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Overview
In this supplemental material, we first provide additional ablation experiments on the activation
function, the normalization layer and the introduced frequency loss in Sec. 1. We then provide
more visual comparison results in Sec. 2 and further explore applying ShuffleMixer to other image
restoration tasks in Sec. 3. In Sec. 4, we make some comments on the results of the Urban100 dataset.

1 More experimental results

Replacing SiLU with ReLU. ReLU activation is commonly used in CNN-based SR models due to
its simplicity and efficiency. SiLU, a smoother variant of ReLU, is increasingly popular in recent
ViTs and advanced CNN architectures. According to its definition, SiLU has similar effects to gating
mechanisms. The results shown in Table 1 indicate that using SiLU in the proposed model produces
better PSNR/SSIM results on public benchmarks, which suggests that SiLU is a viable alternative to
ReLU.

Effect of LayerNorm. Normalisation is not usually employed in SR tasks, mainly because Batch-
Norm tends to introduce artifacts. LayerNorm is an alternative to BatchNorm to avoid inaccurate
estimation of statistics on small batch sizes. It is also widely used in recent ViT models with promis-
ing results. Following this setting, we also use LayerNorm in our proposed approach and observe
that applying LayerNorm leads to better training stability and performance, as presented in Table 1.

Effectiveness of the FFT Loss. To enhance the high-frequency details of output images, we introduce
a frequency constraint to the SR results via FFT operation. Table 1 shows that adding this loss function
leads to noticeable performance improvements on public test datasets.

2 More visual comparison results

In this section, we present additional visual comparisons with state-of-the-art methods [5, 1, 4, 6, 3]
on Set14 and Urban100 datasets. Figure 2 shows that our method generates more accurate structures
than other comparison methods.

We also show the results of our ShuffleMixer model only trained on DIV2K. Table 2 demonstrates
that ShuffleMixer still achieves competitive performance among lightweight SISR methods.

3 Applications of the proposed ShuffleMixer

Our ShuffleMixer can be applied to other restoration tasks. In this section, we show the proposed
ShuffleMixer for color image denoising.
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Table 1: Ablation experiments for components of the Shuffle Mixer Layer and the frequency loss
function. We evaluate them respectively on the developed tiny model and train them on the ×4
DIV2K dataset. “A → B” is to replace A with B. “None” means to remove the operation.

Ablation Set5 Set14 B100 Urban100 Manga109 DIV2K_val100
Baseline 31.88/0.8908 28.43/0.7772 27.44/0.7311 25.62/0.7687 29.95/0.9002 30.21/0.8321

SiLU → ReLU 31.79/0.8897 28.39/0.7763 27.41/0.7299 25.56/0.7653 29.78/0.8978 30.16/0.8305
LayerNorm → None 31.84/0.8900 28.41/0.7770 27.43/0.7308 25.60/0.7667 29.82/0.8988 30.19/0.8313
FFT Loss → None 31.79/0.8897 28.37/0.7764 27.41/0.7305 25.57/0.7680 29.74/0.8989 30.17/0.8316

Table 2: PSNR(dB) results of ShuffleMixer. red/blue represents the proposed model trained on
DIV2K/DF2K.

Method Scale Params FLOPs Set5 Set14 B100 Urban100 Manga109

ShuffleMixer

×2 394K 91G 37.99/38.01 33.55/33.63 32.14/32.17 31.85/31.89 38.53/38.83

×3 415K 43G 34.39/34.40 30.35/30.37 29.08/29.12 28.03/28.08 33.42/33.69

×4 411K 28G 32.13/32.21 28.62/28.66 27.61/27.61 26.10/26.08 30.47/30.65

ShuffleMixer-Tiny

×2 108K 25G 37.79/37.85 33.31/33.33 31.99/31.99 31.26/31.22 37.88/38.25

×3 114K 12G 34.02/34.07 30.12/30.14 28.94/28.94 27.57/27.54 33.88/33.03

×4 113K 8G 31.88/31.88 28.43/28.46 27.44/27.45 25.62/25.66 29.95/29.96

Following [8, 10], we synthesize the noisy images from the DIV2K dataset by adding AWGN of the
different noise levels. Besides, we removed the ShuffleMixer’s upsampler module and optimized the
model parameters in the same way as in the SISR task. We evaluate the denoised results on three
benchmark datasets: CBSD68, Kodak24, and Urban100.

Table 4 shows that our ShuffleMixer can be easily extended to other low-level tasks and achieve
competitive performances. Figure 3 exhibits that the proposed ShuffleMixer effectively removes the
heavy noise, and the details of all images are better preserved in our results.

4 Some notes on the Urban100 dataset

Our goal in this section is to make some notes on the results of the Urban100 dataset. As shown in
Tab.1 of the main paper, our ShuffleMixer obtains poor PSNR performance on the Urban100 dataset
compared to other state-of-the-art methods in terms of ×2 and ×3 super-resolution. In particular,
our method is 0.28dB and 0.09dB lower than IMDN in terms of PSNR in scale factors of ×2 and
×3, respectively. Nevertheless, we made a visual comparison and found no perceivable difference in
perceptual quality. Thus, we reevaluate these results using two commonly-used perceptual metrics:
NIQE and LPIPS. Table 3 lists the quantitative comparison of perception-oriented SR results, and the
proposed ShuffleMixer achieves quite similar performance to IMDN in terms of NIQE and LPIPS.

Why does ShuffleMixer perform poorly on PSNR? This result may be caused by the luminance
differences in some local areas. Since PSNR measures pixel-wise difference rather than overall
structure, minor differences in luminance (Y-channel) can also make significant PSNR differences.
To verify this cause, we select several images with significant PSNR differences (over 0.8dB) from
the IMDN model for analysis. Taking Figure 1 as an example, we pick two sets of image patches
from the selected image that are spatially neighboring and duplicate in most areas and test their PSNR
values separately. On Patch A/C, our ShuffleMixer differs significantly from the IMDN results but is
very similar on Patch B/D. This experimental result supports our conclusion.
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Table 3: Quantitative comparison results on Urban100 datatset.

Method Scale Params FLOPs PSNR↑ NIQE↓ LPIPS↓

IMDN [3]
×2 694K 161G 32.17 4.59 0.1132
×3 703K 72G 28.17 5.21 0.2136
×4 715K 41G 26.04 5.69 0.2879

ShuffleMixer
×2 394K 91G 31.89 4.66 0.1127
×3 415K 43G 28.08 5.32 0.2106
×4 411K 28G 26.08 5.78 0.2859

Table 4: PSNR(dB) comparisons with state-of-the-art methods for color image denoising on bench-
mark datasets.

Datasets σ BM3D [2] DnCNN [8] IRCNN [9] FFDNet [10] DSNet [7] ShuffleMixer

CBSD68
15 33.52 33.90 33.86 33.87 33.91 34.05
25 30.71 31.24 31.16 31.21 31.28 31.40
50 27.38 27.95 27.86 27.96 28.05 28.15

Kodak24
15 34.28 34.60 34.69 34.63 34.63 34.87
25 32.15 32.14 32.18 32.13 32.16 32.41
50 28.46 28.95 28.93 28.98 29.05 29.25

Urban100
15 33.93 32.98 33.78 33.83 - 34.32
25 31.36 30.81 31.20 31.40 - 31.93
50 27.93 27.59 27.70 28.05 - 28.59
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Figure 1: Patch-based visual comparison between IMDN and our ShuffleMixer on the Urban100
dataset. red/blue represents the PSNR results of IMDN/ShuffleMixer.
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(a) HR patch (b) Bicubic (c) VDSR [5] (d) DRCN [4]

barbara from Set14 (×2) (e) LapSRN [6] (f) CARN [1] (g) IMDN [3] (h) ShuffleMixer

(a) HR patch (b) Bicubic (c) VDSR [5] (d) DRCN [4]

img062 from Urban100 (×2) (e) LapSRN [6] (f) CARN [1] (g) IMDN [3] (h) ShuffleMixer

(a) HR patch (b) Bicubic (c) VDSR [5] (d) DRCN [4]

img076 from Urban100 (×4) (e) LapSRN [6] (f) CARN [1] (g) IMDN [3] (h) ShuffleMixer

Figure 2: Visual comparisons on Set14 and Urban100 datasets. Our method generates images with
more accurate structures.
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(a) Input (b) GT (c) DnCNN [8] (d) FFDNet [10] (e) ShuffleMixer

Figure 3: Image denoising examples on benchmark datasets. The standard deviation of the noise is
set to 50. State-of-the-art methods generate denoised images with over-smoothed results. In contrast,
our method preserves better structures and details.
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