
On the Sample Complexity of Stabilizing
LTI Systems on a Single Trajectory

Yang Hu
SEAS, Harvard University

Massachusetts, USA
yanghu@g.harvard.edu

Adam Wierman
CMS, California Institute of Technology

California, USA
adamw@caltech.edu

Guannan Qu
ECE, Carnegie Mellon University

Pennsylvania, USA
gqu@andrew.cmu.edu

Abstract

Stabilizing an unknown dynamical system is one of the central problems in con-
trol theory. In this paper, we study the sample complexity of the learn-to-stabilize
problem in Linear Time-Invariant (LTI) systems on a single trajectory. Current
state-of-the-art approaches require a sample complexity linear in n, the state di-
mension, which incurs a state norm that blows up exponentially in n. We propose
a novel algorithm based on spectral decomposition that only needs to learn “a
small part” of the dynamical matrix acting on its unstable subspace. We show
that, under proper assumptions, our algorithm stabilizes an LTI system on a single
trajectory with O(k log n) samples, where k is the instability index of the system.
This represents the first sub-linear sample complexity result for the stabilization
of LTI systems under the regime when k = o(n).

1 Introduction

Linear Time-Invariant (LTI) systems, namely xt+1 = Axt + But, where xt ∈ Rn is the state and
ut ∈ Rm is the control input, are one of the most fundamental dynamical systems in control theory,
and have wide applications across engineering, economics and societal domains. For systems with
known dynamical matrices (A,B), there is a well-developed theory for designing feedback con-
trollers with guaranteed stability, robustness, and performance [1, 2]. However, these tools cannot
be directly applied when (A,B) is unknown.

Driven by the success of machine learning [3, 4], there has been significant interest in learning-based
(adaptive) control, where the learner does not know the underlying system dynamics and learns to
control the system in an online manner, usually with the goal of achieving low regret [5–13].

Despite the progress, an important limitation in this line of work is a common assumption that the
learner has a priori access to a known stabilizing controller. This assumption simplifies the learning
task, since it ensures a bounded state trajectory in the learning stage, and thus enables the learner to
learn with low regret. However, assuming a known stabilizing controller is not practical, as stabi-
lization itself is nontrivial and considered equally important as any other performance guarantee.

To overcome this limitation, in this paper we consider the learn-to-stabilize problem, i.e., learning
to stabilize an unknown dynamical system without prior knowledge of any stabilizing controller.

†This work is supported by NSF Grants CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-2105648,
EPCN-2154171, with additional support from Amazon AWS.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Understanding the learn-to-stabilize problem is of great importance to the learning-based control
literature, as it serves as a precursor to any learning-based control algorithms that assume knowledge
of a stabilizing controller.

The learn-to-stabilize problem has attracted extensive attention recently. For example, [14] and [15]
adopt a model-based approach that first excites the open-loop system to learn dynamical matrices
(A,B), and then designs a stabilizing controller, with a sample complexity scaling linearly in n, the
state dimension. However, a linearly-scaling sample complexity could be unsatisfactory for some
specific instances, since the state trajectory still blows up exponentially when the open-loop system
is unstable, incurring a 2Θ̃(n) state norm, and hence a 2Θ̃(n) regret (in LQR settings, for example).
Another recent work [16] proposes a policy-gradient-based discount annealing method that solves
a series of discounted LQR problems with increasing discount factors, and shows that the control
policy converges to a near-optimal policy. However, this model-free approach only guarantees a
poly(n) sample complexity. In fact, to the best of our knowledge, state-of-the-art learn-to-stabilize
algorithms with theoretical guarantees always incur state norms exponential in n.

It has been shown in [15] that all general-purpose control algorithms are doomed to suffer a worst-
case regret of 2Ω(n). This result is intuitive, since from an information-theoretic perspective, a
complete recovery of A should take Θ(n) samples since A itself involves n2 parameters. However,
this does not rule out the possibility that we can achieve better regret in specific systems. Our work is
motivated by the observation that it is not always necessary to learn the whole matrix A to stabilize
an LTI system. For example, if the system is open-loop stable, we do not need to learn anything to
stabilize it. For general LTI systems, it is still intuitive that open-loop stable “modes” exist and need
not be learned for the learn-to-stabilize problem. So, we focus on learning a controller that stabilizes
only the unstable “modes”, making it possible to learn a stabilizing controller without exponentially
exploding state norms. The central question of this paper is:

Can we exploit instance-specific properties of an LTI system to learn to stabilize it
on a single trajectory, without incurring a state norm exponentially large in n?

Contribution. In this paper, we answer the above question by designing an algorithm that stabilizes
an LTI system with only O(k log n) state samples along a single trajectory, where k is the instability
index of the open-loop system and is defined as the number of unstable “modes” (i.e., eigenvalues
with moduli larger than 1) of matrix A. Our result is significant in the sense that k can be consid-
erably smaller than n for practical systems and, in such cases, our algorithm stabilizes the system
using asymptotically fewer samples than prior work; specifically, it only incurs a state norm (and
regret) in the order of 2O(k logn), much smaller than 2O(n) of prior state of the art when k ≪ n.

To formalize the concept of unstable “modes” for the presentation of our algorithm and analysis,
we formulate a novel framework based on the spectral decomposition of dynamical matrix A. More
specifically, we focus on the unstable subspace Eu spanned by the eigenvectors corresponding to
unstable eigenvalues, and consider the system dynamics “restricted” to it — states are orthogonally
projected onto Eu, and we only have to learn the effective part of A within subspace Eu, which
takes only O(k) samples. The formulation is explained in detail in Section 3.1 and Appendix A.
We comment that this idea of decomposition is in stark contrast to prior work, which in one way or
another seeks to learn the entire A (or other similar quantities).

Related work. Our work contributes to and builds upon related works described below.

Learning for control assuming known stabilizing controllers. There has been a large literature on
learning-based control with known stabilizing controllers. For example, one line of research utilizes
model-free policy optimization approaches to learn the optimal controller for LTI systems [5–7, 17–
30]. All of these works require a known stabilizing controller as an initializer for the policy search
method. Another line of research uses model-based methods, i.e., learning dynamical matrices
(A,B) first before designing a controller, which also require a known stabilizing controller (e.g.,
[31–39]). Compared to these works, we focus on the learn-to-stabilize problem without knowledge
of an initial stabilizing controller, which can serve as a precursor to existing learning-for-control
works that require a known stabilizing controller.

Learning to stabilize on a single trajectory. Stabilizing linear systems over infinite horizons with
asymptotic convergence guarantees is a classical problem that has been studied extensively in a
wide range of papers such as [40–42]. On the other hand, the problem of system stabilization over
finite horizons remains partially open and has not seen significant progresses. Algorithms incurring

2

a 2O(n)O(
√
T) regret have been proposed in settings that rely on relatively strong assumptions of

controllability and strictly stable transition matrices [13, 43], which has recently been improved to
2Õ(n)+Õ(poly(n)

√
T) [14, 15]. Another model-based approach that merely assumes stabilizability

is introduced in [44], though it does not provide guarantees on regret or sample complexity. A
more recent model-free approach based on policy gradient [16] provides a novel perspective into
this problem, yet it can only guarantee a poly(n) sample complexity. Compared to these previous
works, our approach requires only O(k log n) samples, incurring a sub-exponential state norm.

Another recent work [45] proposes to do partial system identification via projecting the state onto a
lower-dimensional subspace, which is similar in intuition with our work. However, the problem con-
sidered there is system stabilization with a fixed initial state x0, and their approach only eliminates
the unstable component along that specific trajectory in k steps when x0 lies in a k-dimensional sub-
space. In contrast, our approach finds a stabilizing controller for the system with sub-linear sample
complexity along an arbitrary trajectory regardless of the initial state.

Learning to stabilize on multiple trajectories. There are also works [12, 46] that do not assume
known stabilizing controllers and learn the full dynamics before designing an optimal stabilizing
controller. While requiring Θ̃(n) samples which is larger than Õ(k) of our work, those approaches
do not have the exponentially large state norm issue as they allow multiple trajectories; i.e., the state
can be “reset” to 0 so that it won’t get too large. In contrast, we focus on the more challenging
single-trajectory scenario where the state cannot be reset.

System Identification. Our work is also related to the system identification literature, which focuses
on learning the system parameters of dynamical systems, with early works like [47] focusing on
asymptotic guarantees, and more recent works such as [48–53] focusing on finite-time guarantees.
Our approach also identifies the system (partially) before constructing a stabilizing controller, but
we only identify a part of A rather than the entire A.

2 Problem Formulation

We consider a noiseless LTI system xt+1 = Axt +But, where xt ∈ Rn and ut ∈ Rm are the state
and control input at time step t, respectively. The dynamical matrices A ∈ Rn×n and B ∈ Rn×m

are unknown to the learner. The learner is allowed to learn about the system by interacting with it
on a single trajectory — the initial state is sampled uniformly at random from the unit hyper-sphere
surface in Rn, and then, at each time step t, the learner is allowed to observe xt and freely determine
ut. The goal of the learner is to learn a stabilizing controller, which is defined as follows.

Definition 2.1 (Stabilizing Controller). Control rule ut = ft(xt, xt−1, · · · , x0) is called a stabiliz-
ing controller if and only if the closed-loop system xt+1 = Axt+But is asymptotically stable; i.e.,
for any x0 ∈ Rn, limt→∞ ∥xt∥ = 0 is guaranteed in the closed-loop system.

To achieve this goal, a simple strategy is to let the system run in open loop to learn (A,B) via least
squares, and then design a stabilizing controller based on the learned dynamical matrices. However,
as has been discussed in the introduction, such a simple strategy inevitably induces an exponentially
large stage norm that is potentially improvable.1 A possible remedy for this is to learn “a small part”
of (A,B) that is crucial for stabilization. Driven by such intuition, the core problem of this paper is
to characterize what is the “small part” and design an algorithm to learn it.

Note that, although it is common to include an additive disturbance term wt in the LTI dynamics,
the introduction of stochasticity does not provide additional insights into our decomposition-based
algorithm, but rather, merely makes the analysis more technically challenging. Therefore, here we
simply omit the noise in theoretical results for the clarity of exposition, and will show by numerical
experiments that our algorithm can also handle disturbances (see Appendix H).

Notation. For z ∈ C, |z| is the modulus of z. For a matrix A ∈ Rp×q , A⊤ denotes the transpose of
A; ∥A∥ is the induced 2-norm of A (equal to its largest singular value), and σmin(A) is the smallest
singular value of A; when A is square, ρ(A) denotes the spectral radius of A, and κe(A) denotes the
condition number of the matrix consisting of A’s eigenvectors as columns. The space spanned by

1More sophisticated exploration strategies might be adopted to learn (A,B) [13, 15, 44], but as long as the
control inputs do not completely cancel out the “dominant part” of the states, the above intuition still holds to
a large extent as the ‘dominant part” of the state is still blowing up exponentially.

3

{v1, · · · , vp} is denoted by span(v1, · · · , vp), and the column space of A is denoted by col(A). For
two subspaces U, V of Rn, U⊥ is the orthogonal complement of U , and U ⊕ V is the direct sum of
U and V . The zero matrix and identity matrix are denoted by 0, I , respectively.

3 Learning to Stabilize from Zero (LTS0)

The core of this paper is a novel algorithm, Learning to Stabilize from Zero (LTS0), that utilizes a
decomposition of the state space based on a characterization of the notion of unstable “modes”. The
decomposition and other preliminaries for the algorithm are first introduced in Section 3.1, and then
we proceed to describe LTS0 in Section 3.2.

3.1 Algorithm Preliminaries

We first introduce the decomposition of the state space in Section 3.1.1, which formally defines the
“small part” of A mentioned in the introduction. Then, we introduce τ -hop control in Section 3.1.2,
so that we can construct a stabilizing controller based only on the “small part” of A (as opposed to
the entire A). Together, these two ideas form the basis of LTS0.

3.1.1 Decomposition of the State Space

Consider the open-loop system xt+1 = Axt. Suppose that A is diagonalizable, and let λ1, · · · , λn

denote the eigenvalues of A, which are assumed to be distinct and satisfy
|λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.

We define the eigenspaces associated to these eigenvalues: for a real eigenvalue λi ∈ R corre-
sponding to eigenvector vi ∈ Rn, we associate with it a 1-dimensional space Ei = span(vi); for a
complex eigenvalue λi ∈ C \R corresponding to eigenvector vi ∈ Cn, there must exist some j such
that λj = λ̄i (corresponding to eigenvector vj = v̄i), and we associate with them a 2-dimensional
space Ei = Ej = span((vi+ v̄i), i(vi− v̄i)). Further, define the unstable subspace Eu :=

⊕
i≤k Ei

and stable subspace Es :=
⊕

i>k Ei.

As discussed earlier, we only need to learn “a small effective part” of A associated with the un-
stable “modes”, or the unstable eigenvectors of A. For this purpose, in the following we formally
define a decomposition based on the orthogonal projection onto the unstable subspace Eu. This
decomposition forms the foundation of our algorithm.

The Eu ⊕E⊥
u -decomposition. Suppose the unstable subspace Eu and its orthogonal complement

E⊥
u are given by orthonormal bases P1 ∈ Rn×k and P2 ∈ Rn×(n−k), respectively, namely

Eu = col(P1), E
⊥
u = col(P2).

Let P = [P1 P2], which is also orthonormal and thus P−1 = P⊤ = [P1 P2]
⊤. For convenience, let

Π1 := P1P
⊤
1 and Π2 = P2P

⊤
2 be the orthogonal projectors onto Eu and E⊥

u , respectively. With
the state space decomposition, we proceed to decompose matrix A. Note that Eu is an invariant
subspace with regard to A (but E⊥

u not necessarily is), there exists M1 ∈ Rk×k, ∆ ∈ Rk×(n−k) and
M2 ∈ R(n−k)×(n−k), such that

AP = P

[
M1 ∆

M2

]
⇔ M :=

[
M1 ∆

M2

]
= P−1AP.

In the decomposition, the top-left block M1 ∈ Rk×k represents the action of A on the unstable
subspace. Matrix M1, together with P1, is the “small part” we discussed in the introduction. Note
that M1 (P1) is only k-by-k (n-by-k) and thus takes much fewer samples to learn compared to the
entire A. It is also evident that M1 inherits all unstable eigenvalues of A, while M2 inherits all
stable eigenvalues. Finally, we provide the system dynamics in the transformed coordinates. Let
y = [y⊤1 y⊤2]

⊤ be the coordinate representation of x in the basis formed by column vectors of P
(i.e., x = Py). The system dynamics in y-coordinates is[

y1,t+1

y2,t+1

]
= P−1AP

[
y1,t
y2,t

]
+ P−1But =

[
M1 ∆

M2

] [
y1,t
y2,t

]
+

[
P⊤
1 B

P⊤
2 B

]
ut. (1)

The Eu ⊕ Es-decomposition. In the above Eu ⊕ E⊥
u -decomposition, E⊥

u is in general not an
invariant subspace with respect to A. This can be seen from the top-right ∆ block in M , which

4

represents how much of the state is “moved” by A from E⊥
u into Eu in one step. The absence of

invariant properties in E⊥
u is sometimes inconvenient in the analysis. Hence, we introduce another

invariant decomposition that is used in the proof as follows. Specifically, Rn can be naturally decom-
posed into Eu ⊕ Es, and further both Eu and Es are invariant with respect to A. We also represent
Eu = col(Q1) and Es = col(Q2) by their orthonormal bases, and define Q = [Q1 Q2]. Note that,
these two subspaces are generally not orthogonal, so we additionally define Q−1 =: [R⊤

1 R
⊤
2]

⊤.
Details are deferred to Appendix A.1.

Lastly, we comment that when A is symmetric, the Eu ⊕ E⊥
u - and Eu ⊕ Es-decompositions are

identical because E⊥
u = Es in such symmetric cases. While E⊥

u ̸= Es in general cases, the “close-
ness” between E⊥

u and Es also contributes to the sample complexity bound in Section 4. For that
reason, we formally define such “closeness” between subspaces in Definition 3.1. We point out that
the definition has clear geometric interpretations and leads to connections between the bases of Es

and E⊥
u , which is technical and thus deferred to Appendix A.2.

Definition 3.1 (ξ-Close Subspaces). For ξ ∈ (0, 1], the subspaces E⊥
u = col(P2), Es = col(Q2)

are called ξ-close to each other, if and only if σmin(P
⊤
2 Q2) > 1− ξ.

3.1.2 τ -hop Control

This section discusses the design of controller based only on the “small part” of A, i.e., the P1

and M1 matrices discussed in Section 3.1.1, as opposed to the entire A matrix. Note that the main
objective of this subsection is to introduce the idea of our controller design when M1 and P1 are
known without errors, whereas in Section 3.2 we fully introduce Algorithm 1 that learns M1 and P1

before constructing the stabilizing controller.

As discussed in Section 3.1.1, we can view M1 as the “restriction” of A onto the unstable subspace
Eu (spanned by the basis in P1) and it captures all the unstable eigenvalues of A. Since only M1

and P1 are known while M2 and P2 are unknown, a simple idea is to “restrict” the system trajectory
entirely to Eu such that the effect of A is fully captured by M1, the part of A that is known. However,
such a restriction is not possible because, even if the current state xt is in Eu (so Axt is also in Eu),
xt+1 = Axt + But is generally not in Eu with non-zero ut. To address this issue, recall that a
desirable property of the stable component is that it spontaneously dies out in open loop. Therefore,
we propose the following τ -hop controller design, where the control input is only injected every
τ steps — in this way, we let the stable component die out exponentially between two consecutive
control injections. Consequently, when we examine the states every τ steps, we could expect that
the trajectory appears approximately “restricted to” the unstable subspace Eu.

More formally, a τ -hop controller only injects non-zero ut for t = sτ , s ∈ N. Let x̃s := xsτ and
ũs := usτ to be the state and input every τ time steps. We can write the dynamics of the τ -hop
control system as x̃s+1 = Aτ x̃s + Aτ−1Bũs. We also let ỹs to denote the state under Eu ⊕ E⊥

u -
decomposition, i.e. ỹs = P⊤x̃s. Then the state evolution can be written as[

ỹ1,s+1

ỹ2,s+1

]
= P−1AτP

[
ỹ1,s
ỹ2,s

]
+ P−1Aτ−1Bũs = Mτ

[
ỹ1,s
ỹ2,s

]
+

[
P⊤
1 Aτ−1B

P⊤
2 Aτ−1B

]
ũs, (2)

where we define Bτ := P⊤
1 Aτ−1B for simplicity, and

Mτ =

([
M1

M2

]
+

[
0 ∆

0

])τ

=

[
Mτ

1

∑τ−1
i=0 M i

1∆Mτ−1−i
2

Mτ
2

]
=:

[
Mτ

1 ∆τ

Mτ
2

]
.

Now we consider a state feedback controller ũs = K1ỹ1,s in the τ -hop control system that only acts
on the unstable component ỹ1,s, the closed-loop dynamics of which can then be written as

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK1 ∆τ

P⊤
2 Aτ−1BK1 Mτ

2

]
ỹs. (3)

In (3), the bottom-left block becomes P⊤
2 Aτ−1BK1, which is exponentially small in τ . Therefore,

with a properly chosen τ , the closed-loop dynamical matrix in (3) is almost block-upper-triangular
with the bottom-right block very close to 0 (recall that M2 is a stable matrix). As a result, if we
select K1 such that Mτ

1 + P⊤
1 Aτ−1BK1 is stable, then (3) will become stable as well. There are

different ways to select such K1, and in this paper, we focus on the simple case that B is an n-by-k
matrix and P⊤

1 Aτ−1B is an invertible square matrix (see Assumption 4.3′), in which case selecting

K1 = −(P⊤
1 Aτ−1B)−1Mτ

1 (4)

5

will suffice. Note that such a controller design will also need the knowledge of P⊤
1 Aτ−1B, which

has the same dimension as M1 (a k-by-k matrix) and takes only O(k) additional samples to learn.
For the case that B is not n-by-k, similar controller design can be done (but in a slightly more
involved way), and we defer the discussion to Appendix C.

We also point out that, for the case where A is symmetric, selecting τ = 1 should work well. This
is because ∆τ = 0 in (3) for the symmetric case, and therefore, the matrix in (3) will be triangular
even for τ = 1. This will result in a simpler algorithm and controller design, and hence a better
sample complexity bound, which we will present as Theorem 4.2 in Section 4.

We end this subsection with some comments on the role of τ -hop stabilizing controllers. One may
wonder if the controller design proposed here would be compatible with many downstream tasks,
since the closed-loop system stabilized by a τ -hop controller will still experience periodical fluctua-
tions in state norms (although in a bounded manner). However, we want to emphasize again that the
τ -hop controller can serve as a precursor to any online control algorithm that assumes a known sta-
bilizing controller, which includes system identification from stable trajectories (see, e.g., [48, 50])
and controller designs using the identified system. In this way the state norm fluctuation is only
transient, and does not harm to the overall performance significantly.

3.2 Algorithm

Our algorithm, LTS0, is divided into 4 stages: (i) learn an orthonormal basis P1 of the unstable
subspace Eu (Stage 1); (ii) learn M1, the restriction of A onto the subspace Eu (Stage 2); (iii) learn
Bτ = P⊤

1 Aτ−1B (Stage 3); and (iv) design a controller that seeks to cancel out the “unstable” M1

matrix (Stage 4). This is formally described as Algorithm 1 below.

Algorithm 1 LTS0: Learning a τ -hop Stabilizing Controller

1: Stage 1: learn the unstable subspace of A.
2: Run the system in open loop for t0 steps for initialization.
3: Run the system in open loop for k more steps and let D ← [xt0+1 · · · xt0+k].
4: Calculate Π̂1 ← D(D⊤D)−1D⊤.
5: Calculate the top k (normalized) eigenvectors v̂1, · · · v̂k of Π̂1, and let P̂1 ← [v̂1 · · · v̂k].
6: Stage 2: approximate M1 on the unstable subspace.
7: Solve the least squares M̂1 ← argminM1∈Rk×k L(M1) :=

∑t0+k
t=t0+1 ∥P̂⊤

1 xt+1 − M̂1P̂
⊤
1 xt∥2.

8: Stage 3: restore Bτ for τ -hop control.
9: for i← 1, · · · , k do

10: Let the system run in open loop for ω time steps.
11: Run for τ more steps with initial uti = α∥xti∥ei, where ti = t0 + k + iω + (i− 1)τ .
12: Let B̂τ ← [b̂1 · · · b̂k], where the ith column b̂i ← 1

α∥xti
∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
.

13: Stage 4: construct a τ -hop stabilizing controller K.
14: Construct the τ -hop stabilizing controller K̂ ← −B̂−1

τ M̂τ
1 P̂

⊤
1 .

In the remainder of this section we provide detailed descriptions of the four stages in LTS0.

Stage 1: Learn the unstable subspace of A. It suffices to learn an orthonormal basis of Eu. We
notice that, when A is applied recursively, it will push the state closer to Eu. Therefore, when we
let the system run in open loop (with control input ut ≡ 0) for t0 time steps, the ratio between
the norms of unstable and stable components will be magnified exponentially, and the state lies
“almost” in Eu. As a result, the subspace spanned by the next k states, i.e. the column space of
D := [xt0+1 · · · xt0+k], is very close to Eu. This motivates us to use the orthogonal projector
onto col(D), namely Π̂1 = D(D⊤D)−1D⊤, as an estimation of the projector Π1 = P1P

⊤
1 onto

Eu. Finally, the columns of P̂1 are restored by taking the top k eigenvectors of Π̂1 with largest
eigenvalues (they should be very close to 1), which form a basis of the estimated unstable subspace.

Stage 2: Learn M1 on the unstable subspace. Recall that M1 is the “dynamical matrix” for the
Eu-component under the Eu⊕E⊥

u -decomposition. Therefore, to estimate M1, we first calculate the
coordinates of the states xt0+1:t0+k under basis P1; that is, ŷ1,t = P̂⊤

1 xt, for t = t0 +1, . . . , t0 + k.

6

Then, we use least squares to estimate M1, which minimizes the square loss over M̂1

L(M̂1) :=

t0+k∑
t=t0+1

∥ŷ1,t+1 − M̂1ŷ1,t∥2 =

t0+k∑
t=t0+1

∥P̂⊤
1 xt+1 − M̂1P̂

⊤
1 xt∥2. (5)

It can be shown that the unique solution to (5) is M̂1 = P̂⊤
1 AP̂1 (see Appendix B).

Stage 3: Restore Bτ for τ -hop control. In this step, we restore the Bτ that quantifies the “effective
component” of control inputs restricted to Eu (see Section 3.1.2 for detailed discussion). Note that
equation (2) can be rewritten in terms of y1,t as

y1,ti+τ = Mτy1,ti +∆τy2,ti +Bτuti .

Hence, for the purpose of estimation, we simply ignore the ∆τ term, and take the ith column as

b̂i ←
1

∥uti∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
,

where uti is parallel to ei, and the magnitude of uti is set to be large enough as α∥xti∥ to amplify its
effect so that the estimation error of A is comparatively negligible. Here we introduce an adjustable
constant α to guarantee that the Eu-component still constitutes a non-negligible proportion of the
state after injecting uti , so that the iterative restoration of columns could continue.

It is evident that the ignored ∆τP
⊤
2 xti term will introduce an extra estimation error. Since ∆τ

contains a factor of Mτ−1
1 ∆ that explodes with respect to τ , this part can only be bounded if ∥P⊤

2 xti
∥

∥xti
∥

is sufficiently small. For this purpose, we introduce ω heat-up steps (running in open loop with 0
control input) to reduce the ratio to an acceptable level, during which time the projection of state
onto E⊥

u automatically diminishes over time since ρ(M2) = |λk+1| < 1.

Stage 4: Construct a τ -hop stabilizing controller K. Finally, we can design a controller that
cancels out Mτ

1 in the τ -hop system. As mentioned in Section 3.1.2, we shall focus on the case
where B is an n-by-k matrix for the sake of exposition (the case for general B will be discussed in
Appendix C). The invertibility of Bτ can be guaranteed under certain conditions (Assumption 4.3′);
further, B̂τ is also invertible as long as it is close enough to Bτ . In this case, the τ -hop stabilizing
controller can be simpliy designed as K̂1 = −B̂−1

τ M̂τ
1 in y-coordinates where we replace Bτ and

M1 in (4) with their estimates. When we return to the original x-coordinates, the controller becomes
K̂ = −B̂−1

τ M̂τ
1 P̂

⊤
1 . Note that K̂ (and K̂1) appears with a hat to emphasize the use of estimated

projector P̂1, which introduces an extra estimation error to the final closed-loop dynamics.

It is evident that the algorithm terminates in t0 + k(1 + ω + τ) time steps. In the next section, we
show how to choose the parameters to guarantee both stability and sub-linear sample complexity.

Finally, we remark that, although for the ease of exposition we have assumed here the instability
index k is known, it is fine to use an estimate of k that is larger than its true value in practice —
i.e., the algorithm still outputs a stabilizing controller since the performance analysis only relies on
the ratio between eigenvalues and the stability of λk+1, and the complexity only suffers little if the
guess of k is close to its true value.

4 Stability Guarantee

In this section, we formally state the assumptions and show the sample complexity for the proposed
algorithm to find a stabilizing controller. Our first assumption is regarding the spectral properties
of A, where we require all eigenvalues to appear without multiplicity (so that we can learn a com-
plete basis of each eigenspace), and marginally stable eigenvalues (i.e., those with moduli 1) are
eliminated (so that eigenspaces are either stable or unstable). We would like to point out that it is
common practice (e.g., [50]) to discuss marginally stable eigenvalues separately, since it obscures
the distinction between stable and unstable components and is thus technically challenging.
Assumption 4.1 (Spectral Property). A is diagonalizable with instability index k, with distinct
eigenvalues λ1, · · · , λn satisfying |λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.

The assumption is mild in the sense that matrices satisfying Assumption 4.1 are dense in Rn×n, and
our final complexity bound only depends logarithmically on the condition number of eigenvectors

7

κe(A) and the eigen-gap λk/λk+1 (see Theorem 4.1 and the discussion below). Thus any matrix A
that violates Assumption 4.1 can be handled via small perturbations.

Our second assumption is regarding how to choose the initial state, which again is standard. The ini-
tialization must be randomized to eliminate the coincidence where x0 has zero (oblique) projection
onto some eigenvector vi, in which case we cannot learn about vi and thus D is not invertible.
Assumption 4.2 (Initialization). The initial state of the system is sampled uniformly at random on
the unit hyper-sphere surface in Rn.

Lastly, we assume the system to be (d, σ)-strongly controllable, which is standard in literature.
Assumption 4.3 ((ν, σ)-Strong Controllability). The system is (ν, σ)-strongly controllable; i.e.,
σmin(Cν) > σ, where Cν := [Aν−1B Aν−2B · · · AB B] is the ν-step controllability matrix.

Above are all the assumptions we need. However, we remind the readers that, when we introduce the
τ -hop controller design in Section 3.1.2, B is assumed to have k columns and certain assumptions
are needed to guarantee the invertibility of B1. Indeed, for the ease of exposition, we first consider
this special case in presenting our main result (Theorem 4.1) below, where we impose the following
Assumption 4.3′ regarding the controllability within the unstable subspace Eu instead of the more
general Assumption 4.3 (recall that R1 is defined in the Eu ⊕ Es-decomposition in Section 3.1.1).
Discussions on how to handle the more general Assumption 4.3 via a transformation to the special
case (where Assumption 4.3′ holds) are deferred to Appendix C.
Assumption 4.3′ (c-Effective Control in Unstable Subspace). B ∈ Rn×k, σmin(R1B) > c∥B∥.

Note that Assumption 4.3′ has a clear intuition — every direction in the unstable subspace receives
at least a proportion of c from the influence of any control input. This assumption is reasonable
in that, if σmin(R1B) ≈ 0, the control input u has to be very large to push the state along the
direction corresponding to the smallest singular value, which could induce excessively large control
cost. We can also interpret the lower bound on σmin(R1B) as a special case of Assumption 4.3 (i.e.,
(1, c∥B∥)-strong controllablility). Details can be found in Appendix C.

In the following we present the main performance guarantees for our algorithm.
Theorem 4.1 (Main Theorem). Given a noiseless LTI system xt+1 = Axt + But subject to As-
sumptions 4.1, 4.2 and 4.3′, and additionally |λ1|2|λk+1| < |λk|, by running LTS0 with parameters

τ = O(1), ω = O(ℓ log k), α = O(1), t0 = O(k log n)

that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop system is exponen-
tially stable with probability 1−O(k−ℓ) over the initialization of x0 for any ℓ ∈ N. Here the big-O
notation only shows dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥,
∥B∥, c, α, ξ (recall that E⊥

u and Es are ξ-close), χ(L̂τ) (see Lemma D.1), and ζε(·) (see Lemma
G.1), and details can be found in equations (41) through (46).

Theorem 4.1 shows the proposed LTS0 algorithm can find a stabilizing controller in Õ(k) steps,
which incurs a state norm of 2Õ(k), significantly smaller than the state-of-the-art 2Θ(n) in the k ≪ n
regime. We would like to point out that this does not violate the lower bound shown in [15], since
the state norm degenerates to 2Θ(n) when k = Θ(n), and might degrade arbitrarily for systems with
adversarially designed parameters. Still, for a large proportion of systems with k ≪ n and favorable
constants, our algorithm achieves better performance than the naive ones. The theoretical result is
also verified by numerical experiments, the details of which can be found in Appendix H.

Discussion on constants. Curious readers can refer to Appendix G (equations (41) through (46)) for
detailed expressions of the constants hidden behind the big-O notation in the theorem; Table 1 also
summarizes all instance-specific constants appearing in the bound. Here we provide a brief overview
how the bound depends on the system parameters. It is evident that, for a system with larger ξ (i.e.,
when Eu and Es are “less orthogonal” to each other) or smaller c (i.e., when it costs more to control
the unstable subspace), we see a larger τ in (41), a smaller α in (43), and larger t0 and ω in (45) and
(46), respectively, which altogether incur a larger constant term in the sample complexity. This is in
accordance with our intuition of the state space decomposition and Assumption 4.3′, respectively.

The bound also relies heavily on the spectral properties of A. The constraint |λ1|2|λk+1| < |λk|
ensures validity of (41), which is necessary for cancelling out the combined effect of non-orthogonal

8

subspaces Eu and Es (resulting in ∆τ in the top-right block) and inaccurate basis P̂1 (resulting in
projection error in the bottom-left block) — a system with larger ratio |λ1|2|λk+1|/|λk| suffers from
more severe side-effects, and thus requires a larger τ and a higher sample complexity. Nevertheless,
we believe that this assumption is not essential, and we leave it as future work to relax it.

Another important parameter is the eigen-gap |λk|/|λk+1| around 1 that determines how fast the
stable and unstable components become separable in magnitude when the system runs in open loop,
which is utilized in the t0 initialization steps of Stage 1 and ω heat-up steps of Stage 3. Consequently,
a system with smaller eigen-gap |λk|/|λk+1| requires a larger t0 (see (10)) and ω (see (46)) and
therefore a higher sample complexity.

The condition number of eigenvectors κe(A) also contributes to the bound of t0, the number of
initialization steps. It is intuitive that, a large κe(A) indicates less orthogonal eigenspaces, which
in turn requires a more distinct separation among the magnitudes of different eigen-components of
xt0 , so that the stable components interfere less with the unstable ones.

Finally, we would like to point out that all these quantities appear in the bound as logarithmic terms,
indicating that the sample complexity only degrades mildly when the constants become worse.

A warm-up case. Despite the generality of Theorem 4.1, its proof involves technical difficulties.
In Theorem 4.2, we include results for the special case where A is real symmetric, which leads to a
simpler choice of algorithm parameters and a cleaner sample complexity bound.

Theorem 4.2. Given a noiseless LTI system xt+1 = Axt + But subject to Assumptions 4.1, 4.2
and 4.3′ with symmetric A, by running LTS0 with parameters τ = 1, ω = 0, α = 1, t0 =
O(k log n) that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop system
is exponentially stable with probability 1 over the initialization of x0. Here the big-O notation only
shows dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥, ∥B∥, c, and
χ(L̂1) (see Lemma D.1), and details can be found in equation (18).

Although Theorem 4.2 takes a simpler form, its proof still captures the main insight of our analysis.
For this reason, we use the proof of Theorem 4.2 as a warm-up example in Appendix F before we
present the proof ideas of the main Theorem 4.1.

5 Proof Outline

In this section we will give a high-level overview of the key proof ideas for the main theorems. The
full proof details can be found in Appendices E, F and G as indicated below.

Proof Structure. The proof is largely divided into two steps. In Step 1, we examine how accurate
the learner estimates the unstable subspace Eu in Stage 1 and 2. We will show that Π1, P1 and M1

can be estimated up to an error of δ within t0 = O(k log n− log δ) steps. In Step 2, we examine the
estimation error of M1 and Bτ in Stage 2 and 3 (and thus K̂1), based on which we will eventually
show that the τ -hop controller output by Algorithm 1 makes the system asymptotically stable. The
proof is based on a detailed spectral analysis of the closed-loop dynamical matrix.

Overview of Step 1. To upper bound the estimation errors in Stage 1 and 2, we only have to notice
that the estimation error of Π1 completely captures how well the unstable subspace is estimated, and
all other bounds should follow directly from it. The bound on ∥Π1− Π̂1∥ is shown in Theorem 5.1,
together with a bound on ∥P1 − P̂1∥ presented in Corollary 5.2.

Theorem 5.1. For a noiseless linear dynamical system xt+1 = Axt, let Eu be the unstable subspace
of A, k = dimEu be the instability index of the system, and Π1 be the orthogonal projector onto
subspace Eu. Then for any ε > 0, by running Stage 1 of Algorithm 1 with an arbitrary initial state
that terminates in (t0 + k) time steps, where

t0 = O

k log n− log ε+ log κe(A)

2 log |λk|
|λk+1|

 ,

the matrix D⊤D is invertible with probability 1 (where D = [xt0+1 · · · xt0+k]), and in such cases
we shall obtain an estimated Π̂1 = D(D⊤D)−1D⊤ with error ∥Π̂1 −Π1∥ < ε.

9

Corollary 5.2. Under the premises of Theorem 5.1, for any orthonormal basis P̂1 of col(Π̂1) (where
Π̂1 is obtained by Algorithm 1), there exists a corresponding orthonormal basis P1 of col(Π1), such
that ∥P̂1 − P1∥ <

√
2kε =: δ, ∥M̂1 −M1∥ < 2∥A∥δ.

The proofs are deferred to Appendix E due to limited length.

Overview of Step 2. To analyze the stability of the closed-loop system, we shall first write out the
closed-loop dynamics under the τ -hop controller. Recall in Section 3.1.2 we have defined ũs, x̃s, ỹs
to be the control input, state in x-coordinates, and state in y-coordinates in the τ -hop control system,
respectively. Using these notations, the learned controller can be written as

ũs = K̂x̃s = K̂1P̂
⊤
1 P ỹs =

[
K̂1P̂

⊤
1 P1

K̂1P̂
⊤
1 P2

]
ỹs

in y-coordinates (as opposed to K̂1ỹs). Therefore, the closed-loop τ -hop dynamics should be

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P1 ∆τ + P⊤

1 Aτ−1BK̂1P̂
⊤
1 P2

P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1 Mτ

2 + P⊤
2 Aτ−1BK̂1P̂

⊤
1 P2

] [
ỹ1,s
ỹ2,s

]
=: L̂τ ỹs, (6)

and we will show it to be asymptotically stable (i.e., ρ(L̂τ) < 1). Note that L̂τ is given by a 2-by-2
block form, we can utilize the following lemma to assist the spectral analysis of block matrices, the
proof of which is deferred to Appendix D.

Lemma 5.3 (Block Perturbation Bound). For 2-by-2 block matrices A =
[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
,

the spectral radii of A and A+ E differ by at most |ρ(A+ E)− ρ(A)| ≤ χ(A+ E)∥E12∥∥E21∥,
where χ(A+ E) is a constant (see Appendix D).

The above lemma shows a clear roadmap for proving ρ(L̂τ) < 1. First, we need to guarantee stabil-
ity of the diagonal blocks — the top-left block is stable because K̂1 is designed to (approximately)
eliminate it to zero (which requires the estimation error bound on Bτ), and the bottom-right block
is stable because it is almost Mτ

2 with a negligible error induced by inaccurate projection. Then, we
need to upper-bound the norms of off-diagonal blocks via careful estimation of factors appearing in
these blocks. Complete proofs for both cases can be found in Appendices F and G, respectively.

6 Conclusions

This paper provides a new perspective into the learn-to-stabilize problem. We design a novel al-
gorithm that exploits instance-specific properties to learn to stabilize an unknown LTI system on a
single trajectory. We show that, under certain assumptions, the sample complexity of the algorithm
is upper bounded by O(k log n), which avoids the 2Θ(n) state norm blow-up of existing methods
in the k ≪ n regime. This work initiates a new direction in the learn-to-stabilize literature, and
many interesting and challenging questions remain open, including handling noises, eliminating the
assumptions on spectral properties, and developing better ways to learn the unstable subspace.

References
[1] John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback Control Theory.

Courier Corporation, 2013.

[2] Geir E. Dullerud and Fernando Paganini. A Course in Robust Control Theory: A Convex
Approach, volume 36. Springer Science & Business Media, 2013.

[3] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. arXiv preprint arXiv:1504.00702, 2015.

[4] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learn-
ing, pages 1329–1338, 2016.

[5] Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. Global convergence of
policy gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039,
2018.

10

[6] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi. LQR through the lens of
first order methods: Discrete-time case. arXiv preprint arXiv:1907.08921, 2019.

[7] Yingying Li, Yujie Tang, Runyu Zhang, and Na Li. Distributed reinforcement learning for
decentralized linear quadratic control: A derivative-free policy optimization approach. arXiv
preprint arXiv:1912.09135, 2019.

[8] Steven J. Bradtke, B. Erik Ydstie, and Andrew G. Barto. Adaptive linear quadratic control us-
ing policy iteration. In Proceedings of 1994 American Control Conference-ACC’94, volume 3,
pages 3475–3479. IEEE, 1994.

[9] Stephen Tu and Benjamin Recht. Least-squares temporal difference learning for the linear
quadratic regulator. arXiv preprint arXiv:1712.08642, 2017.

[10] Karl Krauth, Stephen Tu, and Benjamin Recht. Finite-time analysis of approximate policy
iteration for the linear quadratic regulator. In Advances in Neural Information Processing
Systems, pages 8512–8522, 2019.

[11] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and Optimal Control, vol-
ume 40. Prentice Hall New Jersey, 1996.

[12] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sam-
ple complexity of the linear quadratic regulator. Foundations of Computational Mathematics,
pages 1–47, 2019.

[13] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages
1–26, 2011.

[14] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Explore more
and improve regret in linear quadratic regulators, 2020.

[15] Xinyi Chen and Elad Hazan. Black-box control for linear dynamical systems. arXiv preprint
arXiv:2007.06650, 2021.

[16] Juan C. Perdomo, Jack Umenberger, and Max Simchowitz. Stabilizing dynamical systems via
policy gradient methods. arXiv preprint arXiv:2110.06418, 2021.

[17] Tankred Rautert and Ekkehard W. Sachs. Computational design of optimal output feedback
controllers. SIAM Journal on Optimization, 7(3):837–852, 1997.

[18] Karl Mårtensson and Anders Rantzer. Gradient methods for iterative distributed control syn-
thesis. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly
with 2009 28th Chinese Control Conference, pages 549–554. IEEE, 2009.

[19] Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, and Mar-
tin J. Wainwright. Derivative-free methods for policy optimization: Guarantees for linear
quadratic systems. arXiv preprint arXiv:1812.08305, 2018.

[20] Hesameddin Mohammadi, Armin Zare, Mahdi Soltanolkotabi, and Mihailo R. Jovanović. Con-
vergence and sample complexity of gradient methods for the model-free linear quadratic regu-
lator problem. arXiv preprint arXiv:1912.11899, 2019.

[21] Benjamin Gravell, Peyman Mohajerin Esfahani, and Tyler Summers. Learning robust con-
trollers for linear quadratic systems with multiplicative noise via policy gradient. arXiv
preprint arXiv:1905.13547, 2019.

[22] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. On the global conver-
gence of actor-critic: A case for linear quadratic regulator with ergodic cost. arXiv preprint
arXiv:1907.06246, 2019.

[23] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Policy optimization provably converges
to Nash equilibria in zero-sum linear quadratic games. In Advances in Neural Information
Processing Systems, pages 11602–11614, 2019.

11

[24] Kaiqing Zhang, Bin Hu, and Tamer Basar. Policy optimization for H2 linear control with
H∞ robustness guarantee: Implicit regularization and global convergence. In Learning for
Dynamics and Control, pages 179–190, 2020.

[25] Luca Furieri, Yang Zheng, and Maryam Kamgarpour. Learning the globally optimal distributed
LQ regulator. In Learning for Dynamics and Control, pages 287–297, 2020.

[26] Joao Paulo Jansch-Porto, Bin Hu, and Geir Dullerud. Convergence guarantees of policy op-
timization methods for Markovian jump linear systems. arXiv preprint arXiv:2002.04090,
2020.

[27] Joao Paulo Jansch-Porto, Bin Hu, and Geir Dullerud. Policy learning of MDPs with mixed
continuous/discrete variables: A case study on model-free control of Markovian jump systems.
arXiv preprint arXiv:2006.03116, 2020.

[28] Ilyas Fatkhullin and Boris Polyak. Optimizing static linear feedback: Gradient method. arXiv
preprint arXiv:2004.09875, 2020.

[29] Yujie Tang, Yang Zheng, and Na Li. Analysis of the optimization landscape of linear quadratic
Gaussian (LQG) control. In Learning for Dynamics and Control, pages 599–610. PMLR,
2021.

[30] Asaf B. Cassel and Tomer Koren. Online policy gradient for model free learning of linear
quadratic regulators with

√
T regret. In International Conference on Machine Learning, pages

1304–1313. PMLR, 2021.

[31] Mohamad K. S. Faradonbeh, Ambuj Tewari, and George Michailidis. Finite time analysis of
optimal adaptive policies for linear-quadratic systems. arXiv preprint arXiv:1711.07230, 2017.

[32] Yi Ouyang, Mukul Gagrani, and Rahul Jain. Learning-based control of unknown linear systems
with Thompson sampling. arXiv preprint arXiv:1709.04047, 2017.

[33] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for
robust adaptive control of the linear quadratic regulator. In Advances in Neural Information
Processing Systems, pages 4188–4197, 2018.

[34] Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic regulators effi-
ciently with only

√
T regret. arXiv preprint arXiv:1902.06223, 2019.

[35] Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalent control of LQR is effi-
cient. arXiv preprint arXiv:1902.07826, 2019.

[36] Max Simchowitz and Dylan J. Foster. Naive exploration is optimal for online LQR. arXiv
preprint arXiv:2001.09576, 2020.

[37] Max Simchowitz, Karan Singh, and Elad Hazan. Improper learning for non-stochastic control.
arXiv preprint arXiv:2001.09254, 2020.

[38] Yang Zheng, Luca Furieri, Maryam Kamgarpour, and Na Li. Sample complexity of linear
quadratic Gaussian (LQG) control for output feedback systems. In Learning for Dynamics and
Control, pages 559–570. PMLR, 2021.

[39] Orestis Plevrakis and Elad Hazan. Geometric exploration for online control. Advances in
Neural Information Processing Systems, 33:7637–7647, 2020.

[40] Tze Leung Lai. Asymptotically efficient adaptive control in stochastic regression models.
Advances in Applied Mathematics, 7(1):23–45, 1986.

[41] Han-Fu Chen and Ji-Feng Zhang. Convergence rates in stochastic adaptive tracking. Interna-
tional Journal of Control, 49(6):1915–1935, 1989.

[42] Tze Leung Lai and Zhiliang Ying. Parallel recursive algorithms in asymptotically efficient
adaptive control of linear stochastic systems. SIAM Journal on Control and Optimization,
29(5):1091–1127, 1991.

12

[43] Morteza Ibrahimi, Adel Javanmard, and Benjamin Van Roy. Efficient reinforcement learning
for high dimensional linear quadratic systems. arXiv preprint arXiv:1303.5984, 2013.

[44] Mohamad K. S. Faradonbeh, Ambuj Tewari, and George Michailidis. Finite-time adaptive
stabilization of linear systems. IEEE Transactions on Automatic Control, 64(8):3498–3505,
2019.

[45] Shahriar Talebi, Siavash Alemzadeh, Niyousha Rahim, and Mehran Mesbahi. Online regu-
lation of unstable linear systems from a single trajectory. In Proceedings of the 59th IEEE
Conference on Decision and Control (CDC), pages 4784–4789, 2020.

[46] Yang Zheng and Na Li. Non-asymptotic identification of linear dynamical systems using mul-
tiple trajectories. IEEE Control Systems Letters, 5(5):1693–1698, 2020.

[47] Lennart Ljung. System identification. Wiley Encyclopedia of Electrical and Electronics Engi-
neering, pages 1–19, 1999.

[48] Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, and Benjamin Recht. Learn-
ing without mixing: Towards a sharp analysis of linear system identification. arXiv preprint
arXiv:1802.08334, 2018.

[49] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of LTI systems from a single
trajectory. In 2019 American Control Conference (ACC), pages 5655–5661. IEEE, 2019.

[50] Tuhin Sarkar, Alexander Rakhlin, and Munther A. Dahleh. Finite-time system identification
for partially observed LTI systems of unknown order. arXiv preprint arXiv:1902.01848, 2019.

[51] Salar Fattahi. Learning partially observed linear dynamical systems from logarithmic number
of samples. In Learning for Dynamics and Control, pages 60–72. PMLR, 2021.

[52] Han Wang and James Anderson. Large-scale system identification using a randomized svd.
arXiv preprint arXiv:2109.02703, 2021.

[53] Yu Xing, Benjamin Gravell, Xingkang He, Karl Henrik Johansson, and Tyler Summers. Identi-
fication of linear systems with multiplicative noise from multiple trajectory data. arXiv preprint
arXiv:2106.16078, 2021.

[54] Yuji Nakatsukasa. Off-diagonal perturbation, first-order approximation and quadratic residual
bounds for matrix eigenvalue problems. In Eigenvalue Problems: Algorithms, Software and
Applications in Petascale Computing (EPASA), Lecture Notes in Computer Science, pages
233–249. Springer, 2015.

[55] E. A. Rawashdeh. A simple method for finding the inverse matrix of Vandermonde matrix.
Matematicki Vesnik: MV19303, 2019.

[56] F. L. Bauer and C. T. Fike. Norms and exclusion theorems. Numerische Mathematik, 2:137–
141, 1960.

[57] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition,
2013.

[58] Ioannis Chatzigeorgiou. Bounds on the Lambert function and their application to the outage
analysis of user cooperation. IEEE Communications Letters, 17(8):1505––1508, 2013.

13

Checklist

(1) For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the “future work” part of the

conclusions in Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We don’t see

any potential societal impacts in such theoretical results.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
(2) If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D, Ap-

pendix E, Appendix F and Appendix G.
(3) If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A]

(4) If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
(5) If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

14

	Introduction
	Problem Formulation
	Learning to Stabilize from Zero (LTS_0)
	Algorithm Preliminaries
	Decomposition of the State Space
	τ-hop Control

	Algorithm

	Stability Guarantee
	Proof Outline
	Conclusions
	References
	Checklist

