
Inference and Sampling for Archimax Copulas: Supplementary Material

A Algorithms and Background

A.1 Algorithms

We provide algorithms to describe the algorithmic contributions in the main paper. Algorithm 1
describes the method for learning the stable tail dependence function (stdf) given the Archimedean
generator. Algorithm 2 describes sampling the simplex component with a learned spectral measure.
Algorithm 3 describes learning the Archimedean generator with a given stdf. Finally, a sampling
algorithm for the full Archimax copula is provided in Algorithm 4 assuming a learned generator and
stdf. The code for this paper is available at https://github.com/yutingng/gen-AX.

Algorithm 1 Learn stable tail dependence function (stdf)

input observations {ui : i = 1, ...,m}.
input Archimedean generator ϕθ.
initialize GW.
do while loss = NLL + reg not converged:

sample {xj : j = 1, ..., n} from Unif(∆d−1).
compute {ξ(ui,xj) : i = 1, ...,m, j = 1, ..., n} from (7).
sample {wk : k = 1, ..., l} from GW.
compute {`θ(xj) : j = 1, ..., n} from (10).
compute NLL = 1

mn

∑i=m,j=n
i=1,j=1 logL(ξ(ui,xj);ϕθ, `θ) from (9).

compute reg =
∑d

j=1(
∑l

k=1 wkj/l − 1/d)2.
descent argminGW

NLL + reg.
end while
return learned GW.

Algorithm 2 Sample simplex component

input learned GW.
do while `θ(s) > 1:

sample {ui : i = 1, ..., d− 1} from Unif(0, 1).
sample {(wi1, ..., wid) : i = 1, ..., d− 1} from GW.
compute {(xi1, ..., xid) : i = 1, ..., d− 1} from (14).
compute s = (s1, ..., sd) from (15).
compute `θ(s) from (10).

end while
return a sample s = (s1, ..., sd).

Algorithm 3 Learn Archimedean generator

input Kendall observations W = {wi : i = 1, ..., nrnz}.
input learned GZ such that Z := `θ(S), S sampled from learned GW with Algorithm 2.
initialize GR.
sort W in decreasing (non-increasing) order.
do while MSE =

∑nrnz

i=1 (wi − ϕθ(ti))
2/(nrnz) > ε :

sample R = {r1, ..., rnr
} from GR.

sample Z = {z1, ..., znz
} from GZ .

compute T = {rjzl, rj ∈ R, zl ∈ Z}.
sort T in increasing (non-decreasing) order.
compute (ϕθ(t1), ..., ϕθ(tnrnz)) from (22).
descent argminGR

∑nrnz

i=1 (wi − ϕθ(ti))
2/(nrnz) + (

∑nr

j=1 rj/nr − 1)2.
end while
return learned GR.

1

https://github.com/yutingng/gen-AX

Algorithm 4 Sample Archimax copulas

input learned GR, GW

sample r, r1, · · · , rnr
from GR.

sample s = (s1, · · · , sd) from GW with Algorithm 2.
compute u = (ϕθ(rs1), · · · , ϕθ(rsd)) from (22).
return a sample u = (u1, · · · , ud).

A.2 Stable tail dependence function inference and sampling

A.2.1 Inference for stable tail dependence function

Pickands transformation The Pickands transformation in (7) for a particular test point x ∈ ∆d−1

results in the transformed observation ξ(U,x) with survival distribution function (SDF):

P (ξ(U,x) > x) = P (min{ϕ−1(U1)/x1, · · · , ϕ−1(Ud)/xd} > x),

= P (ϕ−1(U1) > xx1, · · · , ϕ−1(Ud) > xxd),

= P (U1 < ϕ(xx1), · · · , Ud < ϕ(xx1)), ϕ is decreasing,

= ϕ(`(xx1, · · · , xxd)), C(u) := ϕ(`(ϕ−1(u))),

= ϕ(x`(x1, · · · , xd)), `(cx) = c`(x), c > 0,

= ϕ(x`(x)).

In the case of extreme-value copulas, ϕ(x) := exp(−x), ϕ−1(u) := − log(u) and C(u) := exp(−`(
− log(u1), · · · ,− log(ud))), such that the d−dimensionsal observations distributed according to the
extreme-value copula are transformed into 1−dimensional observations distributed according to an
exponential with rate `(x). The stdf at a particular test point `(x) is then estimated from the mean of
the transformed observations, with endpoint corrections, as [79]:

ˆ̀(x) =

(
n∑

i=1

− log

(
i

n+ 1

))
/

(
n∑

i=1

ξ(ui,x)

)
. (24)

A modification to the Pickands estimator, using the transformation log(ξ(U,x)), leads to the CFG
estimator [10]:

log(l̂(x)) =
1

n

n∑
i=1

log

(
− log

(
i

n+ 1

))
− 1

n

n∑
i=1

log(ξ(ui,x)). (25)

A modification to the CFG estimator was made by Chatelain et al. [16] for the case of Archimax
copulas:

log(l̂(x)) =
1

n

n∑
i=1

log

(
ϕ−1

(
i

n+ 1

))
− 1

n

n∑
i=1

log(ξ(ui,x)). (26)

In the main paper, we provide the likelihood of a transformed observation ξ(u,x) in (9) and directly
train the generative network to maximize this likelihood. We do not have an additional endpoint
correction step since the stochastic form of `θ in (10) is a valid stdf. On the other hand, the Pickands
and CFG estimators above have corrected endpoints but may not be valid stdfs [38]. In the additional
experimental results in Appendix B.2 our estimator, although based on the Pickands estimator,
performs better than the Pickands estimator. This may be due to our estimator representing the
class of valid stdfs, a phenomenon noted in [30] where projecting to the class of valid stdfs reduced
estimation error. This direct method of training may perform better than the alternative method that
first estimates ˆ̀ then trains the generative network to match ˆ̀. A future direction may be to improve
the robustness of our MLE estimator with the CFG modification.

Architecture of generative network for spectral component GW is a generic multilayer per-
ceptron with layers: (Linear(d, dh), BatchNorm(dh), ReLU(), Linear(dh, dh), BatchNorm(dh),
ReLU(), Linear(dh, d), Softmax()), where d is the dimension of the observations and dh is the

2

number of nodes in the hidden layers. The number of layers and number of hidden nodes may be
modified as needed. Batch normalization, i.e. BatchNorm(·), greatly helps in preventing samples
from being static during training.

Details of Algorithm 1 To reduce computational complexity, we use mini-batch gradient descent
and a smaller number of samples in the empirical expectations of ϕθ and `θ during training.

A.2.2 Sampling the simplex component

Details of Algorithm 2 From Definition 4, the marginals of the simplex component are distributed
as Beta(1, d− 1), where d is the dimension. To enforce the marginals, we compute the samples of
the empirical copula u, then apply the quantile function, i.e. inverse cumulative distribution function
(CDF), to obtain s such that:

sj = 1− (1− uj)
1

d−1 for j = {1, · · · , d}. (27)

Given n observations (x11, · · · , x1d), · · · , (xn1, · · · , xnd) the samples of the empirical copula
(u11, · · · , u1d), · · · , (un1, · · · , und) are coordinate-wise rank-normalized such that:

uij =
1

n

n∑
k=1

1{xkj ≤ xij} for i = {1, · · · , n}, j = {1, · · · , d}. (28)

A.3 Archimedean generator inference and sampling

Kendall distribution function The expression of K(w) for Archimax copulas is:

K(w) = P (C(U1, · · · , Ud) ≤ w),

= P (ϕ(`(ϕ−1(U1), · · · , ϕ−1(Ud))) ≤ w), C(u) := ϕ(`(ϕ−1(u)),

= P (ϕ(`(RS1, · · · , RSd)) ≤ w), U
d
= ϕ(RS),

= P (ϕ(R`(S1, · · · , Sd)) ≤ w), `(c s) = c `(s), c > 0,

= P (ϕ(RZ) ≤ w), Z := `(S),

= P (ϕ(T) ≤ w), T := RZ.

Reconstruction of radial distribution with non-iid random variables and repetition of elements
To provide an outline for the overall approach, given the current estimate of R, we compute the
mapping between R,Z and T , solve for the probabilities PR, update the support R, and iterate as
needed. The algorithm can be understood as an alternating minimization algorithm, where the map
between R,Z to W via T , and the support R are updated in an alternating fashion.

We initialize by computing W = {w1, · · · , wm} and PW = {p(w1), · · · , p(wm)} of the empirical
Kendall distribution function in (18) and (19), where m ≤ nrnz . We do not perform the additional
(linear) interpolation step of the main paper. We then sort W in decreasing order. We also initialize
R = {rnr = 1, rj = rj+1αj for j = {1, ..., nr − 1}}, where we select α = (0.9, ..., 0.9). The
support Z and probabilities PZ are assumed to be given.

Given Z and the current estimate of R, we compute

T = {rjzl : rj ∈ R, zl ∈ Z}. (29)

We then sort T in increasing order and compute the ordering

(σr, σz)(i) : {1, · · · ,m} → {1, · · · , nr} × {1, · · · , nz} (30)

defined as a surjective function such that

ti = rσr(i)zσr(i). (31)

We solve for the probabilities PR = {p(r1), · · · , p(rnr)} by minimizing the residuals

m∑
i=1

 ∑
(σ−1

r (j),σ−1
z (l))=i

p(rj)p(zl)

− p(wi)

2

. (32)

3

We solve for the support R = {r1, · · · , rnr}, by minimizing the residuals
m∑
i=1

(ϕθ(ti)− wi)
2 (33)

where, following Definition 3,

ϕθ(ti) =

nr∑
j=1

p(rj)

(
1− ti

rj

)d−1

+

. (34)

Numerical illustration We give the details of the algorithm with a simple numerical example.

Consider the supports R = (r1, r2, r3) = (1, 2, 3), Z = (z1, z2) = (0.5, 0.75) with probabilities
PR = (0.4, 0.4, 0.2), PZ = (0.25, 0.75) and noisy observations W = (0.07, 0.19, 0.34, 0.49, 0.67),
PW = (0.07, 0.33, 0.14, 0.31, 0.15).

In this case, (t1, t2, t3, t4, t5) = (0.5, 0.75, 1.0, 1.5, 2.25) corresponds to (r1z1, r1z2, r2z1, r2z2 ∪
r3z1, r3z2) with probabilities (0.1, 0.3, 0.1, 0.3 + 0.05, 0.15).

For PR, we solve the overdetermined system of linear equations:
0.25
0.75

0.25
0.75 0.25

0.75


(
p1
p2
p3

)
=


0.07
0.33
0.14
0.31
0.15

 (35)

and obtain the solution as (0.43, 0.37, 0.20), where the solution has been normalized to sum to 1.

For R, we minimize the residuals in (33). Since scaling such that R = {cr1, · · · , crnr , c > 0} does
not change the copula, we solve for R in terms of ratios (α1, · · · , αnr−1), recursively defined such
that rnr = 1 and rj = rj+1αj for j = {1, · · · , nr − 1}.

The full technique is presented in Algorithm 5, with code attached in the supplementary material.

Algorithm 5 Estimate radial component

input W = {wi : i = 1, ...,m}, PW = {p(wi) : i = 1, ...,m}.
input Z = {zl : l = 1, ..., nz}, PZ = {p(zl) : l = 1, ..., nz}.
initialize (α1, ..., αnr−1) for instance (0.9, ..., 0.9).
sort W in decreasing order.
do while MSE = 1

m

∑m
i=1(ϕθ(ti)− wi)

2 > ε :
compute R = {rnr = 1, rj = rj+1αj for j = 1, ..., nr − 1}.
compute T = {rjzl, rj ∈ R, zl ∈ Z}.
sort T in increasing order.
compute {(σr, σz)(i) : i = 1, ...,m} from (31).
solve PR from (32).
compute (ϕθ(t1), ..., ϕθ(tm)) from (34).
solve argminα

∑m
i=1(wi − ϕθ(ti))

2 such that α ∈ (αl, αu) for instance (0.01,1).
end while
return Estimated support R and probabilities PR.

The ratios α may be solved iteratively for a unique solution. In our case, motivated by the uniform
convergence of the empirical process

√
n(Kn −K) as n → ∞ [4], we optimize for a least-squares

solution with bounds α ∈ (0.01, 1) using scipy.optimize.least_squares [8].

The disadvantage of the above general approach compared to the approach presented in the main
paper is the direct relationship between the computation cost and nr, nz , the sizes of supports for
R,Z.

Architecture of generative network for radial component GR is a generic multilayer perceptron
with layers: (Linear(1, dh), BatchNorm(dh), ReLU(), Linear(dh, dh), BatchNorm(dh), ReLU(),
Linear(dh, 1), Exp()), where dh is the number of nodes in the hidden layers. The number of
layers and number of hidden nodes may be modified as needed. Unlike in GW, the use of batch
normalization is not essential in GR.

4

Details of Algorithm 3 To speed up training, we initially resample Z only once every k mini-batch
iterations, decreasing k until k = 1 as we approach convergence.

A.4 Inference and sampling for Archimax copulas

A.4.1 Inference for Archimax copulas

Pre-process for extreme-value dependence for initial estimate of stdf To determine the block
size for the block maximas in (23), we use the test for extreme-value dependence via the max-stable
property by Kojadinovic et al. [55], where the max-stable property is defined as:

C(u1, · · · , ud) = Cr(u
1/r
1 , · · · , u1/r

1), for r = 1, 2, · · · ,u ∈ [0, 1]d. (36)

The Cramérvon Mises (CvM) distance in (38) between C(u1, · · · , ud) and Cr(u
1/r
1 , · · · , u1/r

1) is
computed using Monte Carlo integration with samples u drawn uniformly at random from [0, 1]d.

Details of Algorithm 1 for initial estimate of stdf Randomizing the order of observations may
help to create different block-maximas in each mini-batch iteration.

Alternative initialization scheme We also considered initialization with different one-parameter
families of Archimedean generators, with choice of generator based on the highest log-likelihood
of transformed observation ξ, from equations (7) and (9). The parameter for each family may be
computed from an average of inversion of pairwise Kendall tau, as per the following equation [11],
for each pair:

τϕ,` = τ` + (1− τ`)τϕ, (37)

where τϕ,` is the Kendall’s tau of the Archimax bivariate marginal, τ` is the Kendall’s tau of the
extreme-value component and τϕ is the Kendall’s tau of the Archimedean component. An average of
inversion of pairwise Kendall tau was employed in [16], with emphasis on the Clayton generator.

Initialization with specific families of Archimedean generators might bias initialization, and thus
we suggested initializing via the Archimedean generator first set to ϕ(x) = exp{−x} representing
extreme-value copulas and pre-processing the initial data to have extreme-value dependence via
block-maximas. This was also motivated by the experiment on extrapolating to extremes.

Identifiability It follows from a result of Chatelain et al. [16] that the sources of non-identifiability
in modeling Archimax copulas are only in: (i) power transformation of ϕ and `, and (ii) the scale
ambiguity of ϕ. The power transformation of ϕ and ` can be illustrated through the following
example: Consider both pairs of generators and stdf (ϕa(x) = exp(−x1/θ) and `a(x) = ‖x‖1) and
(ϕb(x) = exp(−x) and `b(x) = ‖x‖θ = (xθ

1 + · · ·+ xθ)1/θ). Both (ϕa, `a) and (ϕb, `b) lead to the
same Archimax copula. The scale ambiguity of ϕ comes from the fact that ϕ(cx), c > 0 leads to the
same Archimax copula.

We note that these sources of non-identifiability are non-issues in our methods. For the power
transformation, there is no ambiguity of ϕ and ` since the class of 1−ϕ(1/·) where ϕ(·) is calculated
as the Williamson d-transform of R with a finite support is regularly varying with index −1 [16, 5].
In addition, we include a regularization term such that ER[R] = 1.

A.4.2 Sampling for Archimax copulas

Details of Algorithm 4 Given learned generative networks GR, GW, we can generate many
samples from the Archimax copula.

A.5 Background on Archimax copulas

Archimax copulas generalize Archimedean and extreme-value copulas. They allow asymmetry and
arbitrary tail dependence. They were initially developed as a tool to study the behaviour of methods
used to estimate the joint distribution of extreme events [10]. The main motivation for Archimax
copulas is to model extreme data (e.g. very strong and rare earthquakes) from a mix of moderately

5

less extreme data (e.g. strong earthquakes) and extreme data. This in turn can be used to generate
samples for further studies and simulations.

Archimax copulas were applied to applications such as nutrient intake [71], river flow rates [3] and
rainfall [16], where the dependence is asymmetric and sub-asymptotic. In these applications, the
authors noted a better fit when using Archimax copulas over Archimedean and extreme-value copulas.

We provide a few connections between Archimax, Archimedean and extreme-value copulas:

• When the Archimedean generator ϕ(x) = exp(−x), and the radial component R ∼
Erlang(d), Archimax copulas reduce to extreme-value copulas.

• When the stable tail dependence function (stdf) `(x) = (x1 + · · · + xd) = ‖x‖1 and the
simplex component S ∼ Unif(∆d−1), Archimax copulas reduce to Archimedean copulas.

Archimax copulas have intuitive interpretations, such as scale mixture of extremes, dependent frailties
and resource sharing. In the case of resource sharing, R > 0 is a resource to be distributed randomly
among d agents in a way specified by S, where both R and S are themselves results of independent
random processes. For example, R may be profits, and S may be the way profits is to be divided
between stakeholders.

A.6 Background on multivariate copulas

Copulas are cumulative distribution functions (CDFs) of dependent uniform random variables. They
summarize the dependence described by an arbitrary joint CDF after the marginals have been
normalized to be uniform. They provide easy marginalization and calculation of tails. In addition,
when used in a graphical model, some conditional independence that cannot be easily represented with
Markov random fields or Bayesian networks, can be easily represented with cumulative distribution
networks [45]. They are also particularly convenient in some applications, such as ranking, where the
likelihood is a CDF [43].

For an introduction to copulas, the following textbooks and collection of works are great resources [32,
74, 51, 49, 50].

We also summarize the common multivariate copulas in Table 5.

Table 5: Multivariate copulas

GAUSSIAN (GC) ΦR(Φ−1(u1), · · · ,Φ−1(ud))
VINE (RV, CV, DV)

∏
e∈E(V) cUe1

,Ue2
|{Ued

}(FUe1
|{Ued

}(ue1), FUe2
|{Ued

}(ue2))

ARCHIMEDEAN (AC) ϕ(ϕ−1(u1) + · · ·+ ϕ−1(ud))
H. ARCHIMEDEAN (HAC) C0(C1(· · ·), · · · , CJ(· · ·)), Ci ∈ AC
EXTREME-VALUE (EV) exp{−`(− log(u1), · · · ,− log(ud))}

The Gaussian copula (GC) has a tractable expression for both the CDF and the density. However, it is
independent in the tails, a significant reason why Gaussian copula is not suitable for modeling finan-
cial risks. Vine copulas, such as R-vines (RV), C-vines (CV) and D-vines (DV), are computationally
intensive and hard to interpret due to repeated conditioning with pair copulas. Archimedean copulas
are symmetric in all coordinates, which is an assumption that is usually not held in practice. Hierar-
chical Archimedean copulas aim to break this symmetry but are difficult to construct due to nesting
conditions that are hard to satisfy. Extreme-value copulas are max-stable copulas which results in
lower tail independence, an assumption that is sometimes not held in practice. Many copulas are
not flexible in the extremes, which leads to independence, except in the case of Archimdean copulas
which only Gumbel copulas satisfy the tail dependence. In high dimensions, none of the existing
copulas typically fit data well. Model misspecification is often accepted in return for tractability, and
some dependence is better than independence [41].

Inferring the parameters of a copula is usually done via maximum likelihood estimation if a density
can be computed, or by using minimum distance estimator and goodness-of-fit tests if a density
cannot be computed. In both cases, expectations are usually replaced by their empirical versions. For
more background on estimating copulas, see [15].

6

Sampling from a copula using the conditional sampling method with Rosenblatt transform is usually
not possible in high dimensions, due to repeated differentiation. In our experiments, the conditional
sampling method, using automatic differentiation in PyTorch breaks down at dimension d = 4. In
general, only models with stochastic representation may be easy to sample [69].

A.7 Background on copulas in machine learning

Copulas is a rising topic in machine learning, as evident from numerous publications, including but
not limited to:

• Cumulative distribution networks, modeled as a product of copulas [45, 44, 46]. They can
represent some conditional independencies not represented by Markov random fields and
Bayesian networks, allow loops [52] and mixed graphs [85], with application to ranking [43]
and heavy-tailed distributions [52].

• Copula Bayesian networks, modeled as a product of conditional copulas [26], with appli-
cation to missing data [27], classification [28], time-series [25] and fast structure learn-
ing [89, 90].

• Copula processes [98] and application of copulas to time-series [66, 39, 83, 95].

• Copula based dependence measures and distances [67, 57, 80, 13, 70].

• Copula variational inference, allowing dependencies between latent variables [91, 37, 40].

• Generative modeling [88, 17, 59, 48, 1, 7].

• Applications of copula in areas including graph neural networks [68], multi-label learn-
ing [64], multi-agent interactions [93], bundle pricing [61], missing value [94, 58, 100],
sparse representation [96], outlier detection [62], causal discovery [20], domain adaptation
and transfer learning [65, 84] and structure learning [12].

• Recent work on deep network based copulas, including Archimedean [63, 75], extreme-
value [38], autoregressive [76, 53] and transformer-attentional copulas [24].

B Experiments

The metric we use to compare the methods is based on the Cramér-von Mises (CvM) statistic [81]
which is defined as:

CvM =

∫
(C∗,n(u)− Cθ,n(u))

2 du, (38)

where C∗,n is the empirical copula of true samples and Cθ,n is the empirical copula of generated
samples and the integral is computed using Monte Carlo integration with 10,000 samples of u drawn
uniformly at random from [0, 1]d−1.

The empirical copula for n given observations (u11, · · · , u1d), · · · , (un1, · · · , und) is defined as:

Cn(u) =
1

n

n∑
i=1

1{ui1 ≤ u1, · · · , uid ≤ ud}. (39)

All timings are with a 2.7 GHz Intel Core i7, 16GB 2133MHz LPDDR3.

B.1 Inference for Archimedean generator

We summarize the common Archimedean generators in Table 6.

The Clayton (C) generator is lower tail dependent, upper tail independent, the Frank (F) generator
is symmetric in both lower and upper tails, the Joe (J) and Gumbel (G) generators are lower tail
independent and upper tail dependent. Thus the above generators represent different radial envelopes.

The map λ is commonly used to estimate and evaluate estimates of ϕ [33, 34]. The map λ is defined
as:

λ(w) = ϕ−1(w)/(ϕ−1(w))′ = {ϕ′ ◦ ϕ−1(w)}ϕ−1(w), (40)

7

Table 6: Archimedean generators

ϕθ(x) θτ=0.2 θτ=0.5

CLAYTON (C) (1 + x)−1/θ 0.5 2
FRANK (F) − log(1− (1− exp(−θ)) exp(−x))/θ 1.86 5.74
JOE (J) 1− (1− exp(−t))1/θ 1.44 2.86
GUMBEL (G) exp(−t1/θ) 1.25 2

such that an estimate of ϕ can be recovered from λ as

ϕ−1(w) = exp

{∫ w

w0

1/λ(t)dt

}
. (41)

It is more convenient to present results in terms of λ since it is scale invariant, unlike ϕ, where
ϕ(cx) for any c > 0 lead to the same copula. In dimension d = 2, λ is directly related to the
Kendall distribution function as λ(w) = w −K(w). As such, the asymptotic variance for λn may
be computed from the asymptotic variance for Kn, where n is the number of observations. This
relationship is more complicated in dimension d > 2 but often used as an approximate, useful for
drawing confidence bands around λn to reject models whose λθ fall outside the band. In addition, the
asymptotic variance of the independence copula may be easily computed as:

σ2
λn

(x) =
x(x− log(x)− 1)

n
. (42)

8

Selection of support sizes nr, nz For nr = 100 and nz ∈ {20, 30, · · · , 100}, we plot the estimates
of λ in Figure 3. Results from different runs are in blue. The ground truth is a Clayton generator with
τ = 0.2 and a negative scaled extremal Dirichlet stdf with α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4), ρ = 0.69.
The ground truth is plotted in black and approximate confidence bands around the ground truth is in
dotted black. The computed the mean squared error (MSE) in fitting K and λ and the time taken are
given in Figure 4 and Table 7, where the standard deviation is given in parenthesis.

Figure 3: Estimates of λ with nr = 100 and nz ∈ {20, · · · , 100}. Ground truth in black, approximate
confidence bands in dotted black. Estimates from different runs in blue.

Figure 4: Mean squared error (MSE) in fitting K and λ and the time taken.

Table 7: Mean squared error (MSE) in fitting K and λ and the time taken.
nr = 100, nz 10 20 30 40 50 60 70 80 90 100

MSE K ×10−3 5.99(11.08) 1.84(3.60) 0.55(0.91) 0.34(0.56) 0.21(0.57) 0.46(1.02) 0.60(1.06) 0.23(0.39) 0.12(0.31) 0.16(0.31)
MSE λ ×10−3 1.24(1.27) 1.10(0.75) 1.04(0.56) 0.57(0.62) 0.49(0.49) 0.74(0.72) 0.18(0.13) 0.32(0.32) 0.39(0.27) 0.23(0.21)
TIME (SEC) 8.59(1.78) 21.30(7.10) 40.06(11.11) 43.46(8.23) 62.46(18.45) 86.08(21.91) 100.62(29.75) 217.68(71.45) 190.10(56.29) 239.04(96.97)

From the results, for nr = 100, it would be appropriate to use nz ∈ {70, · · · , 100}, with a tradeoff
between accuracy and computation time.

9

Plots of λ for sample size n = 1000 While our method infers an arbitrary Archimedean generator
and takes the joint dependence across covariates into account, the method in [16] infers a Clayton
generator from pairwise Kendall taus. Thus the performance gap between our method and the
method in [16] is expected to increase as the generator differs from the Clayton generator and as the
observations become less symmetric.

Figure 5: Estimates of λ given samples of S from true ` for n = 1000. Ground truth in black,
approximate confidence bands in dotted black, the method from [16] in red, our method in blue. On
the right of each plot of λ is a plot of samples from the copula, ground truth below the diagonal in
black, our method above the diagonal in blue.

10

Plots of λ for sample size n = 200 Increasing the number of observations n improved estimation
accuracy, hinting at consistency.

Figure 6: Estimates of λ given samples of S from true ` for n = 1000. Ground truth in black,
approximate confidence bands in dotted black, the method from [16] in red, our method in blue. On
the right of each plot of λ is a plot of samples from the copula, ground truth below the diagonal in
black, our method above the diagonal in blue.

11

B.2 Inference for stable tail dependence function and sampling for simplex component

The negative scaled extremal Dirichlet (NSD) [5] is a rich class encompassing many parametric
models of the stdf and spectral component, including the logistic, asymmetric logistic, negative
logistic, and extremal Dirichlet models [18].

It is specified by:

`(x) =
Γ(α1 + · · ·+ αd − ρ)

Γ(α1 + · · ·+ αd)
ED

[
max

j=1,··· ,d

(
xjD

−ρ
j Γ(αj)

Γ(αj − ρ)

)]
, (43)

where D = (D1, ..., Dd) is distributed as a Dirichlet(α1, ..., αd) with α1, ..., αd > 0 and ρ ∈
(0,min(α1, · · · , αd)).

The integrated relative absolute error (IRAE) is commonly used to evaluate estimates of `, and is
given by [16]:

IRAE(`, `θ) =
1

|∆d−1|

∫
∆d−1

|`(x)− `θ(x)|/`(x) dx. (44)

The IRAE is computed using Monte Carlo integration with 10,000 samples x drawn uniformly at
random from the simplex ∆d−1.

For given true ϕ, we report the IRAE of the modified Pickands estimator from [16], the modified CFG
estimator from [16], and our method in Table 8. The stdf is a NSD with α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4),
ρ = 0.69.

Table 8: Inference of ` given true ϕ

C 0.2 C 0.5 F 0.2 F 0.5 J 0.2 J 0.5 G 0.2 G 0.5

IRAE ±0.01 P [16] 0.16 1.00 0.05 0.06 0.06 0.07 0.08 0.17
IRAE ±0.01 CFG [16] 0.05 0.11 0.04 0.04 0.05 1.00 0.06 0.15
IRAE ±0.01 (OURS) 0.06 0.12 0.04 0.05 0.06 0.07 0.08 0.15

As mentioned in Appendix A.2.1, though our estimator is based on the Pickands estimator, it performs
better than the Pickands estimator. This suggests that our direct method of training with the generative
network generating the class of valid stdfs would perform better than the alternative method that
first estimates ˆ̀ then train the generative network to match ˆ̀. As noted in [16], the modified CFG
estimator performs better than the modified Pickands estimator for Archimax copulas. A future
direction may be to improve the robustness of our estimator with the CFG modification.

We also provide the IRAE and time taken versus number of minibatch iterations in Figure 7. The
plots suggest that our algorithm converges and is not computationally intensive.

Figure 7: IRAE in fitting ` and the time taken versus number of mini-batch iterations. Each line is for
a different copula setting in Table 8.

12

B.3 Modeling nutrient intake

The data and documentation from the study of nutrient intake in women is made available by the U.S.
Department of Agriculture (USDA) [92]. There are n = 1459 observations of dimension d = 17,
corresponding to the variables: Energy, Protein, Vitamin A (IU), Vitamin A (RE), Vitamin E, Vitamin
C, Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Calcium, Phosphorus, Magnesium,
Iron, Zinc. This dataset was previously studied in [71] where using a Clayton-NSD Archimax copula
improved fit over a Clayton Archimedean copula. However, in [71], the experiment was limited to
only n = 737 and d = 3, corresponding to Calcium, Iron and Protein.

We compared our method to copula based models and deep network based models from literature
using the CvM distance in (38). The abbreviations for the copula based models in Table 2 of the
main paper correspond to the abbreviations in Table 5 summarizing the common multivariate copulas.
They are Gaussian (GC), R-vine (RV), C-vine (CV), D-vine (DV), Archimedean (AC *), hierarchical
Archimedean (HAC) [36] and extreme-value (EV †) copulas. The abbreviation (C-AX †) corresponds
to the state-of-the-art in inferring Archimax copulas with a Clayton generator for ϕ and the modified
CFG estimator for ` [16]. The abbreviations for the deep network based models in Table 2 are
Wasserstein GAN with gradient penalty (WGAN), masked autoregressive flow (MAF) and variation
autoencoders (VAE). Lastly, the abbreviation (Gen-AX *†) corresponds to our method. For methods
marked with *, we use ϕ described in Algorithm 3 and for methods marked with † we use ` and the
sampling methods described in Algorithms 2 and 4.

Table 2 shows our method outperforming the above methods using the CvM distance.

We additionally provide plots of generated samples versus true samples in Figure 9 (a-l). The
generated samples are plotted in blue above the diagonal while the true samples are plotted in black
below the diagonal. From the plot of our generated samples in Figure 9 (l), an improvement can be
made with hierarchical Archimax copulas [42] to have different Archimedean generators ϕ and thus
different radial envelopes for covariates.

We briefly describe the training process using our proposed method. We first initialize `θ with
Algorithm 1 on block-maximas. Using the test for extreme-value dependence [55], we chose the
block size n/k = 5. The plots for block sizes n/k ∈ {1, 2, 5, 10} and exponents r ∈ {2, 3, · · · , 10}
are given in Figure 8.

Figure 8: Selection of block size n/k = 5 using the test for extreme-value dependence [55].

We compared our initial estimate `θ to the state-of-the-art CFG estimator applied on the block
maximas ˆ̀[10]. The plot of IRAE against mini-batch iterations show convergence in 2000 mini-batch
iterations, with a duration of 20s, and an IRAE of 0.08. We then learn ϕθ with Algorithm 3 on the
full dataset, with samples of S from Algorithm 2. The plot of MSE in fitting the empirical Kendall
distribution show convergence in 2000 mini-batch iterations, with a duration of 25s, and an MSE
of 0.0008. We note that the initialization scheme seems to be performing well since the learnt ϕθ

focused on modifying only the lower tail. We then update `θ with Algorithm 1 on the full dataset,
given ϕθ. The NLL of transformed observations ξ went from 1.67 in the initialization to -1.12 with
the use of ϕθ. The IRAE to the state-of-the-art modified CFG estimator on the full dataset was 0.078.

The estimation of the copula based models was done using the Copulas library [21] in Python and
the HACopula toolbox [35] in MATLAB.

13

The architectures of the deep networks are:

• WGAN: 3 layers for generator, 3 layers for discriminator, hidden size 128.
• MAF: 2 flows, hidden size 128 for each flow.
• VAE: 3 layers for encoder, 2 layers for decoder, hidden size 128, latent size 16.
• Gen-AX: 3 layers hidden size 30 for GW, 3 layers hidden size 10 for GR.

The implementation was with PyTorch, the Adam optimizer was used with learning rate 1e-3.

Figure 9: (a) Gaussian copula (GC).

14

Figure 9: (b) R-vine (RV).

15

Figure 9: (c) C-vine (CV).

16

Figure 9: (d) D-vine (DV).

17

Figure 9: (e) Archimedean copula (AC *) inferred with Algorithm 3.

18

Figure 9: (f) Hierarchical Archimedean copula (HAC) [36].

19

Figure 9: (g) Extreme-value copula (EV †) sampled with Algorithms 2 and 4.

20

Figure 9: (h) Archimax copula (C-AX †) inferred with the state of the art [16], sampled with
Algorithms 2 and 4.

21

Figure 9: (i) Wasserstein GAN with gradient penalty (WGAN).

22

Figure 9: (j) Masked autoregressive flow (MAF).

23

Figure 9: (k) Variational autoencoder (VAE).

24

Figure 9: (l) Archimax copula (Gen-AX *†) inferred and sampled with our methods.

25

B.4 Extrapolating to extreme rainfall

This data simulates the monthly rainfall for 3 locations (Belle-Ile, Groix, and Lorient) in French
Brittany, where the dependence is asymmetric and non-extreme. We follow the Archimax model
in [16] and extend the experiment with different Archimedean generators of the same Kendall tau τ .
The methods used for comparison are Wasserstein GAN with gradient penalty (WGAN), masked
autoregressive flow (MAF), variational autoencoder (VAE) and the state-of-the-art Clayton-Archimax
copula (C-AX). All methods were first trained on all observations n = 240 with dimension d = 3.
Many samples were then generated from the trained model to estimate ˆ̀from block maximas using
the state-of-the-art CFG estimator for extreme-value copulas [10]. As mentioned in the main paper,
for extrapolating to extremes, we did not compare to other copula based models as many classical
copulas are independent or Gumbel in the extremes.

Table 3 of the main paper show our method performs consistently across the different Archimedean
generators. In addition, our method always performs the best and in the case of ties, always among
the best. Plots of the generated samples and generated samples in the extremes are given in Figure 10,
with the Clayton-NSD Archimax copula experiment setting.

GAN MAF VAE OURS GROUND TRUTH

Figure 10: Extrapolating to dependence in the extremes. Plots of generated samples (top), generated
samples in the extremes (middle) and `(w),w ∈ ∆3−1 (bottom).

26

B.4.1 Modeling monthly rainfall

Although we did not compare to other copula based models for extrapolating to extremes, we
compared to other copula based models for modeling monthly rainfall. In particular, the skew-t
copula is a good addition to one’s arsenal for flexible asymmetrical copulas [23, 56, 99, 87].

For the Clayton-NSD Archimax copula experiment setting, the CvM distance for Archimax, Gaussian,
extreme-value, t and skew-t copulas are: 0.0003 (lower is better), 0.0005, 0.0006, 0.0008, 0.0027.

For this scenario, the Archimax and Gaussian copula performed better than the extreme-value, t
and skew-t copulas. This may be because the Clayton-NSD copula does not exhibit extreme-value
dependence, i.e. it fails the test of extreme-value dependence [55]. The skew-t copula might have
performed not as well as the t copula due to over-parameterization. In addition, maximum likelihood
estimation for the skew-t copula was extremely time consuming even for three dimensions and thus
intractable for higher dimensions.

B.5 Out-of-distribution detection

The inliers were generated from the Clayton-NSD copula representing the monthly rainfall of French
Britanny and the outliers were generated uniformly at random on the unit cube. The number of inlier
observations was nin = 225, the number of outlier observations was nout = 25, corresponding to
10% data contamination. A visual comparison of the results is given in Figure 11.

MAF VAE OURS

Figure 11: Out-of-distribution detection based on likelihoods. Inliers are represented with blue dots,
outliers with red dots, and detected points are circled in red.

The masked autoregressive flow (MAF) provided an explicit likelihood. The likelihood of the
variational autoencoder (VAE) was approximated from the reconstruction error. Including the KL
divergence to the latent prior made results worse. The likelihood of the Archimax copula was
approximated from the inclusion-exclusion scheme, checked to converge using various interval sizes.

B.6 High dimensional modeling

We infer and sample a 100-dimensional Clayton-NSD Archimax copula, with parameters θ = 2, α =
(α0, · · · , α0), α0 = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4), ρ = 0.69 using our method. The inference results
are given in Table 2 of the main paper. We plot the samples in Figure 12, 20 coordinates at a time,
with coordinates (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29) in Figure 12 (a) and
coordinates (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99) in Figure 12 (b).
The generated samples are in blue above the diagonal, the true samples are in black below the
diagonal.

27

Figure 12: (a) Samples from 100-dimensional Clayton-NSD copula, showing coordinates
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29).

28

Figure 12: (b) Samples from 100-dimensional Clayton-NSD copula, showing coordinates
(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99).

29

	Introduction
	Related work

	Background
	Method
	Stable tail dependence function inference and sampling
	Inference for stable tail dependence function
	Sampling the simplex component

	Archimedean generator inference and sampling
	Inference and sampling for Archimax copulas
	Inference for Archimax copulas
	Sampling for Archimax copulas

	Experiments
	Conclusion
	Algorithms and Background
	Algorithms
	Stable tail dependence function inference and sampling
	Inference for stable tail dependence function
	Sampling the simplex component

	Archimedean generator inference and sampling
	Inference and sampling for Archimax copulas
	Inference for Archimax copulas
	Sampling for Archimax copulas

	Background on Archimax copulas
	Background on multivariate copulas
	Background on copulas in machine learning

	Experiments
	Inference for Archimedean generator
	Inference for stable tail dependence function and sampling for simplex component
	Modeling nutrient intake
	Extrapolating to extreme rainfall
	Modeling monthly rainfall

	Out-of-distribution detection
	High dimensional modeling

