
Appendix of A Deep Learning Dataloader with Shared Data
Preparation

Jian Xie1 Jingwei Xu1∗ Guochang Wang1 Yuan Yao1 Zenan Li1
Chun Cao1 Hanghang Tong2

1Nanjing University 2University of Illinois Urbana-Champaign
{xiejian, wgchang, lizn}@smail.nju.edu.cn

{jingweix, y.yao, caochun}@nju.edu.cn
htong@illinois.edu

A More Evaluations

In this section, we first present the I/O speed in the synchronous cases and asynchronous cases to
show JOADER can reduce the redundant I/O work. Then, we evaluate the algorithm DSA and RefCnt
separately for the ablation test. Finally, we show the loss and accuracy trace of ResNet18 in 40
epochs to demonstrate JOADER does not affect convergence speed. We denote the default dataloader
strategy in PyTorch as the ‘Baseline’ method, and further compare JOADER with the state-of-the-art
method CoorDL.

A.1 I/O speed

In this part, we show the I/O speed in the synchronous and asynchronous cases. Note that I/O is
not the bottleneck in our server (Maximum I/O speed of the server is about 1GB/s). Figure 1 shows
the I/O from training one job to training six jobs. The I/O speed of Baseline tends to increase while
that of CoorDL and JOADER tends to decrease, because CoorDL and JOADER can reuse the data
in memory. When we train 5 jobs (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152) with
different speed, the I/O speed is shown in Figure 2. Although the I/O speed of CoorDL is far less
than JOADER, the fast job must wait for a slow job causing inefficiency. JOADER can make jobs run
at their own speeds. Figure 3a show the I/O speed for four jobs that start at different moments. Due
to the redundant I/O work, the baseline has a more considerable I/O speed. For JOADER, the more
data is shared, the smaller the I/O speed, as shown in Figure 3b.

A.2 Algorithm evaluation

In this section, we first compare ISA, the default sampling algorithm in PyTorch, with DSA to show
the performance in two cases: 1) datasets overlap partially, and 2) datasets vary in size. Then we
further compare the RefCnt with the generic cache policy in the above cases. We evaluate these
algorithms in different cache sizes and the evaluation metric is the count of cache misses, indicating
the number of elements not read from the cache. For n datasets D1, D2, ..., Dn, the maximum count
of cache misses is |D1| + |D2| + ... + |Dn| that all the data is read from the storage, while the
minimum is |D1 ∪D2 ∪ ... ∪Dn| that all the repeated data is hit in cache.

We construct the following cases for evaluation2 in Table 1:

Dependent sampling algorithm. In this part, we show DSA can significantly reduce the cache
misses in various of scenes. To simulate various scenes, we generate multiple datasets with different

∗Corresponding author.
21) D = [0, 1e4] means dataset D constains all number from 0 to 10000. 2) D = sample([0, 13333], 10000)

means sample a subset D with 10000 of size from [0, 13333] uniformly at random

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1 2 3 4 5 6
Number of jobs

0

25

50

75

100

125

150

rM
B/

s

Joader
CoorDL
Baseline

Figure 1: When training multiple ResNet18
models simultaneously, the I/O speed is shown
above.

time line
0

50

100

150

200

250

300

350

rM
B/

s Joader
CoorDL
Baseline

Figure 2: When training 5 models with different
speeds at the same time, the I/O speeds are
shown above.

time line
0

50

100

150

200

250

300

350

rM
B/

s

Baseline
Joader

(a) When four jobs start at different moments, the I/O
speeds are shown above.

0% 25% 50% 75% 100%
intersection size / dataset size

0
20
40
60
80

100
120
140
160
180
200

rM
B/

s
Joader Baseline

(b) I/O speed are shown above when intersection sizes
are different.

Figure 3: Training jobs arrive at different time and have different datasets

10000

20000

m
iss

es

intersection-size = 2500

ISA
DSA

intersection-size = 5000
ISA
DSA

2000 10000
cache-size

10000

20000

m
iss

es

intersection-size = 7500
ISA
DSA

2000 10000
cache-size

intersection-size = 10000
ISA
DSA

(a) Misses count of DSA and ISA for different
intersections with a cache of size from 1 to 10000.
DSA can always get the minimum misses.

10000

20000

m
iss

es

size-diff = 0
ISA
DSA

size-diff = 2500
ISA
DSA

2000 10000
cache-size

10000

20000

m
iss

es

size-diff = 5000
ISA
DSA

2000 10000
cache-size

size-diff = 7500
ISA
DSA

(b) Misses count of DSA and ISA for different dataset
sizes with a cache of size from 1 to 10000. DSA can
reduce lots of misses.

Figure 4: Misses count of DSA and ISA in various scenes for 2 jobs

2

2000 4000 6000 8000 10000
cache-size

15000

20000

25000

30000

35000

m
iss

es

DSA+RR
DSA+FIFO
DSA+LRU
DSA+RefCnt
ISA+RefCnt

(a) Misses count for 4 jobs in an utterly random
scene. RefCnt can reduce 10% misses for the same
cache size.

2000 4000 6000 8000 10000
cache-size

10000

12000

14000

16000

18000

20000

22000

m
iss

es

DSA+FIFO
DSA+RefCnt
DSA+RR
DSA+LRU
ISA+RefCnt

(b) Misses count for 4 jobs with datasets of
different sizes. RefCnt can reduce 10% misses
for the same cache size.

Figure 5: The number of misses with different cache policies applied with dependent sampling
algorithm.

Table 1: Configuration of the number of jobs and datasets
Algorithm Case Num way of construct dataset

Sampling
Algorithm

overlapping
partially

2 D1 = [0, 1e4];D2 = [0, 1e4]
2 D1 = [0, 1e4];D2 = [7500, 17500]
2 D1 = [0, 1e4];D2 = [5000, 15000]
2 D1 = [0, 1e4];D2 = [2500, 12500]
4 D1, D2, D3, D4 = sample([0, 13333], 10000)

varying
in size

2 D1 = [0, 1e4];D2 = [0, 1e4]
2 D1 = [0, 1e4];D2 = [0, 7500]
2 D1 = [0, 1e4];D2 = [0, 5000]
2 D1 = [0, 1e4];D2 = [0, 2500]
4 D1 = [0, 1e4];D2 = [0, 7500], D3 = [0, 5000], D4 = [0, 2500]

Cache
Policy

overlapping
partially

4 D1, D2, D3, D4 = sample([0, 13333], 10000)

varying in
size

4 D1 = [0, 1e4];D2 = [0, 7500], D3 = [0, 5000], D4 = [0, 2500]

sizes and different intersections. We use DSA to access them in shuffling order from the storage with
the cache of different sizes (e.g., from one-slot to holding all datasets) to evaluate the number of
misses, compared with the experimental results with ISA (shuffling independently).

We start the the evaluation in two jobs training on dataset1 and dataset2, respectively. We set up
eight different configurations for the two datasets, which can be divided into two types: the different
sizes of intersections and different sizes of the datasets, as shown in Table 1.

For different intersection sizes, Figure 4a plots the relations between cache size and the count of
cache misses. For ISA, the misses count is 2x higher than the size of dataset in the case of one-slot
cache, shows that all elements are missed and it decreases linearly as the cache size increase. Unless
the cache can hold all the data of intersection, the misses count could be minimized. However, DSA
can always get the minimum cache misses regardless of the cache size. The reason is that in the
selecting procedure, all jobs must select the same subset when the datasets’ sizes are equal, due to the
conditional probability of 1. Thus, their sampling results would be the same, meaning that all jobs
will access the same element simultaneously when the datasets with the same size.

Figure 4b plots the evaluation results on for the datasets with different sizes. For one-slot cache, DSA
can reduce 50% cache misses compared with ISA when the dataset sizes differ by 25%. The cache
held 30% dataset could get the best performance for DSA while ISA needs to cache 75% dataset to
reach optimal. DSA needs to cache 25% data because the size difference brings some uncertainty in
the selecting procedure.

3

0 10 20 30 40
Epochs

10

20

30

40

50

60

Ac
c

Baseline
Joader

(a) Accuracy trace

0 10 20 30 40
Epochs

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Lo
ss

Baseline
Joader

(b) Loss trace

Figure 6: Trace of training ResNet18 in 40 epochs

Then, we evaluate the DSA algorithm on four DNN training jobs to show the outstanding performance
of the DSA algorithm on multiple datasets. Multiple datasets bring more complexity to the intersection
as there can be 2n − 1 intersection sets for n sets. To simulate an utterly random scene, we
random sample 10,000 elements from 13,333 elements four times, making four different datasets for
evaluation. Compared ISA in the random scene, DSA can reduce 50% misses with a one-slot cache
(20000 misses out of 40000 misses), as shown in Figure 6a.

DSA also provides good performance for multiple jobs training on datasets with different sizes.
Compared to ISA in Figure 6b, one-slot cache can reduce 30% cache misses (16000 misses out of
22000 misses) with DSA when four jobs are training on four datasets, with a 25% different size.

RefCnt cache policy. In this part, we compare cache policy RefCnt with the generic cache policies
LRU, FIFO, and random replacement (RR) to show 10% misses reduction with the same cache size.
We evaluate these policies in above two situations of four jobs: utterly random scene and different
dataset sizes. Figure 5 shows the results, which can be summarized as two improvements: 1) RefCnt
cache policy can reduce 10% misses in the same cache size compared with general cache policies,
and 2) RefCnt cache policy can get the best performance with only caching the 60% dataset while the
generic cache policies require holding the whole dataset.

A.3 Correctness experiments

To demonstrate JOADER does not affect convergence speed w.r.t. accuracy and loss, we train ResNet18
on ImageNet-1K with JOADER and PyTorch3. Figure 6 shows that the loss descent trajectory and
accuracy trajectory are almost the same.

B Dependent Sampling Algorithm

In this section, we show the pseudo-code of the DSA, which involves two functions: selecting and
sampling. The selecting algorithm is shown in Algorithm 1, and the sampling algorithm is shown in
Algorithm 2.

C Sampling in Dependent Sampling Tree

The sampling operation involves two steps: 1) Deciding: choose a vertex for each job, and 2)
Sampling: select an element in the corresponding vertex for each job randomly.

In deciding, we start the procedure from the root of the tree. In the beginning, all jobs are marked as
undecided. In each vertex, all undecided jobs need to decide whether to select the current vertex, i.e.,
the intersection I in the DSA algorithm. If the job chooses the current vertex, we will remove them

3To activate DSA, we run 2 jobs at different moments

4

Algorithm 1: Selecting Procedure
Data: n jobs J1, ..., Jn and n datasets D1, ..., Dn

Result: The subset that each job selects
1 JOB ← [J1, ..., Jn]; // Array of all jobs
2 DS ← [D1, ..., Dn]; // Array of all datasets sorted by their cardinality
3 S ← ∅; // Set of data that are not selected
4 while JOB ̸= ∅ do
5 I ←

⋂
Di − S, ∀Di ∈ DS ;

6 c← |I|;
7 for D,J in DS, JOB do

// c
|D|−|S| is the conditional probability |Di−1|

|Di|
8 if rand(0, 1) ≤ c

|D|−|S| then
9 J selects I;

10 DS ← DS −D;
11 JOB ← JOB − J ;
12 c← |D|;
13 else
14 break;

15 if There is no job selecting I then
16 JOB[0] selects D[0]− I;
17 DS ← DS −D[0];
18 JOB ← JOB − JOB[0];
19 S ← S ∪ I ;

Algorithm 2: Sampling Procedure
Data: n jobs J1, ..., Jn and k subsets S1, ..., Sk

Result: The sampling results of each job
1 JOB ← [{Ji, ..., Jj}, ...]; // The job set where job selects the correspond subset
2 SUBSET ← [S1, ..., Sk]; // The subset that the correspond job set selects
3 for i in 0..k do
4 subset← SUBSET [i];
5 job_set← JOB[i];
6 Sample e uniformly at random in subset;
7 for job in job_set do
8 job picks e;

from the undecided job set. Then, the remaining undecided jobs are put down to the child and make
decisions recursively until the undecided job set is empty, like Algorithm 1.

However, in deciding, there may be an intersection that contains multiple vertices of the sampling
tree. If job J2 with D2 and job J3 with D3 do not choose the root X in the first recursion, then they
should make decision in the intersection (D2 −DX) ∩ (D3 −DX), which contains the datasets in
vertices A and B. In this case, we should combine these vertices into a big set first and start the
deciding procedure once. If someone chooses the big set, it should choose a vertex from the big set
randomly again.

After the deciding procedure, each job is assigned to a vertex randomly. Then, we need to select an
element in the corresponding vertex randomly. Based on the united sampling discussed in Section 3,
those jobs that are assigned to the same vertex should share the same sampling result.

Each data item in the dataset should be read exactly once for a job in an epoch. Intuitively, the data
item should be deleted from the vertex to avoid being read by the job repeatedly. This process raises
the issue that other jobs may need the deleted element that some have read. For example, job J1

5

Table 2: Notation in sampling algorithm
Ji The i-th job
Di Dataset that Ji trains upon
I Intersection of all datasets

Ddi Di − Ii
|D| Cardinality of set D
JI
i Event that Ji chooses the intersection

JD
i Event that Ji do not choose the intersection
eij Element ej picked by Ji in one round
S Set of elements that are not selected

fetches the element e1 from vertex A while job J2 and job J3 fetch the element from other vertices.
Thus, for J1, we should remove e1 from vertex A, but J2 and J3 still need the element e1.

The compensation procedure is introduced in sampling to solve this issue, which adds the deleted
element to the child vertex of the job that still needs it. To decide which vertex needs compensation,
we construct a job set for each vertex that contains all the jobs that will sample in this vertex. For
example, the job set of vertex A is {J1, J2, J3} and the set of vertex B is {J2, J3}. And after deleting
some elements, we should construct a compensation set containing all the jobs that still need the
deleted elements. If the compensation set includes the job set, the deleted elements are added to the
corresponding vertex.

Partially Sampling. When some jobs are much faster than other jobs, we only need the sampling
results for these fast jobs. The sampling procedures are the same as the above. However, the tree
cannot be ordered after sampling because these datasets decrease fast and can be less than the above
datasets in the tree soon. Therefore, we need to reorder the tree, just like the intersection procedure.

D Proof of Algorithm

In this section, we present the derivation and the proof for the proposed algorithm. Proposition 1
shows the first principle for randomness. Table 2 presents some notations for the following proof.

Proposition 1 For any job Ji, the probability of choosing any element from dataset Di is 1
|Di| .

D.1 Derivation in Two-job Case

There are 2 jobs J1 and J2 which training upon datasets D1 and D2, while the intersection is
I = D1 ∩D1 and two difference sets are Dd1 = D1 − I,Dd2 = D2 − I . Their cardinalities are
|D1|, |D2|, |I|, |Dd1|, and |Dd2|. The event that J1 selects the intersection is JI

1 , while the event that
J1 selects the difference set is JD

1 .

Due to the randomness, the constraints that we need to maintain are
p(JI

1) =
|I|
|D1|

, p(JD
1) =

|Dd1|
|D1|

p(JI
2) =

|I|
|D2|

, p(JD
2) =

|Dd2|
|D2|

.

(1)

Since J2 makes the decision conditioned on J1, we can the formulate the equations according to the
law of total probability in below{

p(JI
2) = p(JI

2 |JI
1) ∗ p(JI

1) + p(JI
2 |JD

1) ∗ p(JD
1)

p(JD
2) = p(JD

2 |JI
1) ∗ p(JI

1) + p(JD
2 |JD

1) ∗ p(JD
1).

(2)

6

After shared sampling, our target is to maximize the probability of J1 and J2 both choose the
intersection, which is positive correlated with p(JI

2 |JI
1). The p(JI

2 |JI
1) is

p(JI
2 |JI

1) =
p(JI

2)− p(JI
2 |JD

1) ∗ p(JD
1)

p(JI
1)

≤ min(1,
p(JI

2)

p(JI
1)

)

≤ min(1,
|D1|
|D2|

).

(3)

Therefore, we can get the conditional probability in two cases

p(JI
2 |JI

1) =

{
1, if |D1| > |D2|
|D1|
|D2| , if |D1| ≤ |D2|.

(4)

When |D1| ≤ |D2|, the other conditional probabilities of J2 conditioned on J1 can be derived as
follows

p(JI
2 |JD

1) = 0

p(JD
2 |JD

1) = 1

p(JD
2 |JI

1) = 1− |D1|
|D2|

.

(5)

In dependent selecting procedure, the probability of both choosing intersection set is p(JI
1)∗p(JI

2 |JI
1).

With data partition, we can get

p(e1j = e2i) = p(JI
1) ∗ p(JI

2 |JI
1) ≤

|I|
max(|D2|, |D1|)

, (6)

while e1j , e
2
i is the sampling results of J1, J2 in one round.

We then prove the the proposed dependent algorithm gives the optimal solution for the scenario of
two-jobs.

Proof 1 Assume that the distribution of the event exists, and the probability of p(e1j = e2i) is unknown.
When e1j and e2i are equal, they must belong to the intersection set Di. Therefore, p(e1j = e2i) is equal
to p(e1j = e2i , e

1
j ∈ Di, e

2
i ∈ Di). Due to the definition of joint probability, we can get

p(e1j = e2i) ≤ p(e1j ∈ Di), and p(e1j = e2i) ≤ p(e2i ∈ Di).

Due to the constraint of randomness, e1j and e2i are both sampled under the uniform distribution, so

p(e1j ∈ Di) =
|Di|
|D1| and p(e2i ∈ Di) =

|Di|
|D2| . Then p(e1j = e2i) ≤

|Di|
|D1| and p(e1j = e2i) ≤

|Di|
|D2| both

hold. Thus, for any distribution of the event, it holds that

p(e1j = e2i) ≤
|Di|

max(|D2|, |D1|)
.

D.2 Derivation in N-job Case

Assume there are n jobs {J1, ..., Jn} and n datasets {D1, ..., Dn}, while the intersection I =⋂n
i=1 Di. For the k-th job where k > 1, the probability of the job Jk chooses the intersection is

p(JI
k) = p(JI

k |JI
1 , J

I
2 , ..., J

I
k−1) ∗ p(JI

1 , J
I
2 , ..., J

I
k−1) + x, (7)

where x is the sum of probabilities of Jk chooses intersection in other conditions. With the similar
process in Proof 1, we can get the result for k-jobs, where the maximum probability of they all choose

7

intersection is also p(JI
1 ...J

I
k) ≤

|I|
max(D1,...,Dk)

. Then, we can get

p(JI
k |JI

1 , J
I
2 , ..., J

I
k−1) ≤ min(

p(JI
k)

p(JI
1 , J

I
2 , ..., J

I
k−1)

, 1)

≤ min(

|I|
|Dk|
|I|

max(D1,...,Dk−1)

, 1)

≤ min(
max(D1, ..., Dk−1)

|Dk|
, 1).

(8)

Assume that the datasets are sorted in ascending order w.r.t. their cardinalities, then the formula can
be written as for the maximum probability

p(JI
k |JI

1 , J
I
2 , ..., J

I
k−1) =

|Dk−1|
|Dk|

. (9)

The probability of n jobs all choose intersection I is

p(JI
1 , J

I
2 , ..., J

I
n) =

|I|
|D1|

∗ |D1|
|D2|

∗ ... ∗ |Dn−1|
|Dn|

=
|I|
|Dn|

, (10)

which is the theoretical maximum according to a similar Proof 1.

D.3 Proof of Randomness

We prove the Proposition 1 for Algorithm 1. Although multiple jobs share the sampling results in the
sampling procedure, the random sampling is not changed. Therefore, to prove Proposition 1, we only
need to prove the subsets are randomly selected for each job. The Lemma is stated as follow

Lemma 1 In each loop of selecting procedure, the intersection I is selected with the probability of
|I|
|Di| for every job Ji.

In the line 8-12 of Algorithm 1, the job Ji chooses the intersection only if the previous job has chosen
the intersection I , that the probability is

p(JI
i) = p(JI

i |JI
i−1, ...) ∗ p(JI

i−1, ...)

=
|I|

|Di| − |S|
.

(11)

Therefore, the Lemma 1 is satisfied only if the probability of entering this loop is |Di|−|S|
|Di| , that is

Lemma 2 For each loop, the set of elements that are not selected is S, and the probability of entering
this loop is |Di|−|S|

|Di| for job Ji.

Proof 2 We prove the Lemma 2 by induction on loop index k.

Base case. Show Lemma 2 holds for the first loop.
The first loop (k = 1) must be entered, while S is an empty set and |Di|−|S|

|Di| = 1. Thus Lemma 2 is
satisfied.

Induction step. Show that for any k ≥ 1, if the k-th recursion holds Lemma 2, then (k + 1)-th loop
also holds.
The probability of entering the k-th loop is |Di|−|S|

|Di| , and if job Ji does not select the intersection in

8

the k-th loop, then it entering the (k+ 1)-th loop. The probability of Ji does not select intersection is

p(JD
i) = p(JD

k) + p(JD
k+1) + ...+ p(JD

i)

= p(JD
k) + p(JD

k+1|JI
k) ∗ p(JI

k) + ...+ p(JD
i |JI

i−1) ∗ p(JI
i−1)

= p(JD
k) + (1− p(JI

k+1|JI
k)) ∗ p(JI

k) + ...+ (1− p(JI
i |JI

i−1) ∗ p(JI
i−1)

= p(JD
k) + p(JI

k)− p(JI
k+1) + p(JI

k+1)− ...− p(JI
i)

= 1− p(JI
i)

= 1− |I|
|Dk| − |S|

∗ |Dk| − |S|
|Dk+1 − |S|

∗ |Di−1| − |S|
|Di| − |S|

=
|Di| − |S| − |I|
|Di| − |S|

(12)

where Jk is the first job in job List JOB, then we can get the probability of entering the next loop is
|Di|−|S|−|I|

|Di| while new S is S ∪ I , which also satisfies the Lemma 2.

Conclusion. Since both the base case and the inductive step have been proved as true, the Lemma 2
holds for every loop by mathematical induction.

E System Implementation

In this section, we describe the implementation of JOADER, which is a data loading management
system for multiple DNN training jobs. The proposed dependent sampling algorithm applied with the
dependent sampling tree is the core in JOADER. In details, we describe the system overview, three
main components, and the adaption for distributed DNN training.

E.1 Overview

API. JOADER API allows users to do two things: 1) creating and altering datasets, and 2) registering
DNN training jobs. Before training, the user needs to create the dataset with a name in JOADER first.
Then, to execute the training job on the dataset, the job should register itself to JOADER with the
dataset’s name. If multiple jobs are training on that dataset, JOADER will attach the dataset to the
jobs for sharing reading and preprocessing. Each job in an epoch will be assigned to a unique id in
JOADER, and JOADER will dispatch data according to the job id.

Architecture. JOADER includes a frontend and a backend. They communicate with each other in
RPC. Figure 7 shows the architecture of JOADER, which consists of three components: Sampler,
Loader, and Cache.

E.2 Sampler and Loader

The Sampler is responsible for data sampling in JOADER. An instance of the Sampler consists of a
sampling tree for a dataset. The datasets are organized in tables like the relational database. Each
data tuple has a unique integer id (i.e., primary key) to identify itself, consisting of multiple elements,
e.g., image, label, and the bounding boxes in ImageNet.

Each job registered to the sampler needs to specify the job’s name, dataset’s name, names of the
needed columns in the table, and a predicate for filtering. Then, the sampler collects the ids of data
tuples that meet the requirements and inserts the ids into the sampling tree corresponding to the
dataset. Each sampling tree should pick the element uniformly at random in the DS algorithm. These
elements (id of data tuple) will be transformed into the data requests according to the columns of
each job needed. If the elements and the columns are the same, these data requests will be merged
into one request.

The Loader is responsible for reading and processing data w.r.t. the data request from Sampler. In
JOADER, each loader corresponds to one type of storage, e.g., POSIX file system, key-value database,
or distributed storage. Loaders encapsulate different storages and provide a unified interface to
Sampler to present good scalability and compatibility.

9

Figure 7: The architecture of JOADER.

Figure 8: JOADER for distributed DNN training, where the leader JOADER is responsible for the
sampling globally.

E.3 Specific Cache Implementation

The Cache is used to store and share data between JOADER and the DNN training jobs, which is
implemented by shared memory to avoid the cost of memory copying, serialization, and network. To
manage data and reduce data race, the layout of cache is slotted, making multiple slots in the head of
the cache, as shown in Figure 7. Each element in the cache is managed by a slot containing the start
address, length, and read bit of the data. The read bit is used to determine whether the data has been
consumed.

When Loader tries to load data, it needs to require slots and a contiguous block memory for storing
this data. Then, the Loader dispatches the slot ids to training jobs that need the data. These jobs will
access the data soon and set the read bit. When there is not enough memory, the reclamation program
should be triggered. Data can be classified as consumed and unconsumed in the cache according to
the read bit. Because those unconsumed data were sampled earlier than the data that Loader is trying
to require memory, they will be accessed earlier than the new data and cannot be evicted.

We can only reclaim those consumed elements, which are prioritized in different levels. For example,
there are two training jobs J1 and J − 2 all want to read four data {d1, d2, d3, d4}. In the first round
of sampling, d1 is consumed by both jobs. In the second round, job J1 consumed d2 while job J2
consumed d3. Then the memory reclamation program is triggered. Considering the constraint that
each job should traverse the dataset once. In this time, data d1, d2, d3 are in cache while data d1 is no
longer needed anymore while d2, d3 are still needed. Therefore, d1 will be prioritized for eviction.

In JOADER, we reclaim data according to the number of reference of data.

E.4 Towards Distributed Training

In model parallelism, the model is segmented into different parts that can run concurrently in different
nodes. Only one node is responsible for data preparation. Therefore, JOADER need not change
anything to apply to the distributed training in model parallelism.

10

In data parallelism, the dataset is divided into several partitions, where the number of partitions is
equal to the total number of available nodes in the cluster. The model is replicated to the worker
nodes. Each worker operates on its subset of the dataset to train the model locally. For each worker
node, we need to set up a JOADER for sharing data preparation to multiple DNN training jobs in this
node. However, the sampling work should be done globally to avoid redundant sampling.

To solve the above issue, we set multiple JOADER for multiple nodes, while only one leader JOADER
can sample. The leader needs to dispatch the sampling results to the followers, as shown in Figure 8.
During training, each sub-process of the distributed training job in data parallelism needs to register
itself to the local JOADER in the same worker node with the same name and the assigned id.
Meanwhile, the local JOADER should register a sub-sampler in leader JOADER. The local JOADER
should keep fetching sampling results from the leader JOADER and load them to the local cache.
By doing this, only leader JOADER is responsible for sampling and dispatching sampling results to
followers. Notice that the cache is also distributed in different worker nodes, storing more data than a
single cache.

The same data is sent to the same worker node when the leader dispatches sampling results. PyTorch
uses the hash partition algorithm to dispatch data. For example, suppose a worker node array nodes =
[node1, node2, ..., noden]. The data with integer id is sent to nodes[id%n]. However, things will
be more complicated when dealing with multiple training jobs. For example, two training jobs are
on the worker node arrays [node1, node2, ..., noden−1] and [node2, node3, ..., noden], respectively.
Due to the offset between the two arrays, the same data cannot be sent to the same worker node for
the two jobs by one hash partition.

In JOADER, we solve it by hashing the data id twice. In the first hash, we try to dispatch the data to
all the worker node in cluster. Therefore, the same data can be sent to the same node. However, some
training jobs are not training on some worker nodes and the data can not be sent to these nodes for
these jobs. Therefore, in the second hash, for the data dispatched wrongly, we will try to dispatch it
to the nodes locally w.r.t. the configuration of each job.

11

	More Evaluations
	I/O speed
	Algorithm evaluation
	Dependent sampling algorithm
	RefCnt cache policy

	Correctness experiments

	Dependent Sampling Algorithm
	Sampling in Dependent Sampling Tree
	Partially Sampling

	Proof of Algorithm
	Derivation in Two-job Case
	Derivation in N-job Case
	Proof of Randomness
	Base case
	Induction step
	Conclusion

	System Implementation
	Overview
	API
	Architecture

	Sampler and Loader
	Specific Cache Implementation
	Towards Distributed Training

