Ωc,Ωleft,Ωright, ...]

10 η′p⃗ = Θ(ηnbp⃗ , ηnbb , ηnbg , ηnbs )

11 Compute L2 norm: ϵ = ||ηp⃗ − η′p⃗||22
12 Update: ηp⃗ ← η′p⃗ for all Ωc ∈ Ω

13 Decode PDE solution on all Ωc: p⃗ = gp⃗(ηp⃗Ωc))
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Why flux conservation networks work? The flux conservation network (Θ) is simply an autoencoder
which takes encoding of solutions and conditions on a group of neighboring subdomains as both
inputs and outputs. Similar to traditional solvers that use approximations to represent relationships
between neighboring solutions on elements, the flux conservation autoencoder does the same for
encoded subdomain solutions and corresponding conditions. The training of this network is carried
out on converged, locally consistent solutions generated for a specific PDE for arbitrary conditions.
Since this network has only learnt locally consistent solutions, if one were to initialize a group of
neighboring subdomains with random noise and iteratively pass it through this network the output of
such a procedure would be an equilibrium solution corresponding to some locally consistent PDE
solution. However, the correct PDE solution it converges to depends on the fixed condition specified
in this procedure. Additional results and details are provided in the supplementary materials sections
A.1, A.4 and C.1.5.

Stability of flux conservation autoencoder: The iterative inferencing approach proposed in this
work is similar to traditional approaches used in solving system of linear equations. Our algorithm
uses fixed point iterations to solve Eq. 2

η′p⃗ = Θ(ηnbp⃗ , ηnbb , ηnbg , ηnbs ) (2)

where, Θ corresponds to the weights of flux conservation network, η() refers to the latent vectors and
nb refers to neighboring subdomains defined below in Eq. 3.

ηnbp⃗ =
[
ηsp⃗, η

left
p⃗ , ηrightp⃗ , ηtopp⃗ , ηbottomp⃗

]
(3)

Similar to linear systems, the stability of our iterative inferencing approach is governed by the
condition number [63] defined in Eq. 4

||
∂Θ(ηp⃗, ηb, ηg, ηs)

∂ηp⃗
|| < 1 (4)

Solution algorithms: Point Jacobi vs Gauss Seidel: Since the algorithm loops over all the sub-
domains in a specified order, while updating the solution encoding of a subdomain c, there are
subdomains in the neighborhood that already have an updated solution encoding. The Gauss Seidel
method uses these updated solution encodings (η′p⃗) on neighboring subdomains to update the solution
encoding on subdomain, c. On the other hand, Point Jacobi method does not make use of this
and hence can be easily vectorized for significantly faster computation. The implementation has a
remarkable similarity with how traditional solvers use these methods [64] and leaves the door open to
use other non-linear optimizers with physics-based constraints.

2.3 Neural network components in CoMLSim

Our algorithm employs two types of autoencoders, CNN autoencoders to establish a lower-
dimensional representation of PDE solutions and conditions from local subdomains grids and FCNN
Autoencoders for flux conservation, where the goal is to learn a reduced representation of solution
and condition latent vectors in a local neighborhood. Let us consider an example of solving the
Laplace equation,∇2u = 0 in 2D for arbitrarily shaped computational domains, Ωg . In this example,
the CoMLSim algorithm will require 3 autoencoders, described in Eq. 5, to learn lower-dimensional
representations on local subdomains.

u′ = S(u, ηu)

g′ = G(g, ηg)

η′nb = Θ(ηnb, ζ)

 (5)

where, u, ηu, S refers to the solution, its latent vector and the weights of the autoencoder, respectively,
g, ηg, G refers to a representation of geometry, such as Signed Distance Fields (SDF) [65], its latent
vector and the weights of the autoencoder, Θ refers to the weights of flux conservation autoencoder and
ηnb represents a set of concatenated latent vectors, ηu and ηg on a group of neighboring subdomains.
All the autoencoders are trained with samples of PDE solutions generated for the same use case. In
the case of coupled PDEs, a single autoencoder is trained for all solution variables. Additional details
related to the autoencoder networks are provided in the supplementary materials section A.
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Why Autoencoders?: Solutions to classical PDEs such as the Laplace equation can be represented
by homogeneous solutions as follows:

ϕ(x, y) = a0 + a1x+ a2y + a3(x
2 − y2) + a4(2xy) + ... (6)

where, A⃗ = a0, a1, a2, ..., an are constant coefficients that can be used to reconstruct the PDE solution
on any local subdomain. A⃗ can be considered as a compressed encoding of the Laplace solutions.
Since, it is not possible to explicitly derive such compressed encodings for other high dimensional and
non-linear PDEs, the CoMLSim approach relies on autoencoders to compute them. It is known that
non-linear autoencoders with good compression ratios can learn powerful non-linear generalizations
[66, 67, 68]. Autoencoders also have great denoising abilities, which improve robustness and stability,
when used in iterative settings [58]. In their paper, Park and Lee [69] demonstrate that the latent
manifold established by a trained autoencoder is stable for varying intensities of Gaussian noise. This
quality of autoencoders is useful for the convergence of the iterative inferencing approach.

3 Experiments

In this section as well as in the supplementary materials section C, we consider a number of use
cases with varying degrees of difficulty resulting from the PDE formulation as well as source terms,
geometry and boundary conditions. The PDEs have applications in fluid mechanics, structural
mechanics and semiconductor simulations.

Details of experiments: Here we provide some details about the experiments. Additional details and
experiments on Laplace and Darcy equation may be found in the supplementary materials section D.

1. 2D Poisson equation: The Poisson’s equation, shown in Eq. 7, is very popular in engineer-
ing simulations, for example, chip temperature prediction, pressure equation in fluids etc.

∇2u = f (7)
where, u is the solution variable and f is the source term. This PDE is solved on a 1024x1024
grid to resolve the high-frequency features of the source term. The source, f , is sampled
from a Gaussian mixture model shown in Eq. 8.

1024∑
j=0

1024∑
j=0

fi,j =

1024∑
j=0

1024∑
j=0

30∑
k=0

Ak exp

(
−
(
x− µx,k

σx,k

)2

−
(
y − µy,k

σy,k

)2
)

(8)

where, x, y correspond to the grid coordinates. Ak randomly assumes either 0 or 1 to
vary the number of active Gaussians in the model. µx, µy and σx, σy are the mean and
standard deviations of Gaussians in x and y directions, respectively. The means and standard
deviations vary randomly between 0 to 1 and 0.001 to 0.01, respectively. The smaller
magnitude of standard deviation results in hot spots that require highly-resolved grids. In
this case, 256 training and 100 testing solutions are generated using Ansys Fluent.

2. 2D non-linear coupled Poisson equation: The coupled non-linear Poisson’s equation is
shown below in Eq. 9. u, v are the solution variables and f is the source term, similar to the
description in Eq. 8. This PDE has applications in reactive flow simulations.

∇2u = f − u2; ∇2v =
1

u2 + ϵ
− v2 (9)

The data generation is similar to Experiment 2 with a slight difference that the source term
is less stiff with a standard deviation that varies between 0.005 to 0.05.

3. 3D Reynolds-Averaged Navier-Stokes external flow: This use case consists of a 3-D
channel flow with resolution 304x64x64 at high Reynolds number over arbitrarily shaped
objects. The corresponding PDEs are presented in supplementary materials section C.3 or
may be referred from [70]. The characteristics of flow generated on the downstream has
important applications in the design of automobiles and airplanes. In this case, we use 5
primitive 3-D geometries namely, cylinder, cuboid, trapezoid, airfoil wing and wedge and
their random combinations and rotational augmentations to create 150 training geometries
and 50 testing geometries, which are solved with Ansys Fluent to generate the data. Out-of-
distribution testing is carried out on simplistic automobile geometries as shown in Figure
1.
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Figure 3: (A): Error vs No. of Gaussians for linear Poisson’s; (B): Error vs No. of Gaussians for
non-linear Poisson’s; (C): Error vs grid resolution for linear Poisson’s; (D): MAE and convergence
iterations vs flux conservation bottleneck size

4. 3D chip cooling with Natural convection: In this case, we extend the complexity of
Experiments 1, 2 and 3 to a industrial 3-D case of chip cooling with natural convection. In
this problem, the computational grid (1283 resolution) consists of a chip that is subjected to
the powermap specified by Eq. 8. The heating of the chip results in generation of velocity in
the fluid and at steady-state, a balance is achieved. We use Ansys Fluent to generate 300
training and 100 testing solutions for velocity, pressure, temperature for arbitrary sources.

4 Results and Ablation studies

In this section, we provide a variety of results for the experiments outlined in Section 3. Additionally,
we conduct thorough ablation studies to understand the different components of the CoMLSim
approach in more detail. We use the 2-D Linear Poisson’s equation experiment for these studies
unless otherwise specified. Details regarding the CoMLSim set up for each experiment, baseline
network architectures as well as additional results corresponding to contour and line plots and
comparisons across other metrics are provided in supplementary materials section C.

4.1 Comparison with Ansys Fluent and other ML baselines

The CoMLSim is compared with other ML baselines namely, UNet [71], FNO [8] and DeepONet
[7] for the experiments outlined in Section 3. We compare the mean absolute error with respect to
Ansys Fluent and averaged over the unseen testing cases and all solution variables. In the case of 3-D
chip cooling we report the L∞ norm of temperature as this metric is more suited to this industrial
application. It may be observed from Table 1 that the CoMLSim approach performs better than other
ML baselines. All the ML methods perform better for the non-linear Poisson’s case as compared to
the linear Poisson’s because the source term is less stiff but the CoMLSim approach does a better job
in modeling the non-linearity arising due solution coupling. It must be noted that CoMLSim as well
as the baselines are trained with reasonably training samples. The baseline performance can have
different outcomes with increasing the size of the training data.

Table 1: Comparison with baselines
Experiment Metric CoMLSim UNet FNO DeepONet FCNN
2-D Linear Poisson’s L1 0.011 0.132 0.031 0.061 0.267
2-D non linear Poisson’s L1 0.0053 0.0877 0.0278 0.527 0.172
3-D NS external flow L1 0.012 0.0625 0.038 0.81 0.125
3-D chip cooling L∞ 15.2 95.21 60.836 45.27 192.7

4.2 Assessment of generalizability

In this section, we assess the generalizability of our method specifically with respect to out-of-
distribution PDE conditions and scaling to higher resolution grids. The results are compared with
Ansys Fluent as well as other ML baselines discussed in section 4.1.

Out-of-distribution source term: The source term for linear and non-linear Poisson equa-
tions are sampled from a Gaussian mixture model described in Eq. 8, where the num-
ber of Gaussian is randomly chosen between 0 and 30. In this experiment, we evaluate
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the generalizability of our approach for source terms with exactly 30, 40, 50 and 60 num-
ber of Gaussians, corresponding to out-of-distribution for the training data distributions. For
each case, the results averaged over 10 testing samples are compared with Ansys Fluent.

Figure 4: Example of out-of-
distribution source (60 Gaus-
sians) comparison for non-
linear Poisson’s

It may be observed from 3A and B, that the accuracy of all ML
approaches decreases as you move further away from the source
term distribution. However, the CoMLSim approach performs signif-
icantly better than other ML baselines and the accuracy is reasonable
even for the case with 60 Gaussian mixture model, which is substan-
tially different from the training distribution.

Increasing mesh size by increasing domain size: Next, we evaluate
the performance of CoMLSim for bigger domains with larger grid
size and compare it with other ML baselines. In this experiment, we
compute solutions for the 100 source term conditions in the test set
but on 4 different domains with mesh sizes, 10242, 20482, 40962,
81922, respectively. The mean and standard deviation of Gaussians
in the testing set are proportionally increased with the mesh size to
ensure that the problem definition does not change. It is important
to note that none of the networks are retrained for larger sized grids.
It maybe observed from table 3 that the CoMLSim continues to scale to larger mesh sizes with
similar accuracy as the original mesh size. The slight drop in accuracy due to increase in mesh size
is attributed to accumulation of error caused by the flux conservation networks resulting from the
increase in number of subdomains. Other ML baselines such as UNet and FNO scale up to a grid
size of 20482 but cannot evaluate beyond that due to GPU memory constraints. DeepONet has a
point-wise inference and can also scale to larger-sized grids but its accuracy is lower than CoMLSim.

Out-of-distribution geometries: Next, we evaluate the performance of CoMLSim on 2 unseen car
models presented at different 3-D angles of rotation to the external flow. It should be noted that these
geometries are more complicated than the primitive objects considered for training our approach
3. The mean absolute errors with respect to Ansys Fluent across all solution variables are 0.0145,
0.06924, 0.04175, 0.91 and 0.13725 for CoMLSim, UNet, FNO, DeepONet and FCNN, respectively.
Additional results and analysis are provided in supplementary materials C.3.3 and C.3.4.

4.3 Analysis of Subdomain size

In this experiment, we analyze the effect of subdomain resolution on accuracy and computational
cost of the CoMLSim approach. We train 3 instances at resolutions of 322, 642 and 1282. The
compression ratio in autoencoders is kept the same for the different subdomain resolutions. The mean
absolute errors on testing set are 0.015, 0.011 and 0.029, respectively. Additionally, the iterations
required to convergence are 420, 162 and 89, respectively. The convergence history is shown in Fig.
5A. The 1282 subdomain resolution has a lower accuracy because it is challenging to train accurate
autoencoders as bigger subdomains capture a large amount of information. On the other hand, the
computational cost is the lowest for the 1282 resolution because the number of subdomains in the
entire computational domain are significantly less and hence, the solution algorithm converges faster.

4.4 Flux conservation bottleneck layer size

The flux conservation autoencoder as it is the primary workhorse of the CoMLSim solution algorithm.
As a result, we evaluate the effect of the bottleneck layer size on the accuracy and computational
speed. Each instance of CoMLSim with different bottleneck size is tested on 100 unseen test cases.
We verify that all models satisfy the stability criterion specified in Eq. 3. It may be observed from
Figure 3D that as the compression ratio of the flux conservation autoencoder decreases, it begins
to overfit and the testing error as well as the number of convergence iterations and computational
time significantly increase. On the other hand, if the compression ratio is too large the testing
error increases because the autoencoders underfit. In alignment with the collective intuition about
autoencoders, there exists an optimum bottleneck size compression ratio where the best testing error
is obtained for small computational times.
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4.5 Robustness and stability

A long standing challenge in the field of numerical simulation is to guarantee the sta-
bility and convergence of non-linear PDE solvers. However, we believe that the de-
noising capability of autoencoders [72, 66, 73, 74, 75] used in our iterative solu-
tion algorithm presents a unique benefit, irrespective of the choice of initial condi-
tions. Here, we empirically demonstrate the robustness and stability of our approach.

Figure 5: Convergence history
for (A): varying subdomain sizes;
(B): coupling with traditional
PDE solvers; (C, D): Robustness
and stability; (E): Point Jacobi vs
Gauss Seidel

In scenario A, we randomly sample 25 initial solutions from a
uniform distribution and in scenario B we sample from 6 differ-
ent distributions, namely Uniform, Gumbel, Laplace, Gamma,
Normal, Logistic etc. The mean convergence trajectory is plotted
in Fig. 5C and 5D show that the log of L2 norm of the conver-
gence error falls below an acceptable tolerance for all cases and
demonstrates the stability of our approach.

4.6 CoMLSim
solution methods: Point Jacobi vs Gauss Seidel

Next, we compare the performance of the Point Jacobi and Gauss
Seidel implementations in the CoMLSim approach across 3 met-
rics, mean absolute error, computational cost and iterations to
converge. Both methods have a similar prediction accuracy with
a mean absolute error of 0.013 and 0.017, respectively but the
Point Jacobi method is computationally cheaper requiring 4.3
seconds to converge as compared to 72 seconds of Gauss Seidel.
It may be observed from Fig. 5E that the Gauss Seidel method
takes significantly fewer convergence iterations, but the Point
Jacobi method is faster because it can be efficiently vectorized on
a GPU.

4.7 Coupling
with traditional PDE solvers and super-resolution

In this experiment, we analyze the potential of coupling the
CoMLSim approach with a traditional PDE solver such as Ansys
Fluent and subsequently demonstrate how our approach inher-
ently possesses the capability to perform super-resolution. We
mainly carry out 5 experiments, where we start from a coarse
grid solution for the 100 test samples of linear Poisson’s equation
solved by Ansys Fluent on a 64x64 grid (256x smaller than the
fine resolution), add random noise to the coarse initial solution
with varying amplitudes (10%, 25% and 50%), and use that as
an initial solution in the CoMLSim approach. The convergence
trajectory in Fig. 5B shows that the case with coarse grid ini-
tialization converges the fastest, followed by initialization with
noise and zero initialization. All solutions converge to the same
accuracy.

4.8 Computational speed

We observe that the CoMLSim approach is about 40-50x faster as
compared to commercial steady-state PDE solvers such as Ansys
Fluent for the same mesh resolution and physical domain size
in all the experiments presented in this work. In comparison to
the ML baselines, our approach is expected to be slightly slower
because it adopts an iterative inferencing approach. But, this is
compensated by solution accuracy, generalizability and robust-
ness on high-resolution grids. A detailed analysis is provided in
supplementary materials section E.
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4.9 Importance of local learning and latent-space representation

To understand the effect of local learning, we set up the CoMLSim approach for a single subdomain
(size equal to the computational domain). From this experiment, we conclude that the solution errors
with a single subdomain is significantly higher than having multiple subdomains (See supplementary
material section C.1.5.1). Additionally, to study the impact of latent space representations we
experiment with the latent vector sizes as well as a case where CoMLSim solves in the solution space.
We conclude that latent space representations have a larger impact on the computational cost than
accuracy (See supplementary material section C.1.5.2).

4.10 Solution evolution during inference

In Figure. 6, we present the evolution of the PDE solution for the Poisson’s equation experiment
at different iterations of the iterative inferencing. The results are plotted for 3 unseen test cases
with different source term distribution. In each case, the solution on the domain is initialized with
random noise sampled from a uniform distribution between -1 and 1. The contour plot at iteration
0 shows an attenuated noisy solution because the initial solution is passed through the solution
encoder and decoder. It may be observed that at iteration 1, the PDE solution starts evolving from
the regions of high source term. As iterations progress, the solution begins to diffuse through the
solution domain due to the repeated operation of the flux conservation network, until it converges.
The diffusion process is dominant in the case of Poisson’s equations and is effectively captured by the
flux conservation autoencoder in CoMLSim. The error plot shows the solution accuracy at different
iterations during the inference procedure. The log error is the largest initially and drops linearly as
the iterations progress.

Figure 6: Evolution of PDE solution during inference

5 Conclusion

In this work, we introduce the CoMLSim approach, which is a self-supervised, low-dimensional and
local machine learning approach for solving PDE on highly-resolved grids and generalizing across
a wide range of PDE conditions. Our approach is inspired from strategies employed in traditional
PDE solvers and adopts iterative inferencing. The proposed approach is demonstrated to predict
accurate solutions for a range of PDEs, generalize reasonably across geometries, source terms and
BCs. Moreover, it scales to bigger domains with larger mesh size.

Broader impact, future work & limitations Although the proposed ML-model can generalize to
out-of-distribution geometries, source terms and BCs, but like other ML approaches, extrapolation
to any and all PDE conditions that are significantly different from the original distribution still
remains a challenge. However, this work takes a big step towards laying down the framework on
how truly generalizable ML-based solvers can be developed. In future, we would like to address
these challenges of generalizability and scalability by training autoencoders on random, application
agnostic PDE solutions and enforcing PDE-based constraints in the iterative inferencing procedure.
Future work will also investigate the potential for hybrid solvers and extensions to transient PDEs
and inverse problems. Finally, we will also address extension of the current approach to unstructured
meshes, which is a current limitation.
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