
A Appendix

A.1 Recurrent neural networks

A.1.1 Task structures

Context-dependent integration The context-dependent integrator [19] receives four inputs: two
time-varying, noisy sensory inputs of six different levels, drawn at each time from N (µ, σ =

31.623
√
dt ≈ 1) with µ ∈ {−0.5,−0.12,−0.3, 0.03, 0.12, 0.5}; and two constant context inputs,

set to 1 or 0. In context1, input context1 is set to 1 and input context2 is set to 0 while both sensory
inputs are ON. The task is to integrate the relevant sensory input (input sensory1) over time in the
activity of the output unit zt and ignore the irrelevant sensory input (input sensory2) and vice versa
for context2. Each trial consists of 650ms burn period (only input contextj=1; both sensory inputs
OFF) followed by 750ms sensory integration time (only input contextj=1; both sensory inputs ON).
One trial has T = 1400 time steps.

Sine wave generation The sine wave generator [20] receives one constant input which can be
set to one of 51 different levels ut = l/51 + 0.25 ∀t < T , l ∈ R. The level of the constant input
defines the target frequency of the sine wave generated in the activity of the network output unit zt
whereby the target frequencies ωl (l = 1 : 51) are equally spaced between 1− 6 rad/sec to define
ωl = 0.1 ∗ (l− 1)+1. Each trial lasts 500ms during which the input ut is constantly ON (T = 500).

High-dimensional sine wave generation The high-dimensional sine wave generator network
(Fig. 4) is an extension of the sine wave generator network explained in section A.1.1 [20]. It receives
U = 1 : 5 constant inputs ut and is trained to generate sine wave activity in U = Z = 1 : 5
outputs zt. The U constant inputs are set independently of each other to one of 51 different levels
ut(i) = li/51 + 0.25 ∀t < T, i = 1 : U, li ∈ R. The level of the i-th constant input ut(i) defines
the target frequency of the sine wave generated in the activity of the i-th network output unit zt(i)
whereby the target frequencies ωli (li = 1 : 51) are equally spaced between 1− 6 rad/sec to define
ωli = 0.1 ∗ (li − 1) + 1. Each trial lasts 500ms during which the input is constantly ON (T = 500).
For U = Z = 1 the high-dimensional sine wave generation network is identical to the sine wave
generation network explained in section A.1.1. We train separate networks for every number of
U = Z = 1 : 5.

A.1.2 Network training

In both tasks, all weights (B,W,Y) are optimized using Hessian-free optimization [38] to minimize
the network output cost:

costtraining =
1

Z
ΣZ

i=1Σ
T
t=1(z

∗
t (i)− zt(i))

2 (13)

between the respective target activity z∗t and the network output activity zt at every time point
during the trial, averaged over all input conditions (figures show costtraining scaled by 1/T , Eq. 3).
B,W, and Y are randomly initialized and set to have a spectral radius of 1 (B0 = N (0, 1), W0 =

N (0, 1/
√
N), Y0 = N (0, 1)). All input conditions are trained simultaneously with equal probability

to ensure a balanced training set (batch size = 400). The presented results are obtained using the same
input conditions as during training but with varying input noise and internal noise. The code to train
and run the RNNs was modified from [19]. For the main results we trained 20 networks on context-
dependent integration, 20 networks on sine wave generation and 25 networks on high-dimensional
sine wave generation (5 networks per U = Z (U = 1 : 5, Z = 1 : 5)).

A.2 Definition of operative dimensions

A.2.1 Sampling locations

We place the sampling locations yj (j = 1 : P ) equally spaced in time on the condition average
trajectories of each network. The condition average trajectories are defined as the mean network
activity per time point of the corresponding input condition, averaged over input and internal noise
(20 trials per condition).
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For the context-dependent integration network we considered the condition average trajectories for 8
different input conditions whereby we define the input condition based on the context (1 or 2), the
choice (1 or 2) and the coherency of the sensory inputs (congruent (sign(input sensory1) = sign(input
sensory2) or incongruent (sign(input sensory1) != sign(input sensory2) ) in every trial (23 = 8 distinct
input conditions). We placed the sampling locations equally spaced in time along each of these
8 condition average trajectories at every 100-th time step (t=1:100:1400 resulting in 15 sampling
locations per condition average trajectory) to obtain y1 = x1, y2 = x100, y3 = x200, . . . for every
input condition. In total, we defined P = 8× 15 = 120 sampling locations.

The sine wave generation network has 51 different input conditions (51 input levels). For the definition
of local operative dimensions, we subsampled the input conditions and only considered every 5-th
input level (l = 1 : 5 : 51), resulting in 11 condition average trajectories. We placed the sampling
locations equally spaced in time along each of these 11 condition average trajectories at every 50-th
time step (t=1:50:500 resulting in 11 sampling locations per condition average trajectory) to obtain
y1 = x1, y2 = x50, y3 = x100, . . . for every input condition. In total, we defined 11 × 11 = 121
sampling locations.

A.2.2 Operative row dimensions

Analogously to the operative column dimensions, the operative row dimensions are defined as the
dimensions in W that have a large impact on the local dynamics if removed from the row space of W
(Fig. 3a).

Given an arbitrary unit vector a ∈ RN , ∥a∥2 = 1, we define Ŵ for the operative row dimensions as
the matrix of rank N − 1 obtained by removing the dimension a from the row space of W:

Ŵ = W − (a(Wa)T )T (14)

The respective local and global operative dimensions are defined as explained in section 2.2.1. Based
on Eq. 7, 8, 9, 10, 11, the i-th global operative row dimension is defined as the i-th left singular vector
of L and we refer to is as qi.

The reduced-rank approximation of W constructed from only a subset of the global operative row
dimensions is then given by:

WOP
k = Σk

i=1(qi(Wqi)
T )T (15)

For simplicity and readability purposes, below we use the variables for the global operative column
dimensions throughout the text. All corresponding statements similarly apply also to the row
dimensions, unless explicitly stated otherwise.

A.2.3 Properties of local operative dimensions in vanilla RNNs

For the special case of a vanilla RNN (Eq. 1), several properties of the local and global operative
dimensions can be derived analytically. While the derivations below do not apply to other RNN
architectures (e.g. LSTM [39], GRU [40]) the general approach and definitions for the estimation of
operative dimensions are applicable irrespective of the RNN architecture.

Analytical derivation of local operative column dimensions The first local operative dimension
d1,j at location yj is the solution of the following optimization problem (Eq. 8):

d1,j = argmax
a

(∆f){xt=yj}

with a ∈ RN , ∥a∥2 = 1, and ∆f as (Eq. 1, 7):

∆f = ∥xt+1 − x̂t+1∥2

For a vanilla RNN:

xt+1 = xt − xt
dt

τ
+ Wrt

dt

τ
+ But

dt

τ

x̂t+1 = xt − xt
dt

τ
+ Ŵrt

dt

τ
+ But

dt

τ
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To derive the first local operative column dimension this can be simplified as follows:

d1,j = argmax
a

(∥xt+1 − x̂t+1∥2)

d1,j = argmax
a

(∥[xt − xt
dt

τ
+ Wrt

dt

τ
+ But

dt

τ
]− [xt − xt

dt

τ
+ Ŵrt

dt

τ
+ But

dt

τ
]∥2)

d1,j = argmax
a

(∥dt
τ
(Wrt − Ŵrt)∥2)

We replace Ŵ using Eq. 6:

d1,j = argmax
a

(∥dt
τ
(Wrt − (W − a(aT W))rt)∥2)

d1,j = argmax
a

(∥dt
τ
(aaT Wrt)∥2)

which has a unique solution for a vector a that is aligned to Wrt:

d1,j = Wrt (16)

Dimensionality of local operative column dimensions From the above derivation also follows
that, at any given location xt in the state space of a vanilla RNN, only a single local operative column
dimension can be derived. This follows from the observation that removal from W of any vector that
is orthogonal to d1,j = Wrt necessarily results in ∆f = 0, and thus does not cause any change in
the network dynamics:

∆f = ∥xt+1 − x̂t+1∥2

∆f = ∥dt
τ
(aaT Wrt)∥2

Replacing Wrt = d1,j :

∆f = ∥dt
τ
(aaT d1,j)∥2

Given that all local operative column dimensions di,j ∀i > 1 have to fulfill dT
i,jd1,j = 0 (see Eq. 9),

it follows that ∆fi,j = 0, ∀i > 1

Hence, when using the standard RNN equation as described in Eq. 1, only a single local operative
column dimensions d1,j = Wrt can be inferred at any given location in state space.

The previous two key derivations on local operative column dimensions can further be extended to
the case where the non-linear RNN dynamics is well described by the local linear approximation
A ∈ RN×N around slow points of the full-rank RNN x∗ ∈ RN . Hence, the derivations and
corresponding results are more general and apply (approximately) to any RNN architecture that
results in dynamics that are locally linear, not just to vanilla RNN.

A.2.4 Dimensionality of global operative column dimensions

The above properties of the local operative column dimensions have implications for the overall
dimensionality of the global operative column dimensions. Specifically, in a vanilla RNN the
dimensionality of the subspace spanned by the global operative column dimensions is bounded by the
dimensionality of the network activity rt. This follows from the above derivation (section A.2.3) that
there is only a single local operative column dimension at any sampling location yj in state space,
namely d1,j = Wrt with rt = tanh(yj).

The population activity rt at a given location in state space and time can be written as a linear
combination of the principal components of the population activity PC(R)i:

rt = c1,tPC(R)1 + c2,tPC(R)2 + ...+ cN,tPC(R)N
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where the coefficients ci,t (i = 1 : N ) depend on state space location and time t in the trial.
Combining the above expression with d1,j = Wrt results in:

d1,j = W(c1,tPC(R)1 + c2,tPC(R)2 + ...+ cN,tPC(R)N )

d1,j = c1,t(WPC(R)1) + c2,t(WPC(R)2) + ...+ cN,t(WPC(R)N )

While the coefficients ci,t vary over sampling locations rt = tanh(yj), the vectors WPC(R)1,
WPC(R)2, ... ,WPC(R)N do not, and rather are a fixed property of an RNN with weight matrix
W. Hence, all local operative column dimensions are a linear combination of the WPC(R)i with
ci,t > 0. As a consequence, if the population activity R is contained in a low-dimensional subspace,
the subspace of the column space of W that is required to perform the task (spanned by the operative
column dimensions) is also low-dimensional, and its dimensionality is at most as high as the
dimensionality of the responses R, independently of the training procedure. Note that while the
dimensionality of these two subspaces is related, the two subspaces need not be overlapping.

Notably, a comprehensive understanding of the exact factors determining the dimensionality of
activity in trained RNNs is currently lacking. The dimensionality of the inputs can be expected
to be an important factor [1] although in general not the only one. Indeed, RNNs that receive
high-dimensional inputs can nonetheless generate low-dimensional dynamics [32]. On the other
hand, reservoir computing networks can generate high-dimensional dynamics even when driven
with low-dimensional inputs [41, 42]. Our result that the dimensionality of activity in the N-fold
sine-wave generator increases with N (Fig. 4b) could further be interpreted as being driven by the
dimensionality of the output.

A.2.5 Dimensionality of global operative row dimensions

Analytical constraints to the functional subspace spanned by the global operative row dimensions
can also be derived. Specifically, this functional subspace is contained within the intersection of the
subspace spanned by the network activity R and the subspace spanned by the row dimensions of W.
Indeed, any vector orthogonal to this intersection can be removed from W without any effect on the
network dynamics.

The effect of removing dimension a from the row space of W is given by:

∆f = ∥dt
τ
(xt+1 − x̂t+1)∥2

∆f = ∥ − dt

τ
((a(Wa)T )T rt)∥2

∆f = ∥ − dt

τ
(WaaT rt)∥2

The term Wa vanishes for any a outside the row space of W. The term aT rt vanishes for any term
orthogonal to rt. Hence, ∆f = 0 for any a outside the intersection between the row space of W and
the activity subspace.

A.2.6 Function-specific global operative dimensions

To define function-specific global operative dimensions, we combine local operative dimensions
only from specific subsets of sampling locations. In Fig. 5, we created four different types of such
function-specific global operative dimensions qi(function) (i = 1 : N ) for the context-dependent
integration network:

• qi(context1): sampling locations yj along the condition average trajectories of context1
• qi(context2): sampling locations yj along the condition average trajectories of context2
• qi(choice1): sampling locations yj along the condition average trajectories of choice1
• qi(choice2): sampling locations yj along the condition average trajectories of choice2

All four types combine sampling locations from 4 condition average trajectories with 15 sampling
locations each (P = 60).
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A.2.7 Required computational resources

Computing the local operative column dimensions is computationally inexpensive because there is an
explicit solution (d1,j = Wrt; see section A.2.3) and hence it is not required to run the numerical
optimization procedure but only 1 matrix multiplication per sampling location.

To obtain the local operative row dimensions we perform a numerical optimization (matlab function
fminunc to find the minimum of an unconstrained multivariable function using the quasi-newton
optimization algorithm; as provided in the code to obtain the operative dimensions). We run the
optimization upto N -times per sampling location or until ∆f < 1e−8. It takes less than one minutes
to obtain the local operative row dimensions at a given sampling location on a standard machine (6
core, Intel Core i7-7800X CPU, 3.50GHz).

A.3 Additional analyses and figures

A.3.1 Importance of initial rank of W

The trained weight matrices W are generally high-dimensional in both tasks (Fig. 1d, i). Interestingly,
the rank of the trained weight matrix seems highly dependent on the rank of the initial weight
matrix W0 (Fig. S6) whereby a low-dimensional, initial weight matrix W0 generally results in a
low-dimensional, trained weight matrix W.

Figure 6: Dimensionality of trained weight matrices with different initial ranks. (a) Variance explained
(in weight space) by individual PCs of the weight matrix W after training when the initial weight
matrix W0 was randomly initialized with different ranks (colors, see legend). (b) Same as (a) for row
dimensions of W. (a - b) Each line is one network; 20 networks per W0; trained on context-dependent
integration. For the column as well as the row space, the rank of W changes little over training, and
is instead mainly determined by the rank of W0. The dimensionality of the weight matrix W after
training is thus only weakly related to the trained task in these cases.

A.3.2 High-variance dimensions

To assess the functional importance of the high-variance dimensions of W, we sequentially remove
the high-variance dimensions from W while measuring the performance of the reduced-rank network
(Fig. 1e, j). Generally, the network performance shows sudden jumps at specific ranks which are hard
to interpret. Here we show how the network performance varies over reduced-rank WPC

k for more
example networks to illustrate the large differences that are seen across individual networks (Fig. S7).

18



Figure 7: Network performance for reduced-rank weight-matrices based on high-variance dimensions.
(a) Network output cost (Eq. 3) of networks with reduced-rank weight matrices WPC

k for k = 1 : N
(Eq. 5). (b) State distance between trajectories in the full-rank network and in networks with
reduced-rank weight matrix WPC

k . (c-d) Same as (a-b) for 5 example networks trained on sine wave
generation. (a-d) Shown for 5 networks each; shaded area: mad over trials; Network output cost
obtained with internal and input noise, state distance without any noise. The network performance
shows large jumps at specific ranks that differ across networks (similar to Fig. 1 e, j).

A.3.3 Alignment between global operative dimensions and high-variance dimensions

The large difference between operative and high-variance dimensions also becomes apparent when
comparing their pairwise alignment to each other. While the subspace angles between the first few
global operative dimensions to the first few high-variance dimensions show a weak alignment, the
remaining dimensions are almost orthogonal to each other (Fig. S8; subspace angle = acos(|qi ·
PC(W)j |)).

Figure 8: Alignment of operative to high-variance dimensions. (a) Subspace angle between global
operative column dimensions qi and PCs of W, X and R. (b) Same as (a) for global operative row
dimensions in context-dependent integration. (c) Same as (a) for global operative column dimensions
in sine wave generation. (d) Same as (a) for global operative row dimensions in sine wave generation.
(a - d) Average over 20 networks per task.

Interestingly, the global operative column dimensions show a stronger alignment with the linear
network activity PC(X) (Fig. S8a, c) and the global operative row dimensions with the non-linear
network activity PC(R) (Fig. S8b, d). However, despite their partial alignment the PCs of the
network activity are not describing the functionally relevant subspace as accurately as the global
operative dimensions. To assess this, we construct reduced-rank approximations of W using PC(X)i:

WPC(X)
k = Σk

i=1PC(X)i(PC(X)Ti W) (17)

and similarly PC(R)i:

WPC(R)
k = Σk

i=1PC(R)i(PC(R)Ti W) (18)
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Analogously for row dimensions based on Eq. 15. The networks require a larger number of PC(X)i
or PC(R)i than global operative dimensions in W to achieve the same performance level (Fig. S9).

Figure 9: Network performance for reduced-rank RNN based on PCs of network activity X and R. (a)
Network output cost of networks with reduced-rank weight matrix WPC(X)

k for k = 1 : N (Eq. 17).
(b) State distance between trajectories in the full-rank network and in networks with reduced-rank
weight matrix WPC(X)

k for k = 1 : N . (c - d) Same as (a - b) for removing PC(R)i from row
dimensions of W. (a - d) Averaged over 20 networks per task; shaded area: mad over networks;
Network output cost obtained with internal and input noise, state distance without any noise.

A.3.4 Alignment to other relevant dimensions

While the operative dimensions are not well aligned with the high-variance dimensions shown above,
they may be aligned with other important dimensions of the RNN. Here we consider three additional
types of dimensions: (1) the input dimensions; (2) the eigenvectors of the weight matrix; and (3) the
main dimensions characterizing the local linear dynamics around the chosen sampling locations.

First, we considered the alignment between the global operative dimensions and the input dimensions
(Fig. S10), which we define based on various different approaches: we consider the principal
components of the input weight matrix B (panel a; subspace angle = acos(|qi · PC(B)j |)); the
main directions in state space effectively explored by the inputs (panel b; subspace angle =
acos(|qi · PC(But)j |) ∀t = 1 : T ); or directly the column space of B (panel c; subspace angle =
acos(|qi · column(B)j)|) ∀j = 1 : U ). Irrespective of the employed definition, all these inputs
dimensions are largely orthogonal to the column operative dimensions, and only weakly aligned to a
few row operative dimensions. Some alignment with the row operative dimensions can be expected,
as these dimensions in W describe the input connections of the hidden units. It seems reasonable
that the functionally relevant subspace of the row space in W - described by the global operative row
dimensions - is at least partially aligned with the task input dimensions, as these mediate the inputs
that are crucial drivers of the network activity while performing the task.

Second, we consider the alignment between the global operative dimensions and the right and left
eigenvectors of W (Fig. S11; subspace angle = acos(|qi · right/left eigenvector (W)j |)). Both
eigenvectors are at most weakly aligned to the global operative dimensions, emphasizing that our
approach retrieves dimensions that may not be directly identifiable based on the weight matrix alone.

Third, we considered the alignment between a local operative dimensions estimated at a particular
state-space location and the linearized RNN dynamics A at that location (linearized at sampling
locations on condition average trajectory, see Eq. 24 and 25 for definition of A). In Fig. S12 we
characterize the linear dynamics through the PC of of A, which are not aligned with with respective
first local operative dimensions at any sampling location (large subspace angles; subspace angle =
acos(|d1,j · PC(W)j |)). Likewise, we failed to find any alignment between the local operative
dimensions and the right and left eigenvectors of A at any sampling location (not shown).
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The mismatch between operative dimensions and linear dynamics might at least partly reflect our
definition of operative dimensions, which is based entirely on the contribution of the recurrent
dynamics Wr while discarding the decay term −xdt/τ (see Eq. 1). The linearized dynamics, on the
other hand, includes contributions from both terms. Hence, an interesting extensions of our presented
definition of operative dimensions would additionally consider the decay term to define ∆f and
remove a from the decay term similar to as from W (Eq. 6). However, such a formulation would
make the resulting operative dimensions harder to interpret and more work is required to gain more
insights into such alternative definitions of operative dimensions.

Figure 10: Alignment between global operative dimensions and network input dimensions. (a)
Subspace angle between global operative column dimensions qi and PCs of B, the PCs of But,
and the columns of B. (b) Same as (a) for global operative row dimensions in context-dependent
integration. (c) Same as (a) for global operative column dimensions in sine wave generation. (d)
Same as (a) for global operative row dimensions in sine wave generation. (a - d) Average over 20
networks per task.

Figure 11: Alignment between global operative dimensions and eigenvectors of W. (a) Subspace
angle between global operative column dimensions qi and right and left eigenvectors of W. (b) Same
as (a) for global operative row dimensions in context-dependent integration. (c) Same as (a) for
global operative column dimensions in sine wave generation. (d) Same as (a) for global operative
row dimensions in sine wave generation. (a - d) Average over 20 networks per task.
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Figure 12: Alignment between local operative dimensions and linearized dynamics A. (a) Subspace
angle between the first local operative column dimensions d1,j and the first three PCs of A compared
over sampling locations. (b) Same as (a) for global operative row dimensions in context-dependent
integration. (c) Same as (a) for global operative column dimensions in sine wave generation. (d)
Same as (a) for global operative row dimensions in sine wave generation. (a - d) Average over 20
networks per task.
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A.3.5 Importance of input dimensionality

To understand if the dimensionality of the global operative dimensions is related to the dimensionality
of the network input we study operative dimensions in networks with systematically varied number
of inputs. Specifically, we train RNNs (N = 100) on an extended version of the context-dependent
integration task in which the networks are trained to distinguish between up to 9 contexts simultane-
ously (U = 1 : 9, Z = 1, Fig. 13a). We trained 5 networks for every U (U = 1 : 9, Z = 1) and
obtained the global operative dimensions for each of them.

In networks with higher number of inputs the dimensionality of the global operative dimensions is
generally higher (Fig. 13c, f) and they require a larger number of dimensions to perform the task
with the same performance (Fig. 13d,e,g,h). The overall dimensionality of the network activities also
increases with U (Fig. 13b) which further demonstrates the tight link between the dimensionality of
the network activity and operative dimensions. Note that the dimensionality of W remains roughly
the same over all U (not shown).

Figure 13: Operative dimensions and input dimensionality. (a) Task schematic for n-fold context-
dependent integrator networks trained to select and integrate the relevant input out of 1-9 sensory
inputs simultaneously. (b) Variance explained (in activity space) by individual PCs of the network
activity X over all input conditions. (c) Rank of global operative column dimensions, estimated with
PC analysis on concatenated local operative dimensions L (Eq. 10 and 11). (d) Network output
cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12). (e) State distance
between trajectories in the full-rank network and in networks with reduced-rank weight matrix WOP

k .
(c-e) Based on global operative column dimensions; averaged over 5 networks per number of contexts;
shaded area: mad. Network output cost obtained with internal and input noise, state distance without
any noise. (f-h) Same as (c-e) for global operative row dimensions.
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A.3.6 Operative dimensions over training

Operative dimensions can be estimated for the RNN at any stage of training. The global operative
dimensions at a particular training stage are defined based on sampling locations yj located along
the condition average trajectories for that training stage. Sampling locations are placed along the
trajectories equally spaced in time, as described in section 2.2.1. For all training stages, a low-
dimensional subspace in W can be defined which is sufficient to achieve the performance of the
full-rank network at the same training stage (Fig. 14). Note that the network output cost for the
full-rank networks is higher at early stages in training.

Figure 14: Operative dimensions over training. (a) Rank of global operative column dimensions,
estimated with PC analysis on concatenated local operative dimensions (Eq. 10 and 11) for networks
trained on context-dependent integration at different stages of training. (b) Network output cost of
networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) trained on context-dependent
integration at different stages of training. (c) State distance between trajectories in the full-rank
network and in networks with reduced-rank weight matrix WOP

k trained on context-dependent
integration at different stages of training. (d-f) Same as (a-c) for global operative row dimensions in
context-dependent integration networks. (g-i) Same as (a-c) for global operative column dimensions
in sine wave generation networks. (j-l) Same as (a-c) for global operative row dimensions in sine
wave generation networks. (a-l) Averaged over 5 networks per training iteration; shaded area: mad
over networks; Network output cost obtained with internal and input noise, state distance without any
noise.
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A.3.7 Operative dimensions for different network types

To illustrate the general applicability of our definition of operative dimensions, we also estimated
operative dimensions for the following three alternative types of RNNs:

bias, x0. We extended the standard RNN equation (Eq. 1) with trainable parameters for bias of
hidden units bh ∈ RN , bias for output units bz ∈ RZ and initial conditions per contextj x0 ∈ RN×J

for J = 2 in the context-dependent integration network.

τ ẋt = −xt + Wrt + But + br + σt (19)

where xt=0 is set to x0j for trials of contextj. The network output is defined as:

zt = Yrt + bz (20)

relu, bias, x0. Same as Eq. 19 and 20, but replacing the tanh with the relu activation function for
rt:

rt(i) = max(0, xt(i)) ∀i = 1 : N (21)

dale’s law, relu, bias, x0. Same as Eq. 19, 20, 21 and with the additional constraint on W to respect
Dale’s law which constrains hidden units to either act purely excitatory or inhibitory. Here we set
80% of the hidden units to be excitatory, 20% to be inhibitory (implementation inspired by [43]):

W = WrecD (22)

with W rec(i, j) = max(0,W (i, j)), with i = 1 : N , j = 1 : N and a diagonal matrix D ∈ RN×N

defined as:

D(i, j) =


1, if j = i ∧ uniti is excitatory
−1, elseif j = i ∧ uniti is inhibitory
0, else

(23)

To ensure convergence during training, in this last RNN type W was initialized with a Gamma
distribution (W0 = G(2, 0.1/2)).
We trained these alternative RNN types on the context-dependent integrator task. We find that also in
these RNNs the inferred operative dimensions successfully identify a low-dimensional functional
subspace of the connectivity that is sufficient to solve the task (Fig. 15).

Figure 15: Operative dimensions for various network types. (a) Network output cost of networks with
reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) for different network types (section A.3.7).
(b) State distance between trajectories in the full-rank network and in networks with reduced-rank
weight matrix WOP

k for different network types (section A.3.7). (c-d) Same as (a-b) for global
operative row dimensions. (a-d) Averaged over 5 networks per network type; shaded area: mad over
networks.
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A.3.8 Operative dimensions applied to sequential MNIST

To validate our definition of operative dimensions to a task more closely related to current AI
applications, we estimated operative dimensions on networks trained on sequential MNIST [44]. In
this task, the RNN is trained to classify hand-written digits when the individual pixels of each image
are provided sequentially over time as an input to the network. For simplicity, the RNN equations and
training are analogous to those we employed for the other, simpler tasks considered above (see Eq. 1).
Here we increased the size of the RNN’s hidden layer from 100 to 200 units (N = 200), while the
input is 1-dimensional (U = 1). This architecture does not achieve state-of-the-art performance on
this task.

The properties of high-variance dimensions PC(W) for sequential MNIST are similar to those in
the simpler tasks above (Fig. 16a-d). The network activity X is low-dimensional throughout training
while the underlying weight matrix W is high-dimensional (Fig. 16a, b; shown for 1 representative
example network). Furthermore, sequentially removing PC(W)i from W would imply that the
RNN requires more than 175 (out of N=200) dimensions in W to achieve the full-rank classification
accuracy (Fig. 16a, b; results obtained on test set; full-rank classification accuracy=94% on training
and test set).

To identify a functionally relevant subspace in W we proceeded as above. We collected the local
operative dimensions at P = 3950 sampling locations that were equally spaced in time along a
random subset of trials (at every 10th time step along 50 randomly selected trials of the training set).
Placing sampling locations along the condition average trajectories (averaged over all trials of the
same output class) yielded slightly worse performance, most likely due to a lower number of possible
sampling locations. Overall, sequential MNIST required a higher number of sampling locations than
the simpler tasks presented above [19, 20].

The resulting operative dimensions reveal that the RNN trained on sequential MNIST requires only
58 dimensions (out of 200) to perform the task with the original classification accuracy (here we
define original classification accuracy as 95% of the accuracy of the corresponding full-rank RNN;
Fig. S16; averaged over 10 networks). The operative dimensions thus identify a functionally relevant
subspace that is of substantially lower dimensionality than the full-rank weight matrix W (results for
column dimensions). Further analysis using output-class-specific operative dimensions might reveal
valuable insights into the computation implemented by these networks.

Figure 16: Operative dimensions in sequential MNIST. (a) Variance explained (in activity space)
by individual PCs of the network activity X, shown at different stages of training (test set). (b)
Variance explained (in weight space) by individual PCs of the weight matrix W at different stages
of training. (c) Network classification accuracy of networks with reduced-rank weight matrices
WPC

k for k = 1 : N (Eq. 5), (d) State distance between trajectories in the full-rank network and in
networks with reduced-rank weight matrix WOP

k . (e) Rank of global operative column dimensions,
estimated with PC analysis on concatenated local operative dimensions (Eq. 10 and 11). (f) Network
classification accuracy of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12). (g)
State distance between trajectories in the full-rank network and in networks with reduced-rank weight
matrix WOP

k . (a-d) 1 representative network. (e-g) Based on global operative column dimensions
and averaged over 10 networks per task; shaded area: mad.
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A.3.9 Local, linear dynamics in reduced-rank RNN using operative dimensions

Computations in RNNs can often be understood by analyzing linear approximations of the dynamics
around fixed points or slow points [20]. Here we ask how well the reduced-rank approximations
we derived can approximate the local linearized dynamics of the full-rank networks. We find that
the operative dimensions of the connectivity are sufficient to reproduce the dominant local, linear
dynamics in the full-rank RNNs, reinforcing the finding that the reduced-rank RNNs capture the key
computations of the full-rank or closest reduced-rank system.

Here we study the local, linear dynamics in the context-dependent integrator and the sine wave
generator by linearizing around slow points of the full-rank RNN x∗ ∈ RN located on the condition
average trajectories [20, 19]. We obtain a linear system approximation A ∈ RN×N :

A(i, j) = −δ(i, j) +W (i, j)tanh′(x∗(j)) (24)

with i = 1 : N , j = 1 : N and

δ(i, j) =

{
1, if i = j

0, otherwise
(25)

Similarly, we obtain the linear system approximations AOP
k for the reduced-rank RNN using WOP

k
with k = 1 : N (Eq. 12):

AOP
k (i, j) = −δ(i, j) +WOP

k (i, j)tanh′(x∗(j)) (26)

with i = 1 : N , j = 1 : N .

These linear system approximations AOP
k are then studied by analyzing their eigenvalue decomposi-

tion:

AOP
k =

N∑
i=1

bi,kλi,keTi,k (27)

with bi,k ∈ RN as the i-th right eigenvector, ei,k ∈ RN as the i-th left eigenvector and λi,k

the i-th eigenvalue of AOP
k with rank k. The full-rank AOP

k=N consists of one dominant eigenvector
(λ1,k=N ≈ 0) with the remaining modes fast decaying (λi,k=N < 0, ∀i = 2 : N , as described in [19]).
To compare the eigenvectors and eigenvalues of the reduced-rank systems AOP

k to each other we have
to ensure a consistent sorting of their values across linearized systems AOP

k ∀k = 1 : N . Therefore we
sorted the eigenvalues of the full-rank system AOP

k=N in descending order of the absolute eigenvalues
and then used matlab’s eigenshuffle (https://www.mathworks.com/matlabcentral/fileexchange/22885-
eigenshuffle) to sort the remaining reduced-rank systems to be as similar as possible to the full-rank
system.

To measure the similarity between the full-rank and reduced-rank linear dynamics we considered the
following quantities (Fig. S17):

angle to full − rank right EV = acos(|(bT
i,k=Nbi,k)|)

angle to full − rank left EV = acos(|(eTi,k=Nei,k)|)

∆ to full − rank eigenvalue = |λi,k=N − λi,k|

Note that the linearization is performed at the location of slow points x∗ of the full-rank RNN,
which are not necessarily slow points of the dynamics in the reduced-rank RNN. This implies that in
the reduced-rank networks the linearized dynamics can be expected to approximate the non-linear
dynamics less well than in the full-rank network (or only at some distance from x∗, see [20]). Despite
this limitation, we find that the inferred dominant linear dynamics is largely preserved in the reduced-
rank RNN. In reduced-rank RNN based on only the first few global operative dimensions, the first
right eigenvector, left eigenvector and eigenvalue remain very close to their original values in the
full-rank RNN; the fast decaying modes instead require the full-rank weight matrix to be retrieved
(Fig. S17).
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Figure 17: Local, linear dynamics in reduced-rank networks. (a) Subspace angle between the right
eigenvectors of full-rank RNN and the right eigenvectors of reduced-rank RNN with WOP

k for
k = 1 : N . (b) Absolute difference between the eigenvalues of full-rank RNN and the eigenvalues
of reduced-rank RNN with WOP

k for k = 1 : N . (c) Subspace angle between the left eigenvectors
of full-rank RNN and the left eigenvectors of reduced-rank RNN with WOP

k for k = 1 : N (global
operative row dimensions). (d) Absolute difference between the eigenvalues of full-rank RNN and
the eigenvalues of reduced-rank RNN with WOP

k for k = 1 : N (global operative row dimensions).
(a - d) For context-dependent integration RNN; shaded area: mad over P = 120 sampling locations
of 1 representative network. (e - h) Same as (a - d) for sine wave generator with P = 121.

A.3.10 Operative dimensions for different number of sampling locations

To accurately identify the functionally relevant subspace in W it is crucial to define appropriate
and sufficient sampling locations yt to collect the local operative dimensions at. To illustrate how
the inferred operative dimensions change depending on the number of sampling locations, we
systematically reduced the number of sampling locations used to generate the global operative
dimensions while keeping the sampling locations equally distributed over all condition average
trajectories (Fig. S18). The global operative dimensions of the context-dependent integration networks
are still accurate with fewer sampling locations, whereas the global operative dimensions of the
sine wave generator networks generally require more sampling locations to properly capture the
functionally relevant subspace in W.

Figure 18: Operative dimensions for different number of sampling locations. (a) Network output
cost of networks with reduced-rank weight matrix WOP

k for k = 1 : N (Eq. 12) for network trained
on context-dependent integration using different number of sampling locations. (b) Same as (a) for
global operative row dimensions. (a - b) Averaged over 20 networks per task; shaded area: mad
over networks; size of diamond-markers corresponds to indicated number of sampling locations (see
legend).
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A.3.11 Single unit contributions to the functional subspace of the connectivity

Our analysis using function-specific operative dimensions (section 2.2.3) showed for the context-
dependent integration network that different functional modules are implemented using distinct
subspaces in W. Functionally relevant weight subspaces are shared between choice1 and choice2, but
not between context1 and context2 (Fig. 5). Here we ask if this functional specificity of operative
dimensions is reflected also at the level of the connectivity of single units. Specifically, we focus
on two simple properties of a given network unit, namely its effective output and total recurrent
input. We define these two quantities for specific task conditions and times by exploiting the inferred
operative dimensions.

We consider the effective output and total recurrent input of each unit at every sampling location
yj (j = 1 : P ) separately by generating one reduced-rank approximations WOPy

k,j (k = 1 : N ,

j = 1 : P ) per sampling location. Every WOPy

k,j consists of only the local operative dimensions
defined for the respective sampling location yj and thereby provides a reduced-rank approximation
that is tailored to perform only specific parts of the network function, similarly to our approach
in in defining function-specific operative dimensions (section 2.2.3). Using these WOPy

k,j allows us
to isolate the input and output of each unit that is functionally relevant to solve specific network
functions, i.e. to reproduce activity at specific times and conditions.

We define the total effective output that unit i sends to all other hidden units as the norm of the weight
matrix column i scaled by the network activity of unit i at sampling location yj (tanh(yt(i)) = rt(i)):

total effective output uniti =
√
ΣN

h=1(W
OPy

k,j (h, i)rt(i))2 (28)

This total effective output is defined separately for each sampling location yj . Here k = 1, as the
operative column dimensions at every location are always rank 1 (k = 1; see section A.2.3).

Similarly, we define the total recurrent input received by each unit i from all other hidden units as the
dot product of the weight matrix row i with the network activity rt = tanh(yt).

total recurrent input uniti = ΣN
h=1W

OPy

k,j (i, h)rt(h) (29)

Again, this recurrent input is defined separately for each sampling location yj . Here k was set to
include only functionally relevant local operative row dimensions for which ∆f > 10−6 (k ≈ 10).

These total recurrent inputs and effective outputs are shown in Fig. S19a, d) for each unit (x-axis)
and time/condition (y-axis). This plot does not reveal any obvious structure. Specifically, we find
no evidence that particular units are contributing to the functional inputs or outputs preferentially in
particular conditions but not others (e.g. context or choice).

In addition to the above unit properties, which combine information about the reduced-rank weight
matrix WOPy

k,j and the network activities rt, we also considered simpler properties based only on

WOPy

k,j , i.e. only on the units’ connectivity. Specifically, we analyzed the norm of each column and

each row in the WOPy

k,j , at every sampling location yt, as an alternative measure of the contribution
of each unit to specific network functions (Fig. S19b-c, e-f). However, similar to Fig. 19a, d), these
measures do not show any obvious structure over time and conditions at the level of single units.

Overall these observations suggest that all neurons are at least partially involved in creating the
functionally relevant RNN dynamics at all times and in all conditions. This becomes apparent
in Fig. 19a-b, d-e) as the values along every column (corresponding to the total recurrent input
or effective output per unit) change abruptly between sampling locations from similar times and
conditions (y-axis). However, more detailed analysis of the reduced-rank weight matrices and network
activities may well reveal structure at the level of units that is not apparent from the simple properties
that we analyzed here.
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Figure 19: Functional contribution of individual network units. (a) Total effective output of each unit
i at sampling location yj as defined in Eq. 28. (b) Norm of column i in reduced-rank weight matrix

WOPy

k,j at different sampling locations yj (i corresponding to neuron ID along x-axis). (c) Norm of
column i in full-rank weight matrix W at different sampling locations yj (i corresponding to neuron
ID along x-axis). (d) Total recurrent input of each unit i at every sampling location yj as defined in

Eq. 28. (e) Norm of row i in reduced-rank weight matrix WOPy

k,j at different sampling locations yj
(i corresponding to neuron ID along x-axis). (f) Norm of row i in in full-rank weight matrix W at
different sampling locations yj (i corresponding to neuron ID along x-axis). (a-c) sorted by values of
last row in (a). (d-f) sorted by values of last row in (d). (a-f) Sampling locations subsampled, shown
are locations with congruent inputs at t=1, 400, 900, 1400.

A.3.12 Alignment between global operative column and row dimensions

The global operative column and row dimensions both span a low-dimensional subspace in the
weight matrix W which is sufficient for the RNNs to perform the task (Fig. 3b-g). However, the two
subspaces show little similarity. In the context-dependent integration network, only the first global
operative column dimensions are weakly aligned to the first operative row dimensions. The remaining
dimensions show no alignment to each other (Fig. S20a). Similarly in the sine wave generator
networks, the global operative column and row dimensions show little similarity (Fig. S20b).

Overall, operative column and row dimensions provide complementary insights into RNN computa-
tions. In broad terms, the column dimensions in W describe the output connections of each hidden
unit, whereas the row dimensions describe the input connections of each hidden unit. The respective
operative dimensions in turn identify the functionally relevant subspaces in the network connectivity.
If these subspaces of the network connectivity are interpreted as subspaces in the network activity,
they might provide a tool to compare each unit’s functionally relevant input and output subspaces, i.e.
to determine how the activity of a given hidden unit is shaped by, and how it influences, the activity
in the remainder of the network.

Figure 20: Alignment between global operative column and row dimensions. (a) Subspace angle
between global operative column dimensions qi and global operative row dimensions qi for context-
dependent integration networks. (b) Same as (a) for sine wave generation networks. (a-b) Averaged
over 20 networks.
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A.3.13 Alignment of operative dimensions over sampling locations

The global operative dimensions are a combination of the local operative dimensions of all sampling
locations. To illustrate the large differences between local operative dimensions across sampling
locations, here we show how the local operative dimensions from different sampling locations are
aligned to each other. We find that local operative dimensions tend to be similar if their sampling
locations are close to each other in state space. However, more distant sampling locations generally
yield almost orthogonal local operative dimensions (Fig. S21b, e). Similarly, we test the alignment
between the local operative dimensions at a particular sampling location and the global operative
dimensions. We find that the global operative dimensions are not preferentially aligned to any local
operative dimensions defined at particular sampling location, but rather are partially aligned to the
local operative dimensions from all sampling locations (Fig. S21c, f, i, l).

Figure 21: Alignment of operative dimensions over sampling locations. (a) ∆f for local operative col-
umn dimensions of context-dependent integrator. The subspace of local operative column dimensions
is 1-dimensional at all sampling locations. (b) Pairwise subspace angle of first local operative column
dimensions across sampling locations. Local operative column dimensions gradually change over
state space, with closer sampling locations yielding more similar local operative column dimensions.
(c) Subspace angle between the first local operative column dimension at each sampling location
and the global operative column dimensions. The first few global operative column dimensions are
partially aligned with local operative column dimensions from most sampling locations. (d-f) Same as
(a-c) for operative row dimensions for context-dependent integrators. (g-i) Same as (a-c) for operative
column dimensions for sine wave generators. (j-l) Same as (a-c) for operative row dimensions for
sine wave generators. (a-f) Sampling locations are sorted based on the spatial proximity to each other,
moving along the line attractor over time in each context. (g-l) Sampling locations are sorted based
on the input frequency and then the time along the respective condition average trajectory, showing
that local operative dimensions are not shared per frequency. (a-l) Averaged over 20 networks; only a
subsample of all sampling locations shown; all subspace angles are computed considering only the
first local operative column or row dimensions at each sampling location.
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