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Abstract

Recent self-supervised pre-training methods on Heterogeneous Information Net-
works (HINs) have shown promising competitiveness over traditional semi-
supervised Heterogeneous Graph Neural Networks (HGNNs). Unfortunately, their
performance heavily depends on careful customization of various strategies for gen-
erating high-quality positive examples and negative examples, which notably limits
their flexibility and generalization ability. In this work, we present SHGP, a novel
Self-supervised Heterogeneous Graph Pre-training approach, which does not need
to generate any positive examples or negative examples. It consists of two modules
that share the same attention-aggregation scheme. In each iteration, the Att-LPA
module produces pseudo-labels through structural clustering, which serve as the
self-supervision signals to guide the Att-HGNN module to learn object embeddings
and attention coefficients. The two modules can effectively utilize and enhance each
other, promoting the model to learn discriminative embeddings. Extensive experi-
ments on four real-world datasets demonstrate the superior effectiveness of SHGP
against state-of-the-art unsupervised baselines and even semi-supervised baselines.
We release our source code at: https://github.com/kepsail/SHGP.

1 Introduction

Over the past few years, various semi-supervised graph neural networks (GNNs) have been proposed
to learn graph embeddings. They have achieved remarkable success in many graph analytic tasks.
This success, however, comes at the cost of a heavy reliance on high-quality supervision labels. In
real-world scenarios, labels are usually expensive to acquire, and sometimes even impossible due to
privacy concerns.

To relieve the label scarcity issue in (semi-) supervised learning, and take full advantage of a large
amount of easily available unlabeled data, the self-supervised learning (SSL) paradigm has recently
drawn considerable research interest in the computer vision research community. It leverages the
supervision signal from the data itself to learn generalizable embeddings, which are then transferred
to various downstream tasks with only a few task-specific labels. One of the most common SSL
paradigms is contrastive learning, which learns representations by estimating and maximizing the
mutual information between the input and the output of a deep neural network encoder [8].

For graphs, some recent graph contrastive learning methods [29, 7, 41, 25, 20, 19, 43, 36, 40] have
shown promising competitiveness compared with semi-supervised GNNs. They usually require three
typical steps: (1) constructing positive examples (semantically correlated structural instances) by
strategies such as node dropping, edge perturbation, and negative examples (uncorrelated instances) by
strategies such as feature shuffling, mini-batch sampling; (2) encoding these examples through graph
encoders such as GCN [16]; (3) maximizing/minimizing the similarity between these positive/negative
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examples. Nevertheless, in the real world, graphs often contain multiple types of objects and multiple
types of relationships between them, which are called heterogeneous graphs, or heterogeneous
information networks (HINs) [27]. Due to the challenges caused by the heterogeneity, existing SSL
methods on homogeneous graphs cannot be straightforwardly applied to HINs. Very recently, several
works have made some efforts to conduct SSL on HINs [33, 23, 18, 15, 13, 14, 37, 10]. In comparison
with SSL methods on homogeneous graphs, the key difference is that they usually have different
example generation strategies, so as to capture the heterogeneous structural properties in HINs.

The strategies of generating high-quality positive/negative examples are critical to the performance of
existing methods [34, 4, 41, 36]. Unfortunately, whether for homogeneous graphs or heterogeneous
graphs, the example generation strategies are dataset-specific, and may not be applicable to all
scenarios. This is because real-world graphs are abstractions of things from various domains, e.g.,
social networks, citation networks, etc. They usually have significantly different structural properties
and semantics. Previous works have systematically studied this and found that different strategies
are good at capturing different structural semantics. For example, study [41] observed that edge
perturbation benefits social networks but hurts some biochemical networks, and study [36] observed
that negative examples benefit sparser graphs. Consequently, in practice, the example generation
strategies have to be empirically constructed and investigated through either trial-and-error or rules
of thumb. This significantly limits the practicality and general applicability of existing methods.

In this work, we focus on HINs which are more challenging, and propose a novel SSL approach,
named SHGP. Different from existing methods, SHGP requires neither positive examples nor negative
examples, thus circumventing the above issues. Specifically, SHGP adopts any HGNN model that is
based on attention-aggregation scheme as the base encoder, which is termed as the module Att-HGNN.
The attention coefficients in Att-HGNN are particularly used to combine with the structural clustering
method LPA (label propagation algorithm) [21], as the module Att-LPA. Through performing
structural clustering on HINs, Att-LPA is able to produce clustering labels, which are treated as
pseudo-labels. In turn, these pseudo-labels serve as guidance signals to help Att-HGNN learn better
embeddings as well as better attention coefficients. Thus, the two modules are able to exploit and
enhance each other, finally leading the model to learn discriminative and informative embeddings. In
summary, we have three main contributions as follows:

• We propose a novel SSL method on HINs, SHGP. It innovatively consists of the Att-LPA module
and the Att-HGNN module. The two modules can effectively enhance each other, facilitating the
model to learn effective embeddings.

• To the best of our knowledge, SHGP is the first attempt to perform SSL on HINs without any
positive or negative examples. Therefore, it can directly avoid the laborious investigation of
example generation strategies, improving the model’s generalization ability and flexibility.

• We transfer the object embeddings learned by SHGP to various downstream tasks. The experimental
results show that SHGP can outperform state-of-the-art baselines, even including some semi-
supervised baselines, demonstrating its superior effectiveness.

2 Related work

SSL on HINs. There are several existing methods [33, 23, 18, 15, 37, 13, 14, 10] that conduct
SSL on HINs. Determined by their contrastive loss functions, all these methods require high-quality
positive and negative examples to effectively learn embeddings. Thus, their effectiveness and
performance hinge on the specific strategies of generating positive examples and negative examples,
which limits their flexibility and generalization ability.

SSL on homogeneous graphs. Existing SSL methods on homogeneous graphs [29, 7, 41, 25,
20, 19, 43, 36, 35, 30] also need to generate sufficient positive and negative examples to effectively
perform graph contrastive learning. They only handle homogeneous graphs and cannot be easily
applied to HINs. In this work, we seek to perform SSL on HINs without any positive examples or
negative examples.

GNN+LPA methods. There exist several methods [31, 1, 24] that combine LPA [21] with GNNs.
However, they are all supervised learning methods, and only deal with homogeneous graphs. In this
work, we study SSL on HINs.
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Others. DeepCluster [2] uses K-means to perform clustering in the embedding space. Differently,
our SHGP directly performs structural clustering in the graph space. JOAO [40] explores the
automatic selection of positive example generation strategies, which is still not fully automatic.
HuBERT [9] is an SSL approach for speech representation learning. GIANT [3] leverages graph-
structured self-supervision to extract numerical node features from raw data. MARU [12] learns
object embeddings by exploiting meta-contexts in random walks. Different from them, in this work,
we study how to effectively conduct SSL on HINs. Graph pooling methods e.g. [22, 39] learn soft
cluster assignment to coarsen graph topology in each model layer. Differently, our method propagates
integer (hard) cluster labels in each layer to perform structural clustering.

3 Preliminaries

We first briefly introduce some concepts about HINs, and then formally describe the problem we
study in this paper.

Heterogeneous Information Network. An HIN is defined as: G = (V, E ,A,R, ϕ, ψ), where V
is the set of objects, E is the set of links, ϕ : V → A and ψ : E → R are respectively the object
type mapping function and the link type mapping function, A denotes the set of object types, and R
denotes the set of relations (link types), where |A|+ |R| > 2. Let X = {X1, ...,X|A|} denote the
set containing all the feature matrices associated with each type of objects. A meta-path P of length
l is defined in the form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1 (abbreviated as A1A2 · · ·Al+1), which

describes a composite relation R = R1 ◦R2 ◦ · · · ◦Rl between object types A1 and Al+1, where ◦
denotes the composition operator on relations.

We show a toy HIN in the left part of Figure 1. It contains four object types: “Paper” (P ), “Author”
(A), “Conference” (C) and “Term” (T ), and three relations: “Publish” between P and C, “Write”
between P and A, and “Contain” between P and T . APC is a meta-path of length two, and a1p2c2
is such a path instance, which means that author a1 has published paper p2 in conference c2.

SSL on HINs. Given an HIN G, the problem is to learn an embedding vector hi ∈ Rd for each
object i ∈ V , in a self-supervised manner, i.e., without using any task-specific labels. The pre-trained
embeddings are expected to capture the general-purpose information contained in G, and can be
easily transferred to various unseen downstream tasks with only a few task-specific labels.
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Figure 1: The overall architecture of SHGP. Given an HIN, in each iteration, we use Att-HGNN
to produce embeddings and predictions, and use Att-LPA to produce pseudo-labels. The loss
is computed as the cross-entropy between the predictions and the pseudo-labels. The attention
coefficients (and other parameters) are optimized via gradient descent, which serve as the new
attention-aggregation weights of Att-HGCN and Att-LPA in the next iteration, promoting them to
produce better embeddings and predictions, as well as better pseudo-labels.

4 Methodology

In this section, we present the proposed method SHGP, which consists of two key modules. The Att-
HGNN module is instantiated as any HGNN model that is based on attention-aggregation scheme. The
Att-LPA module combines the structural clustering method LPA [21] with the attention-aggregation
scheme used in Att-HGNN. The overall model architecture is shown in Figure 1 and explained in the
figure caption. In the following, we describe the procedure of SHGP in detail.
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4.1 Initialization

At the beginning, we randomly initialize all the model parameters in Att-HGNN by the Xavier uniform
distribution [6]. To obtain initial pseudo-labels, we use the original LPA [21] to perform a thorough
structural clustering on the input HIN G. Specifically, LPA randomly associates each object with a
unique integer as its initial label, and lets them iteratively propagate along the links in G. In each
iteration, each object updates its label to the label that appears most frequently in its neighborhood.
After convergence, the final label indicates the cluster to which each object belongs. We treat these
clustering labels returned by LPA as the initial pseudo-labels, and re-organize them as a one-hot label
matrix Y[0] ∈ R|V|×K , where K denotes the cluster size, which is not a hyper-parameter but depends
on the uniqueness of these labels. Thus, in the subsequent steps, the propagation of the pseudo-labels
can be easily implemented via the matrix multiplication operation.

Under the guidance of these obtained initial pseudo-labels, we first train Att-HGNN for several
epochs as the model “warm-up”, to learn the initial meaningful attention coefficients as well as other
model parameters. We use W [0] to denote all these initial parameters. Then, we proceed with the
following iterations.

4.2 Iteration

In the t-th iteration, we compute the object embeddings H[t] by the Att-HGNN module. Att-HGNN
is parameterized by W [t−1], and its inputs include: the HIN topology G, the object features X . This
is formulated as follows:

H[t] = Att-HGNN
(
W [t−1],G,X

)
(1)

Meanwhile, we update the pseudo-labels by the creatively proposed Att-LPA module. In comparison
with Att-HGNN, Att-LPA does not input X , but instead inputs Y[t−1], i.e., the pseudo-labels of the
previous iteration. This is formulated as follows:

Y[t] = Att-LPA
(
W [t−1],G,Y[t−1]

)
(2)

Att-HGNN and Att-LPA perform one forward pass of attention-based aggregation in the same way.
The only difference between them is that Att-HGNN aggregates the (projected) features of neighbors
while Att-LPA aggregates the pseudo-labels of neighbors produced in the previous iteration, both
weighted by exactly the same attention coefficients.

Now, we input H[t] into a softmax classifier which is built on the top layer of the Att-HGNN to make
predictions P[t]. The loss is computed as the cross-entropy between the predictions P[t] and the
pseudo-labels Y[t], as follows:

P[t] =softmax(H[t] ·C[t−1])

L[t] =−
∑
i∈V

K∑
c=1

Y
[t]
i,c lnP

[t]
i,c (3)

where C[t−1] ⊂ W [t−1] denotes the parameter matrix of the classifier.

Having the loss, we can then optimize all the model parameters by gradient descent, as follows:

W [t] = W [t−1] − η · ∇WL[t] (4)
where η denotes the learning rate. As the optimization proceeds, the model will learn better model
parameters (including attention coefficients). This leads Att-HGNN and Att-LPA to respectively
produce better embeddings (and predictions) and better pseudo-labels in the next iteration, which,
in turn, promotes the model to learn further better parameters. Thus, the two processes are able to
closely interact with each other, as well as enhance each other, finally resulting in discriminative and
informative embeddings. The overall procedure is shown in Algorithm 1.

4.3 Model discussion

4.3.1 Encoder of Att-HGNN

The Att-HGNN module can be specifically instantiated as any attention-based HGNN encoders.
Existing possible choices include: HAN [32], HGT [11], GTN [42], and ie-HGCN [38]. Among them,
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Algorithm 1 The overall procedure of SHGP
Input: An HIN G
Output: Object embeddings

1: Perform a thorough LPA process to get initial pseudo-labels.
2: Guided by the initial pseudo-labels, warm-up Att-HGNN for several epochs.
3: while Not Converged do
4: Perform one forward pass of Att-HGNN module to compute embeddings by Eq. (1).
5: Perform one forward pass of Att-LPA module to update pseudo-labels by Eq. (2).
6: Compute cross-entropy loss by Eq. (3).
7: Optimize all the model parameters (including attention coefficients) by Eq. (4).
8: end while

our previously proposed ie-HGCN [38] is simple and efficient. It has shown superior performance
over the other three models. Therefore, in this work, we adopt it as the base encoder of Att-HGNN,
which is in detail described as follows.

Let Ni denote the set of object i’s neighbors. Specially, object i itself is also added to Ni. Accordingly,
an edge (i, i) is added to E , and a dummy self-relation ψ(i, i) is added to R. In each model layer,
object i’s new representation h⃗′i is computed as follows:

h⃗′i = σ

( ∑
j∈Ni

β
ψ(i,j)
i · âψ(i,j)i,j ·Wψ(i,j) · h⃗j

)
(5)

where σ is the non-linear activation function, and h⃗j is neighbor j’s current representation. Wψ(i,j)

is the projection parameter matrix, âψ(i,j)i,j is the normalized link weight (âψ(i,i)i,i = 1), and βψ(i,j)i is
the normalized attention coefficient, all of which are specific to relation ψ(i, j).

With Att-HGNN, we can formulate our Att-LPA in a similar way. Specifically, in each layer, object
i’s pseudo-label is updated as follows:

y⃗i′ = one-hot
(

argmax
( ∑
j∈Ni

β
ψ(i,j)
i · âψ(i,j)i,j · y⃗j

))
(6)

where y⃗j is neighbor j’s pseudo-label vector in the one-hot form. Object i first aggregates its
neighbors’ pseudo-labels according to the same normalized link weights and attention coefficients as
in Eq. (5). Then, its new pseudo-label vector y⃗i′ is obtained through the argmax operator and the
one-hot encoding function.

The above two equations describe the computational details of one model layer, where the iteration
indices and the layer indices are omitted for notation brevity. Here, we can further use the superscript
[x, y] to index a symbol with respect to x-th iteration and y-th layer. Assume the model has N layers.
In the t-th iteration, for the input layer of Att-HGNN, we set: h⃗[t,0]i = x⃗i (i.e., the object feature
vector), while for Att-LPA, we set: y⃗[t,0]i = y⃗

[t−1,N ]
i . At the end of the t-th iteration, we properly

organize all the h⃗[t,N ]
i and y⃗[t,N ]

i as H[t] in Eq. (1) and Y[t] in Eq. (2) respectively. In this way, based
on the ie-HGCN encoder, we establish our Att-HGNN module and Att-LPA module.

4.3.2 Time complexity

As analyzed in the literature, both LPA [21] and ie-HGCN [38] have quasi-linear time complexity.
Therefore, our SHGP also has quasi-linear time complexity, i.e., O(|V|+ |E|). Please see Appendix
A.2 for the efficiency study of SHGP.

4.3.3 Label consistency

For SHGP, in the initialization phase, we perform the thorough LPA process until convergence to
obtain the initial pseudo-labels, and warm-up Att-HGNN module to learn initial meaningful attention
coefficients. In each subsequent iteration, we no longer need to perform LPA from scratch, but
instead perform one forward pass of Att-LPA. Therefore, the clustering results are basically consistent
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with the results of the previous iteration. Thus, our SHGP does not need to perform alignment
between clustering labels and predictions. This can avoid the issue in DeepCluster [2] that there is no
correspondence between two consecutive clustering assignments, and can also avoid the alignment
process in M3S [26].

4.3.4 Class space

In this work, we cluster all types of objects into one common class space. We note that in most existing
HIN datasets, various types of objects can indeed share the same class space. They typically show a
“star” network schema [28], since they are usually constructed according to one “hub” type of objects.
The other types of objects are actually the attributes of the “hub” objects. For example, on DBLP, the
“hub” objects are paper (P ) objects. These papers and their associated authors, conferences, and etc.
can all be categorized into four research areas: DM, IR, DB, and AI.

In the following extensive experiments, we demonstrate that this strategy works well on existing
widely used HIN benchmark datasets. In future work, we will further investigate the problem of
clustering different types of objects into different class spaces.

5 Experiments

In this section, we verify the generalization ability of the proposed SHGP by transferring the
pre-trained object embeddings to various downstream tasks including object classification, object
clustering, and embedding visualization.

5.1 Datasets

In the experiments, we use four publicly available HIN benchmark datasets, which are widely used in
previous related works [38, 32, 18, 23, 33]. Their statistics are summarized in Table 1. Please see
Appendix A.1 for more details of these datasets.

Table 1: Dataset statistics.

Datasets Objects (number) Relations

MAG P (4017), A (15383), I (1480), F (5454) P ⇌ P , P ⇌ F , P ⇌ A, A⇌ I
ACM P (4025), A (7167), S (60) P ⇌ A, P ⇌ S
DBLP A (4057), P (14328), C (20), T (8898) P ⇌ A, P ⇌ C, P ⇌ T
IMDB M (3328), A (42553), U (2103), D (2016) M ⇌ A, M ⇌ U , M ⇌ D

• MAG is a subset of Microsoft Academic Graph. It contains four object types: Paper (P ), Author
(A), Institution (I) and Field (F ), and eight relations between them. Paper objects are labeled as
four classes according to their published venues: IEEE Journal of Photovoltaics, Astrophysics, Low
Temperature Physics, and Journal of Applied Meteorology and Climatology.

• ACM is extracted from ACM digital library. It contains three object types: Paper (P ), Author (A)
and Subject (S), and four relations between them. Paper objects are divided into three classes: Data
Mining, Database, and Computer Network.

• DBLP is extracted from DBLP bibliography. It contains four object types: Author (A), Paper (P ),
Conference (C) and Term (T ), and six relations between them. Author (A) objects are labeled
according to their four research areas: Data Mining, Information Retrieval, Database, and Artificial
Intelligence.

• IMDB is extracted from the online movie rating website IMDB. It contains four object types:
Movie (M ), Actor (A), User (U ) and Director (D), and six relations between them. Movie (M )
objects are categorized into four classes according to their genres: Comedy, Documentary, Drama,
and Horror.

5.2 Baselines

We compare our SHGP with seven HIN-oriented baselines, including two semi-supervised methods,
and five unsupervised (self-supervised) methods:
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• Semi-supervised: HAN [32], and ie-HGCN (abbreviated as HGCN) [38].

• Unsupervised: metapath2vec (abbreviated as M2V) [5], DMGI [18], HDGI [23], HeCo [33], and
HGCN-DC (abbreviated as H-DC).

Here, HAN and HGCN are semi-supervised HGNN methods. M2V is a traditional unsupervised HIN
embedding method. DMGI, HDGI, and HeCo are state-of-the-art SSL methods on HINs. Note that,
in the experiments, we adopt the baseline HGCN’s encoder as the base encoder of our Att-HGNN.
H-DC is a variant of our SHGP. It also uses HGCN as the base encoder, but unlike SHGP which
performs structural clustering in the graph space, H-DC uses K-means to perform clustering in the
embedding space, like DeepCluster [2]. We can use baselines HGCN and H-DC to investigate the
effectiveness of the proposed self-supervised pre-training scheme based on structural clustering.

5.3 Implementation details

For the proposed SHGP, in all the experiments, we use two HGCN layers as the Att-HGNN encoder,
and search the dimensionalities of the hidden layers in the set {64, 128, 256, 512}. All the model
parameters are initialized by the Xavier uniform distribution [6], and they are optimized through
the Adam optimizer. The learning rate and weight decay are searched from 1e-4 to 1e-2. For
the number of warm-up epochs, we search its best value in the set {5, 10, 20, 30, 40, 50}. We
pre-train SHGP with up to 100 epochs and select the model with the lowest validation loss as the
pre-trained model. Then, we freeze the model and transfer the learned object embeddings to various
downstream tasks. For baselines, we reproduce their experimental results on our datasets. Their
hyper-parameters are searched based on their papers and their official source codes. Some of the
baseline methods [32, 5, 18, 33] need users to input several meta-paths, which are specified in
Appendix A.1 in detail. For all the methods, we randomly repeat all the evaluation tasks for ten times
and report the average results. All the experiments are conducted on an NVIDIA GTX 1080Ti GPU.

Table 2: Object classification results (%).

Datasets Metrics Train HAN HGCN M2V DMGI HDGI HeCo H-DC SHGP

MAG

Mic-F1
4% 90.07 93.16 88.97 94.43 94.10 95.75 85.03 98.23
6% 91.83 95.18 89.94 93.80 93.68 95.93 85.16 98.30
8% 92.17 97.13 90.15 94.36 94.27 96.08 86.03 98.37

Mac-F1
4% 89.93 92.82 88.51 94.32 93.89 95.27 84.72 98.24
6% 91.54 95.08 89.45 93.74 93.64 95.42 85.13 98.33
8% 91.82 97.05 89.73 94.27 94.23 95.15 85.97 98.41

ACM

Mic-F1
4% 70.84 75.78 72.45 78.93 79.72 79.78 78.53 80.31
6% 72.04 77.59 73.83 79.01 80.09 80.15 79.96 80.78
8% 73.23 78.08 73.95 79.47 79.07 80.94 79.82 80.91

Mac-F1
4% 61.50 64.61 53.01 59.37 60.57 65.91 64.89 67.14
6% 60.23 64.04 51.86 59.15 61.09 65.63 64.37 67.38
8% 62.37 65.73 53.72 59.42 59.99 67.15 65.11 68.19

DBLP

Mic-F1
4% 90.48 92.45 88.93 89.35 88.33 91.31 87.15 93.70
6% 91.03 92.08 89.47 89.21 88.93 91.05 86.67 93.92
8% 91.90 92.34 91.41 89.88 88.18 91.22 87.23 94.13

Mac-F1
4% 90.01 92.13 88.49 88.21 87.69 90.53 87.03 93.31
6% 90.51 91.71 88.97 88.03 88.75 90.26 86.53 93.52
8% 91.35 92.04 89.83 88.57 87.38 90.42 87.11 93.77

IMDB

Mic-F1
4% 56.05 56.68 56.54 54.79 56.31 57.42 54.01 58.51
6% 54.21 57.72 55.24 54.93 57.64 58.63 54.19 59.76
8% 56.45 57.03 57.02 55.75 56.70 60.13 55.19 61.60

Mac-F1
4% 39.04 36.66 27.03 37.95 30.84 38.66 34.72 43.36
6% 36.63 39.38 26.51 38.67 36.35 39.43 36.61 46.17
8% 38.20 40.54 27.86 39.89 34.64 40.00 38.03 48.02
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5.4 Object classification

We conduct object classification on the object embeddings learned by all the semi-supervised baselines
and unsupervised baselines. On each dataset, for the objects that have ground-truth labels, we
randomly select {4%, 6%, 8%} objects as the training set. The others are divided equally as the
validation set and the test set. For all the unsupervised methods, they don’t use any class labels
during learning object embeddings. After finishing the pre-training, the output object embeddings
and their corresponding labels are used to train a linear logistic regression classifier. For all the
semi-supervised methods, we directly report the classification results output by their own classifiers.
We adopt Micro-F1 and Macro-F1 as evaluation metrics. The results are reported in Table 2.

We can see that our proposed SHGP achieves the best overall performance, even exceeding several
semi-supervised learning methods, indicating its superior effectiveness. On MAG, SHGP achieves
very high performance, i.e., over 98% Micro-F1/Macro-F1 scores, which are close to saturation.
Recall that SHGP adopts HGCN as the base encoder, and here, SHGP achieves better performance
than HGCN. This indicates the effectiveness of the proposed strategy, i.e., pre-training HGNNs in a
self-supervised manner based on structural clustering. SHGP also performs better than H-DC. This
is reasonable because H-DC uses K-means to perform clustering in the embedding space to obtain
pseudo-labels, and thus it cannot effectively exploit the structural information which naturally resides
in the graph space.

Most unsupervised pre-training methods outperform traditional semi-supervised methods. This
verifies the superiority of the recent advances in the self-supervised pre-training paradigm. Among
the unsupervised methods, M2V performs much worse than the others. This is because M2V can
only exploit a single meta-path, unlike DMGI, HDGI and HeCo which can well fuse the information
conveyed by multiple meta-paths through regularization or attention mechanism. Among the semi-
supervised methods, HGCN outperforms HAN, probably because HAN can only exploit user-specified
meta-paths while HGCN can automatically discover and exploit the most useful meta-paths [38].

5.5 Object clustering

We evaluate the embeddings through object clustering. In this task, we only consider the unsupervised
methods, and the semi-supervised methods are excluded because they have exploited class labels
during learning embeddings. On each dataset, we use K-means to cluster the embeddings of the
labeled objects, and report normalized mutual information (NMI) and adjusted rand index (ARI) to
quantitatively assess the clustering quality.

Table 3: Object clustering results (%).

MAG ACM DBLP IMDB

NMI ARI NMI ARI NMI ARI NMI ARI

M2V 39.67 43.75 32.53 28.49 49.50 56.73 1.43 1.03
DMGI 70.89 73.51 38.45 32.46 65.17 67.23 3.49 2.65
HDGI 73.96 77.15 39.13 32.34 59.98 62.33 4.15 2.96
HeCo 79.33 83.16 39.06 32.69 68.81 74.05 5.69 2.32
H-DC 42.75 49.01 18.60 19.75 47.15 53.15 1.57 1.12
SHGP 90.65 93.00 39.42 32.63 73.30 77.31 6.33 3.10

As shown in Table 3, our SHGP achieves the best overall performance in this task. Especially,
on MAG, SHGP outperforms other baselines by a large margin. This demonstrates its superior
competitiveness against other baselines in terms of learning discriminative embeddings. On IMDB, all
the methods have shown limited performance. This may be because the class labels and the structural
information on this dataset are not significantly correlated. M2V shows the worst performance again,
which may be due to its limitation as we analyzed in the previous experiment.

5.6 Visualization

For a more intuitive comparison, on MAG, we visualize the paper objects’ embeddings pre-trained
by three unsupervised methods, i.e., DMGI, HeCo, and our SHGP. The embeddings are further
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embedded into the 2-dimensional Euclidean space by the t-SNE algorithm [17], and they are colored
according to their ground-truth labels.

(a) DMGI (b) HeCo (c) SHGP

Figure 2: Visualization of the pre-trained embeddings of paper objects on MAG.

The results are shown in Figure 2. We can see that DMGI shows blurred boundaries between different
classes. HeCo performs relatively better than DMGI, but the green (left) class objects and the
blue (bottom) class objects are still mixed to some extent. Our SHGP shows the best within-class
compactness and the clearest between-class boundaries, which demonstrates its superior effectiveness.

5.7 Hyper-parameter study

In this subsection, we investigate the sensitivity of the warm-up epochs, which is the main hyper-
parameter that we have introduced in Section 4.1. Specifically, on all the datasets, we explore the
change of object classification performance as the number of warm-up epochs gradually increases.
The results are shown in Figure 3.
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(b) ACM
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Figure 3: Analysis of the number of warm-up epochs.

As shown, overall, this hyper-parameter is not very sensitive. The general pattern is that the per-
formance increases first, and then declines gradually. This is because, at the beginning, the model
has not made full use of the information contained in the initial pseudo-labels yet. After that, the
model may gradually overfit these initial pseudo-labels, which prevents the model from continuously
improving its performance in the iterations. The overall inflection points are 10, 20, 20, and 20 for
MAG, ACM, DBLP, and IMDB respectively, which are the default values in the other experiments.

6 Conclusion

In this paper, we propose a novel self-supervised pre-training method on HINs, named SHGP. It
consists of two key modules which share the same attention-aggregation scheme. The two modules
are able to utilize and enhance each other, promoting the model to effectively learn informative
embeddings. Different from existing SSL methods on HINs, our SHGP does not require any positive
examples or negative examples, thereby enjoying a high degree of flexibility and ease of use. We
conduct extensive experiments to demonstrate the superior effectiveness of SHGP against state-of-
the-art baselines.
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Societal impact

Heterogeneous Information Networks (HINs) widely exist in our society, such as social networks,
power networks, virus networks, etc. In this work, we develop a method to learn the representations
for objects in HINs. The learned representations can be used for various analytical tasks such as
object classification, object clustering, link prediction, etc. We believe that our method contributes
to our society in many aspects. However, there is also some risk that our method could be abused
illegally or unethically for some undesirable purposes. We hope those bad things would not happen.
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