
A Appendix1

A.1 More dataset details2

On MAG and ACM, Paper (P) objects are associated with 128-dimensional real features. On IMDB,3

Movie (M) objects are associated with 14-dimensional real features. On DBLP, all the objects have no4

real object features. For the objects that are not associated with real features, following our previous5

work [8], we generate random features for them by the Xavier uniform distribution [2].6

For some baseline methods [6, 1, 4, 7], they need users to input several useful meta-paths, which are7

specified in Table 1. Our SHGP does not require meta-paths.8

Table 1: Meta-paths used by baselines.

Datasets Meta-paths

MAG PP , PFP , PAP , PAIAP
ACM PAP , PSP
DBLP APA, APCPA, APTPA
IMDB MAM , MUM , MDM

Note that, although the datasets used in the papers of some baselines may have the same name as9

ours, they may not be identical. Please refer to their dataset statistics. For example, DBLP in [4] and10

DBLP in [7] are quite different, and IMDB in [4] and IMDB in [5] are also different. We reproduce11

the experimental results of all the baselines on our datasets.12

A.2 Efficiency of SHGP13

We follow GCN [3] to show the efficiency of our SHGP. Specifically, we construct eight HINs with14

different number of links, and use SHGP to pre-train each of them for 100 epochs on our GPU. The15

actual total time cost is reported in Figure 1. As shown, overall, the time cost increases roughly16

linearly with respect to the number of links, which demonstrates the high efficiency of our SHGP.17

21k 38k 60k 84k 106k 126k 148k 171k
The number of links

0

2

4

6

8

10

12

Se
co

nd
s

Figure 1: The total time cost (seconds) of 100 pre-training epochs of SHGP.
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Figure 2: Error bar of SHGP in term of object classification.
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A.3 Impact of training ratio18

To more intuitively observe the impact of training ratio on object classification performance. In19

Figure 2, we show the error bar of SHGP with respect to ten random repeats of object classification.20

We can see, overall, the classification performance improves as the training ratio increases, slightly.21

A.4 Convergence of SHGP22

In Figure 3, we plot the pre-training loss curves of SHGP on the four benchmark datasets. As we can23

see, our SHGP converges fast. Specifically, it converges in about 20 iterations on ACM, 30 iterations24

on DBLP, and 80 iterations on MAG and IMDB.25
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Figure 3: The pre-training loss curves of SHGP on four datasets.
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