
Invertible Monotone Operators for Normalizing Flows
(Supplementary Material)

Overview. The Appendix is organized as follows. In Appendix A, we present the proofs of the
theorems and lemmas stated in the main text. In Appendix B, we present the forward and backward
algorithms for a single monotone layer. In Appendix C, we describe the experimental details for each
experiment discussed in the main text and present the classification experiment on CIFAR-10. In
Appendix D and E, we include the visualizations of the 2D toy experiments and the generated images
from our trained model. In Appendix F, we discuss the limitations and potential negative societal
impacts of our work.

A Proofs and derivations

A.1 Proof of the strong monotonicity of a single residual block

We prove that R(x) = x+G(x) with Lip(G) = L is (1−L)-strongly monotone. A direct calculation
shows

⟨R(x)−R(y), x− y⟩ = ∥x− y∥22 − ⟨G(x)−G(y), x− y⟩
≥ ∥x− y∥22 − ∥G(x)−G(y)∥2∥x− y∥2
≥ ∥x− y∥22 − L∥x− y∥2∥x− y∥2 = (1− L)∥x− y∥22.

A.2 Proof of Theorem 2

As stated in the main text, a complete proof can be found in [30, Proposition 23.8 and Proposition
4.4]. Here, we provide an alternative proof, largely based on the proof of Alberti and Ambrosio [50],
to keep our paper self-contained. Before proving Theorem 2, we state Kirszbraun’s theorem [51].
Theorem 5. (Kirszbraun, 1934) If U ⊆ Rn and f : U → Rm is K-Lipschitz, there is a K-Lipschitz
function g : Rn → Rm which is an extension of of f to Rn.

Now we prove Theorem 2.

Proof. (i) (⇒) Assume F is monotone, and let (x1, y1), (x2, y2) ∈ CF . By rearranging the equation
of CF , we obtain

bi = F (ai), ai =
xi + yi

2
, bi =

xi − yi
2

, for i = 1, 2.

Hence, we find that
∥y1 − y2∥22 = ∥(a1 − b1)− (a2 − b2)∥22

= ∥(a1 − a2)− (b1 − b2)∥22
= ∥a1 − a2∥22 + ∥b1 − b2∥22 − 2 ⟨a1 − a2, b1 − b2⟩
≤ ∥a1 − a2∥22 + ∥b1 − b2∥22 + 2 ⟨a1 − a2, b1 − b2⟩
= ∥(a1 − a2) + (b1 − b2)∥22
= ∥(a1 + b1)− (a2 + b2)∥22
= ∥x1 − x2∥22 ,

where the inequality follows from the monotonicity of F . Hence, CF is 1-Lipschitz.

(⇐) Assume CF is 1-Lipschitz, and let (x1, y1), (x2, y2) ∈ F . Rearranging the equation of CF , we
deduce that

di = CF (ci), ci = xi + yi, di = xi − yi, for i = 1, 2.

14

Hence, we derive that

⟨y1 − y2, x1 − x2⟩ =
〈
c1 − d1

2
− c2 − d2

2
,
c1 + d1

2
− c2 + d2

2

〉
=

〈
c1 − c2

2
− d1 − d2

2
,
c1 − c2

2
+

d1 − d2
2

〉
=

1

4

(
∥c1 − c2∥22 − ∥d1 − d2∥22

)
≥ 0,

where the last inequality follows from the 1-Lipschitz condition of CF . Hence, F is monotone.

(ii) (⇒) Assume F is maximally monotone. Then, CF is 1-Lipschitz by (i), whence CF is at most
single-valued at each point. Suppose domCF ⊊ Rn. By Kirszbraun’s theorem (Theorem 5), there is
an extension Fe of CF such that Fe is 1-Lipschitz and domFe = Rn. Since Fe is 1-Lipschitz, the
operator F̃ that has Fe as its Cayley operator is monotone. We have F ⊊ F̃ , which contradicts the
maximality of F .

(⇐) Assume CF is 1-Lipschitz and domCF = Rn. Then, F is monotone by (i). Suppose F is not
maximally monotone. This implies there exists an (x′, y′) ∈ Rn × Rn such that (x′, y′) /∈ F but
F̂ := F ∪ {(x′, y′)} is monotone. Thus, the Cayley operator of F̂ ,

CF̂ = CF ∪ {(x′ + y′, x′ − y′)} ,
is 1-Lipschitz by (i). On the other hand, CF̂ has a function value CF (x

′ + y′) at x′ + y′. This does
not equal x′ − y′ since (x′, y′) /∈ F . This means CF̂ is multi-valued at x′ + y′, which contradicts
CF̂ is 1-Lipschitz. ■

A.3 Derivation of equation (5)

As mentioned in the main text, we assume G is continuously twice differentiable and is a contraction
mapping with Lip(G) = L < 1. The Jacobian of F can be calculated in a straightforward manner
from the explicit form (2):

JF =
∂y

∂x
= J(Id+G

2)
−1 − I = 2J(Id+G)−1 − I.

Here, we have ∥JG∥2 ≤ Lip(G) = L, where ∥·∥ denotes the matrix spectral norm. Thus, for any
v ∈ Rn with ∥v∥2 = 1, we have vTJId+Gv = vT v + vTJGv ≥ 1− L > 0. This implies JId+G is
not singular and thus invertible. By inverse function theorem, we obtain that J(Id+G)−1 = J−1

Id+G.
Therefore, we deduce that

JF = 2J(Id+G)−1 − I

= 2J−1
Id+G − I

= 2(I + JG)
−1 − I

= (I + JG)
−1(2I − (I + JG))

= (I + JG)
−1(I − JG),

where JG is evaluated at w = (Id +G)−1(u) and u = 2x. Hence, we find that

log detJF = log det
[
(I + JG)

−1(I − JG)
]

= log det(I − JG)− log det(I + JG)

= tr [log(I − JG)− log(I + JG)]

where the function log in the last line denotes the matrix logarithm (not an elementwise logarithm).
In our implementation, we use G(x) = −2H(x/

√
2) where H is an L-Lipschitz function. This

change does not affect the Lipschitz constant in the calculation, and transforms the formulation of
F to F (x) =

√
2(Id −H)−1(

√
2x) − x. The inverse of F can be derived by F−1(x) =

√
2(Id +

H)−1(
√
2x)− x as in (3).

15

A.4 Derivation of equation (6)

By Taylor expansion, we derive that

log detJF = tr [log(I − JG)− log(I + JG)] = tr

[∞∑
k=1

(−1)− (−1)k+1

k
Jk
G

]
.

Here, Taylor expansion is justified because ||JG||2 ≤ Lip(G) = L < 1. Now, with neural networks,
the exact evaluation of Jk

G’s is not feasible due to computational complexity. Instead, we resort
to an estimator called the Hutchinson trace estimator, which only requires the vector-matrix or
matrix-vector product. Given a general matrix A ∈ Rn×n, the Hutchinson trace estimator is defined
as

tr(A) = Ev∼N (0,I)

[
vTAv

]
,

where v is sampled from a multivariate standard normal distribution. When applied to our case, this
yields

log detJF = Ev∼N (0,I)

[∞∑
k=1

(−1)− (−1)k+1

k
vTJk

Gv

]
.

The calculation contains an infinite series whose evaluation is difficult. However, the infinite sum can
be approximated by a finite number of terms using the unbiased Russian roulette estimator:

log detJF = En∼pN (n),v∼N (0,I)

[
n∑

k=1

(−1)− (−1)k+1

k

vTJk
Gv

P (N ≥ k)

]
.

Here, the distribution pN (n) can be any distribution with P (N ≥ k) > 0 for all natural numbers
k ∈ N; for instance, a geometric distribution is chosen in [6], and a Poisson distribution is chosen in
[7]. In our case, we use the Poisson distribution following [7].

The Russian roulette estimator is justified by Lemma 3 in Appendix B of [6]. More precisely, we
deduce that

∞∑
k=1

∣∣∣∣ (−1)− (−1)k+1

k
vTJk

Gv

∣∣∣∣ ≤ 2

∞∑
k=1

∣∣∣∣1k vTJk
Gv

∣∣∣∣
≤ 2

∞∑
k=1

1

k
∥v∥2 ∥JG∥

k
2 ∥v∥2

= 2 ∥v∥22
∞∑
k=1

1

k
∥JG∥k2

≤ 2 ∥v∥22
∞∑
k=1

1

k
Lip(G)k

= 2 ∥v∥22 log(1− Lip(G)) <∞.

We include the following lemma here to keep our paper self-contained.
Lemma 2. (Lemma 3 in [6]) (Unbiased randomized truncated series) Let Yk be a real random
variable with limk→∞ E[Yk] = a for some a ∈ R. Further, let ∆0 = Y0 and ∆k = Yk − Yk−1 for
k ≥ 1. Assume E [

∑∞
k=0 |∆k|] <∞ and let N be a random variable with support over the positive

integers and n ∼ pN (n). Then for

Z =

n∑
k=0

∆k

P (N ≥ k)
,

we find
lim
k→∞

E [Yk] = En∼pN (n) [Z] = a.

In our case, ∆0 = 0 and for k ≥ 1

∆k =
((−1)− (−1)k+1)

k
vTJk

Gv.

16

A.5 Derivation of equation (7)

Backward propagation is done through implicit differentiation by adapting the formulation in [26].
For completeness, we include the derivation here.

Since F (x) =
(
Id+G

2

)−1
(x) − x = (Id + G)−1(2x) − x, it suffices to backpropagate through

the function (Id + G)−1. Let w = (Id + G)−1(u) (with u = 2x), where G is parameterized with
parameters θ. Here, u and θ are independent variables, and w and the loss ℓ are dependent variables.
We first note that by chain rule

∂ℓ

∂u
=

∂ℓ

∂w

∂w

∂u
,

∂ℓ

∂θ
=

∂ℓ

∂w

∂w

∂θ
.

Since ∂ℓ/∂y is given by backpropagation, we only need to estimate the vector-Jacobian products
(∂ℓ/∂w)(∂w/∂u) and (∂ℓ/∂w)(∂w/∂θ) from ∂ℓ/∂y, not the full Jacobians ∂w/∂u and ∂w/∂θ.

To find ∂ℓ/∂u, we consider the implicit equation between u and w given by

w +G(w, θ)− u = 0.

Taking a derivative with respect to w while holding θ constant yields

∂w

∂u
+ JG

∂w

∂u
− I = 0,

where JG ≡ (∂G(x, θ)/∂x)|x=w, θ=θ. Hence, we obtain

∂ℓ

∂u
=

∂ℓ

∂w
(I + JG)

−1 ⇒ ∂ℓ

∂u
(I + JG) =

∂ℓ

∂w
. (10)

The equation on the right of (10) can be solved for ∂ℓ/∂u using fixed-point iterations since Lip(JG) ≤
L < 1. We now consider ∂ℓ/∂θ. Taking differentiation with respect to θ while keeping u constant
yields

∂w

∂θ
+

(
JG

∂w

∂θ
+

∂G(x, θ)

∂θ

∣∣∣∣
x=w, θ=θ

)
− 0 = 0.

Hence, we deduce that

∂ℓ

∂θ
= (−1)

(
∂ℓ

∂w
(I + JG)

−1

)
∂G(x, θ)

∂θ

∣∣∣∣
x=w, θ=θ

. (11)

Since the term in parentheses is the same as ∂ℓ/∂u, we can reuse the result from the fixed-point
iteration for (10). Notice that (11) is similar to the form of

∂ℓ

∂θ
=

∂ℓ

∂G(stop_gradient(w), θ)
∂G(stop_gradient(w), θ)

∂θ
.

Hence, we can backpropagate through G using the standard backpropagation approach by setting the
output gradient as ∂ℓ/∂u.

A.6 Proof of Theorem 4

Proof. We start by noting that the functions in RL are continuously differentiable by construction.
In fact, the functions in IL are continuously differentiable by the inverse function theorem since
the Jacobian I + JG of Id + G is nonsingular. Moreover, the functions inML are continuously
differentiable since they can be written in terms of the functions of IL. When the function F such
that F : Rn → Rn is invertible, the inverse function theorem implies that F and F−1 share the
same differentiability, and so do GL,RL, IL, andML. Hence, it suffices to consider the Lipschitz

17

condition. For x1, x2 ∈ Rn, write p = x1 − x2 and q = F (x1)− F (x2). Then, we find that

F ∈ RL ⇔ F ∈ C2(Rn,Rn),∀x1, x2 ∈ Rn ∥q − p∥2 ≤ L∥p∥2,
F ∈ IL ⇔ F ∈ C2(Rn,Rn),∀x1, x2 ∈ Rn ∥p− q∥2 ≤ L∥q∥2

(∗)⇔ F ∈ C2(Rn,Rn),∀x1, x2 ∈ Rn ∥(1− L2)q − p∥2 ≤ L∥p∥2
⇔ (1− L2)F ∈ RL

⇔ F ∈ 1

1− L2
RL,

F ∈ML ⇔ F ∈ C2(Rn,Rn),∀x1, x2 ∈ Rn ∥q − p∥2 ≤ L∥q + p∥2
(∗∗)⇔ F ∈ C2(Rn,Rn),∀x1, x2 ∈ Rn

∥∥∥∥(1− L2

1 + L2

)
q − p

∥∥∥∥
2

≤
(

2L

1 + L2

)
∥p∥2

⇔
(
1− L2

1 + L2

)
F ∈ R 2L

1+L2

⇔ F ∈
(
1 + L2

1− L2

)
R 2L

1+L2
.

Note that the equivalence (*) can be derived as follows:

∥p− q∥2 ≤ L∥q∥2
⇔ ∥p− q∥22 ≤ L2∥q∥22
⇔ ∥p∥22 − 2⟨p, q⟩+ (1− L2)∥q∥22 ≤ 0

⇔ (1− L2)2∥q∥22 − 2(1− L2)⟨p, q⟩+ (1− L2)∥p∥22 ≤ 0

⇔ ∥(1− L2)q − p∥22 ≤ L2∥p∥22
⇔ ∥(1− L2)q − p∥2 ≤ L∥p∥2.

Also, the equivalence (**) can be calculated as follows:

∥q − p∥2 ≤ L∥p+ q∥2
⇔ ∥q − p∥22 ≤ L2∥p+ q∥22
⇔ (1− L2)∥p∥22 − 2(1 + L2)⟨p, q⟩+ (1− L2)∥q∥22 ≤ 0

⇔ (1− L2)2∥q∥22 − 2(1− L2)(1 + L2)⟨p, q⟩+ (1− L2)2∥p∥22 ≤ 0

⇔ ∥(1− L2)q − (1 + L2)p∥22 ≤ 4L2∥p∥22

⇔
∥∥∥∥1− L2

1 + L2
q − p

∥∥∥∥
2

≤ 2L

1 + L2
∥p∥2.

Hence, the statements (i) and (ii) are proved.

Since IL andML are explicitly characterized in terms ofRL (orR 2L
1+L2

), we utilize this fact to show
the statements (iii) and (iv). For (iii), suppose F ∈ RL. Then, F = Id +G for some G ∈ GL. Since

F = Id +G =
1 + L2

1− L2

[
Id +

(−2L2

1 + L2
Id +

1− L2

1 + L2
G

)]
and

Lip

(−2L2

1 + L2
Id +

1− L2

1 + L2
G

)
≤ 2L2

1 + L2
+

1− L2

1 + L2
L

=
2L

1 + L2
·
(
1 + 2L− L2

2

)
< (since 0 ≤ L < 1)

<
2L

1 + L2
,

18

we then have F ∈ML.

For (iv), suppose F ∈ IL. Then, F =
1

1− L2
(Id +G) for some G ∈ GL. Since

F =
1

1− L2
(Id +G) =

1 + L2

1− L2

[
Id +

(−L2

1 + L2
Id +

1

1 + L2
G

)]
(12)

and

Lip

(−L2

1 + L2
Id +

1

1 + L2
G

)
≤ L2

1 + L2
+

1

1 + L2
L =

2L

1 + L2
·
(
1 + L

2

)
<

2L

1 + L2
,

we obtain that F ∈ML. We finally notice that the above derivation, indeed, shows that the Lipschitz
constant of the residual part Lip

(
1−L2

1+L2F − Id
)

is always smaller than 2L
1+L2 for functions F inRL

or IL. Hence, bothRL and IL do not include the following functions

f1(x) =
1− L

1 + L
x and f2(x) =

1 + L

1− L
x,

which are inML, since

Lip

(
1− L2

1 + L2
f1 − Id

)
= Lip

(
1− L2

1 + L2
f2 − Id

)
=

2L

1 + L2
.

Hence (iii) and (iv) hold. See Figure 3 in the main text for visualization, where p is fixed as a unit
vector pointing in the +y direction. ■

A.7 Equivalence under the limit L→ 1−

For each function class, if we consider the union of the “subscript L-sets” for all 0 ≤ L < 1, then we
have the following theorem.
Theorem 6. Define the set A as

A :=

{
F ∈ C2(Rn,Rn)

∣∣∣∣F is η-strongly monotone and ν-Lipschitz for some η, ν > 0

}
.

Then, R+R[0,1) = R+I[0,1) = R+M[0,1) = A. Here,R[0,1) = ∪L∈[0,1)RL, and the same for I[0,1)
andM[0,1).

Proof. The equivalence between R+R[0,1) and R+I[0,1) directly follows from Theorem 4. The
equivalence between R+R[0,1) and R+M[0,1) also follows from Theorem 4 by noting that the
function f(t) = 2t/(1 + t2) is a bijection from [0, 1) to itself.

It remains to prove the last equality. First, R+M[0,1) ⊆ A holds because each function inML is
(1−L)/(1+L)-strongly monotone and (1+L)/(1−L)-Lipschitz for all 0 ≤ L < 1, by Theorem 7.

We now prove the reverse direction. For any F ∈ A, there exists a 0 < K ≤ 1 such that K ≤ η
and ν ≤ 1/K, so that F is K-strongly monotone and 1/K-Lipschitz. For any x1, x2 ∈ Rn, write
p = x1 − x2 and q = F (x1)− F (x2) as before. We have

∥q∥2 ≤
1

K
∥p∥2, ⟨q, p⟩ ≥ K∥p∥22. (13)

Now, F ∈ML for some 0 ≤ L < 1 if and only if

∥q − p∥2 ≤ L∥q + p∥2 (14)

for all x1, x2 ∈ Rn. To find a sufficient condition for L, we manipulate this equation:

∥q − p∥2 ≤ L∥q + p∥2
⇔ 2(L2 + 1)⟨q, p⟩ − (1− L2)(∥p∥22 + ∥q∥22) ≥ 0.

Since

2(L2 + 1)⟨q, p⟩ − (1− L2)(∥p∥22 + ∥q∥22) ≥
[
2(L2 + 1)K − (1− L2)

(
1 +

1

K2

)]
∥p∥22,

19

by (13), the inequality (14) will hold if we can find a 0 ≤ L < 1 such that

2(L2 + 1)K − (1− L2)

(
1 +

1

K2

)
≥ 0,

which is indeed solved by any choice of L satisfying√
1 +K2 − 2K3

1 +K2 + 2K3
≤ L < 1.

Since √
1 +K2 − 2K3

1 +K2 + 2K3
< 1,

for all 0 < K ≤ 1, there always exists such an L. This proves A ⊆ R+M[0,1). Hence, R+M[0,1) =
A. ■

A.8 The properties of monotone operators built from L-Lipschitz operators

Theorem 7. Let G be an L-Lipschitz operator for L < 1. The monotone operator F having G as its
Cayley operator is (i) η-strongly monotone and (ii) ν-Lipschitz for

η =
1− L

1 + L
and ν =

1 + L

1− L
.

Proof. Let (x1, y1), (x2, y2) ∈ F and ai = xi + yi, bi = xi − yi for i = 1, 2. We first note that
∥b1 − b2∥2 = ∥G(a1)−G(a2)∥2 ≤ L∥a1 − a2∥2 by the definition of Lipschitz continuity.

(i) Let’s prove the η-strongly monotonicity. We have

⟨y1 − y2, x1 − x2⟩ =
〈
1

2
(a1 − b1)−

1

2
(a2 − b2),

1

2
(a1 + b1)−

1

2
(a2 + b2)

〉
=

1

4

(
∥a1 − a2∥22 − ∥b1 − b2∥22

)
≥ 1− L2

4
∥a1 − a2∥22,

and

∥x1 − x2∥2 =

∥∥∥∥12(a1 + b1)−
1

2
(a2 + b2)

∥∥∥∥
2

≤ 1

2
(∥a1 − a2∥2 + ∥b1 − b2∥2) ≤

1 + L

2
∥a1 − a2∥2.

Combining the two inequalities we have

⟨y1 − y2, x1 − x2⟩ ≥
1

4
(1− L2)

(
2

1 + L
∥x1 − x2∥2

)2

=
1− L

1 + L
∥x1 − x2∥22,

which implies the η-strong monotonicity. Equality holds with G(x) = Lx.

(ii) Let’s prove the ν-Lipschitzness. We have

∥y1 − y2∥2 =

∥∥∥∥12(a1 − b1)−
1

2
(a2 − b2)

∥∥∥∥
2

≤ 1

2
(∥a1 − a2∥2 + ∥b1 − b2∥2) ≤

1 + L

2
∥a1 − a2∥2,

and

∥x1 − x2∥2 =

∥∥∥∥12(a1 + b1)−
1

2
(a2 + b2)

∥∥∥∥
2

≥ 1

2
(∥a1 − a2∥2 − ∥b1 − b2∥2) ≥

1− L

2
∥a1 − a2∥2.

Combining the two inequalities we have

∥y1 − y2∥2 ≤
1 + L

2
∥a1 − a2∥2 ≤

1 + L

1− L
∥x1 − x2∥2 ,

which implies the ν-Lipschitzness. Equality holds with G(x) = −Lx. ■

20

B Computation

B.1 Forward and backward algorithms for a single monotone layer

We describe the forward and backward algorithms for a single monotone layer. Both utilize fixed-point
iterations, but the forward pass uses non-linear functions, whereas the backward pass uses linear
functions. We let Gθ denote the G-network in Definition 2 with parameters θ, Fθ the monotone
formulation of Gθ, and ℓ the loss function of the whole model. Note that in Algorithm 3, we maintain
the values of α and β for each sample in minibatch. Also note that in Algorithm 1, the maximum
number of iterations nmax applies separately to the first and the second fixed-point algorithm.
We choose (ϵ, nmax) = (10−6, 2000) for the forward pass and (ϵ, nmax) = (10−9, 100) for the
backward pass.

For time and memory efficiency, we use the Neumann gradient estimator following [6], defined by
the following equation. The last expression has the form ∂L/∂θ; we use L as the surrogate loss for
estimating the gradients with respect to θ.

∂

∂θ
log detJFθ

=
∂

∂θ
tr [log(I − JGθ

)− log(I + JGθ
)]

=
∂

∂θ
tr

[∞∑
k=1

(−1)− (−1)k+1

k
Jk
Gθ

]

= tr

[∞∑
k=1

((−1)− (−1)k+1)
∂JGθ

∂θ
Jk−1
Gθ

]

= En∼pN (n),v∼N (0,I)

[
n∑

k=1

(−1)− (−1)k+1

P (N ≥ k)
vT

∂JGθ

∂θ
Jk−1
Gθ

v

]

=
∂

∂θ
En∼pN (n),v∼N (0,I)

[
n∑

k=1

(−1)− (−1)k+1

P (N ≥ k)
vTJGθ

stop_gradient
(
Jk−1
Gθ

v
)]

.

(15)

Algorithm 1 Forward algorithm for a single monotone layer

1: Require: Gθ, tolerance ϵ, max. number of iterations nmax

2: Input: x

3: Output: z = Fθ(x), p = log det

∣∣∣∣∂z∂x
∣∣∣∣

4: u← 2x
5: w ← FixedPointSolver(f(y) = u−Gθ(y), x, ϵ, nmax)
6: z ← w − x
7: if training then
8: Estimate p using the surrogate loss (15).
9: else

10: Estimate p using the true estimator (6).
11: end if
12: Return z and p

21

Algorithm 2 Backward algorithm for a single monotone layer

1: Require: Gθ, tolerance ϵ, max. number of iterations nmax

2: Input: x, z, p,
∂ℓ

∂z
,
∂ℓ

∂p

3: Output:
∂ℓ

∂x
,
∂ℓ

∂θ
4: Backpropagate through z to w and x
5: Backpropagate through w to u and θ:

6: g ← FixedPointSolver
(
f(y) =

∂ℓ

∂w
− y

∂Gθ(w)

∂w
,
∂ℓ

∂w
, ϵ, nmax

)
7:

∂ℓ

∂u
← g

8:
∂ℓ

∂θ
← −g ∂Gθ(w)

∂θ
9: Backpropagate through u to x

10: Backpropagate through p to x and θ

11: Return the gradients
∂ℓ

∂x
and

∂ℓ

∂θ

Algorithm 3 Fixed-point solver

1: Require: input function (contraction mapping) f , tolerance ϵ, max. number of iterations nmax

2: Input: y0, the starting point of the fixed-point iteration
3: Output: y, the fixed point of f satisfying y = f(y)
4: y1 ← f(y0)
5: fprev ← y1
6: dyprev ← y1 − y0
7: ycurr ← y1
8: while error higher than the tolerance ϵ and iteration limit nmax not reached do
9: if error has not improved in 10 recent iterations then

10: break
11: end if
12: fcurr ← f(ycurr)
13: dycurr ← fcurr − ycurr
14: d2ycurr ← dycurr − dyprev

15: β ← ⟨d2ycurr,dycurr⟩
||d2ycurr||22 + 10−8

16: ynext ← fcurr − β(fcurr − fprev)
17: dyprev ← dycurr
18: fprev ← fcurr
19: ycurr ← ynext
20: end while
21: if error within the tolerance ϵ then
22: Return ycurr
23: end if
24: α← 0.5
25: while error higher than the tolerance ϵ and iteration limit nmax not reached do
26: if error has not improved in recent 30 iterations then
27: α← max {0.9α, 0.1}
28: Reset the counter
29: end if
30: ycurr ← (1− α)ycurr + αf(ycurr)
31: end while
32: Print the current error for logging purposes
33: Return ycurr

22

C Experimental details

All of our experiments are implemented with PyTorch, based on the public code of i-DenseNets [7].
We have implemented CPila as a C++ CUDA extension for speedup. In all experiments, we disable
the TensorFloat32 (TF32) and the CUDA benchmarks option to prevent the non-deterministic
computation from affecting the convergence of the fixed-point iterations.

C.1 1D toy experiment

Training data. We fit a strongly monotone function s : R→ R defined as follows:

s(x) = t(x+ 2) + t(x+ 1) + t(x) + t(x− 1), (16)

where t : R→ R is defined as

t(x) =

0, x < 0

max

{
αx,

1

α
(x− 1 + α)

}
, 0 ≤ x ≤ 1

1, x > 1

(17)

with the choice of α = 0.05. The function s is considered on the interval [−2, 2] only.

Training objective. We use the mean squared error (MSE) for the loss function and report the best
test MSE in Figure 4.

Training procedure. We use Adam [42] for optimization with (β1, β2) = (0.9, 0.99), eps = 10−8,
and an initial learning rate of 0.01, which drops to 0.002 and 0.0004 after 5,000 and 10,000 iterations,
respectively. We train for 15,000 iterations in total. We do not apply weight decay. We enable the
learnable concatenation at the beginning. For training, we randomly sample 5,000 points uniformly
from [−2, 2] on each iteration; for testing, we use 20,001 uniformly spaced points on [−2, 2]. We run
tests every 100 iterations. We train each of the four models using a single NVIDIA RTX 2080 Ti.

Model architecture. There are four building blocks: ResidualBlock (RB), InverseResidualBlock
(IRB), MonotoneBlock (MB), and ActNorm (learnable scaling; LS). RB, IRB, and MB share the
same G-network built by four DenseNet concatenations, each adding 128 channels, followed by a
final linear layer. We use Concatenated ReLU (CReLU) as the activation function. The Lipschitz
constant for spectral normalization and dense layers are 0.99 and 0.99, respectively; the tolerance for
spectral normalization is 10−4. ActNorm [4] learns a positive scaling parameter and a bias for each
channel. It acts as a learnable scaling (LS) layer that applies to the whole input since there is only one
channel for 1D toy experiments. The architectures for each model are as follows:

• (a) 2 RBs w/o LS:
ResidualBlock→ ResidualBlock

• (b) 2 RBs w/ LS:
ActNorm→ ResidualBlock→ ActNorm→ ResidualBlock→ ActNorm

• (c) 1 RB + 1 IRB w/ LS:
ActNorm→ ResidualBlock→ ActNorm→ InverseResidualBlock→ ActNorm

• (d) 2 MBs w/ LS:
ActNorm→MonotoneBlock→ ActNorm→MonotoneBlock→ ActNorm

C.2 2D toy experiments

Training data. We use the eight 2D toy densities provided with the source code of i-DenseNets [7],
which originate from [36] to the best of our knowledge. They consist of ‘2 Spirals’, ‘8 Gaussians’,
‘Checkerboard’, ‘Circles’, ‘Moons’, ‘Pinwheel’, ‘Rings’, and ‘Swissroll’.

Training objective. We use the typical log-likelihood objective of normalizing flows. Note that
we evaluate the Jacobian determinant exactly using the determinant formula for 2D matrices since
the low dimensionality (2D) allows for the fast and exact computation of the Jacobian determinant
without needing to resort to the stochastic estimation.

Training procedure. We use Adam [42] for optimization with (β1, β2) = (0.9, 0.99), eps = 10−8,
and the learning rate of 0.001. We train for 50,000 iterations in total. We apply the weight decay of

23

Table 4: The training setup for image density estimation tasks. LC: learnable concatenation.

MNIST CIFAR-10 ImageNet32 ImageNet64
Learning rate 0.001 0.001 0.004 0.004
Batch size 64 64 256 256
Number of epochs 100 1,000 20 20
Enable LC After 25 epochs After 25 epochs At beginning At beginning

10−5. We enable the learnable concatenation after 25,000 iterations. For training, we sample 500
points from the target distribution on each iteration; for testing, we sample 10,000 points. We run
tests every 100 iterations. We train i-DenseNets and Monotone Flows for each dataset using a single
NVIDIA RTX 2080 Ti.

Model architecture. The G-networks for i-DenseNets and Monotone Flows only differ in the choice
of the activation function, where we use CLipSwish and CPila, respectively. Otherwise, they share
the same structure, built by three DenseNet concatenations, each adding 16 channels, followed by a
final linear layer. The Lipschitz constant for spectral normalization and dense layers are 0.90 and
0.98, respectively. We do not explicitly specify the tolerance for spectral normalization; instead, we
run five iterations on each spectral normalization update regardless of the current error. We do not
use ActNorm layers for 2D toy experiments. The architectures for each model are as follows; we use
ten blocks following the 2D toy experiment setup of [7].

• i-DenseNets: 10 × [ResidualBlock]

• Monotone Flows: 10 × [MonotoneBlock]

C.3 Image experiments

Training data. We use MNIST, CIFAR-10, ImageNet32, and ImageNet64. For CIFAR-10, we apply
a random horizontal flip with a probability of 0.5 and do nothing for the other three datasets. We
then add noise for uniform dequantization. The images keep their original sizes, which are 28× 28,
32× 32, 32× 32, and 64× 64, respectively.

Training objective. We use the typical log-likelihood objective of normalizing flows. We evaluate
the Jacobian determinant using the stochastic estimator, with ten exact terms plus additional terms
with the Russian roulette estimator. In contrast to the 2D toy experiments, we use the bits per
dimension, defined as the log2-likelihood divided by the input dimension, with the compensation for
the quantization levels. Since there are 256 quantization levels for the image data, we add 8 to the
log2-likelihood.

Training procedure. We use Adam [42] for optimization with (β1, β2) = (0.9, 0.99) and eps =
10−8. We do not apply weight decay. Other options vary among the four datasets, as described in
Table 4. We run tests at the end of every epoch. We use four RTX 3090 GPUs for MNIST and
CIFAR-10 and eight A100 GPUs for ImageNet32 and ImageNet64.

Model architecture. We use monotone blocks for each model, with the G-networks built by three
DenseNet concatenations, each adding 172 channels, followed by a final linear layer. We use
Concatenated Pila (CPila) as the activation function. The Lipschitz constant for spectral normalization
and dense layers are 0.98 and 0.98, respectively. We set the tolerance for spectral normalization
to 10−3. To implement a multi-scale architecture, we utilize invertible downsampling operations
(‘Squeeze’), which package the pixels of two-dimensional 2× 2 cells into a 4-dimensional vector,
hence converting an input of the shape C ×H ×W into the shape 4C × H

2 × W
2 . Layers with no

invertible downscaling layers in between share the same scale. We use four fully-connected layers at
the end of the models with a DenseNet depth and growth of 3 and 16. Note that the fully-connected
layers first project the input into a vector of 64 dimensions, apply the DenseNet formulation, and
then project back to the original dimensions. ‘FactorOut’ is the operation that factors out half of
the variables at the transition of one scale to another scale, splitting across channels. ‘Squeeze2d’
and ‘FactorOut’ applied in succession converts an input of the shape C ×H ×W into the shape
2C × H

2 × W
2 . The architectural choices that differ across the datasets are displayed in Table 5. The

architectures for each model are as follows:

24

Table 5: The model setup for image density estimation tasks.

MNIST CIFAR-10 ImageNet32 ImageNet64
Logit transform’s α 10−6 0.05 0.05 0.05
Number of scales 3 3 3 3
Number of flow blocks per scale 16 16 32 32
Factor out at the end of each scale No No No Yes

The architectures for each model are as follows. Conv: convolutional layers; FC: fully connected
layers.

• MNIST: LogitTransform(10−6) → ActNorm2d → 16 × [MonotoneBlockConv →
ActNorm2d]→ Squeeze2d→ 16 × [MonotoneBlockConv → ActNorm2d]→ Squeeze2d
→ 15 × [MonotoneBlockConv → ActNorm2d]→MonotoneBlockConv → ActNorm1d→
4 × [MonotoneBlockFC → ActNorm1d]

• CIFAR-10: LogitTransform(0.05) → ActNorm2d → 16 × [MonotoneBlockConv →
ActNorm2d]→ Squeeze2d→ 16 × [MonotoneBlockConv → ActNorm2d]→ Squeeze2d
→ 15 × [MonotoneBlockConv → ActNorm2d]→MonotoneBlockConv → ActNorm1d→
4 × [MonotoneBlockFC → ActNorm1d]

• ImageNet32: LogitTransform(0.05) → ActNorm2d → 32 × [MonotoneBlockConv →
ActNorm2d]→ Squeeze2d→ 32 × [MonotoneBlockConv → ActNorm2d]→ Squeeze2d
→ 31 × [MonotoneBlockConv → ActNorm2d]→MonotoneBlockConv → ActNorm1d→
4 × [MonotoneBlockFC → ActNorm1d]

• ImageNet64: LogitTransform(0.05) → ActNorm2d → 32 × [MonotoneBlockConv →
ActNorm2d]→ Squeeze2d→ FactorOut→ 32 × [MonotoneBlockConv → ActNorm2d]
→ Squeeze2d → FactorOut → 31 × [MonotoneBlockConv → ActNorm2d] →
MonotoneBlockConv → ActNorm1d→ 4 × [MonotoneBlockFC → ActNorm1d]

C.4 Variational dequantization

The experiments with variational dequantization use the same main network structure used for the
experiments with uniform dequantization. The variational dequantization network, now added at
the beginning of the network, uses three invertible DenseNet blocks, which uses CPila activation
and does not use monotone formulation. Conditioning is performed by injecting conditional feature
vectors into each step inside each invertible DenseNet block. The conditional feature vectors are
computed from the input image using ResNet-based neural networks.

C.5 Ablation studies

The ablation studies are mostly the same as the image experiments discussed in Appendix C.3. Thus,
we only highlight the differences:

• When ablating the monotone formulation, we replace each MonotoneBlockConv/FC with
ResidualBlockConv/FC, while keeping the G-networks the same.

• When ablating the CPila activation function, we replace all occurrences of CPila in each
MonotoneBlockConv/FC or ResidualBlockConv/FC with CLipSwish.

C.6 Classification experiments

To verify the capacity of Monotone Flows, we perform classification experiments with the same
network used for image density estimation tasks.

Training data. We use the CIFAR-10 dataset. We apply the standard data augmentation for CIFAR-
10, which amounts to padding the input image by 4 pixels, randomly cropping the image back to the
original size, and applying a random horizontal flip. Then, we add noise following the image density
estimation experiments.

25

Table 6: Classification results on CIFAR-10.

i-DenseNet Monotone Flow
Tiny (k = 1) 86.7 % 88.9 %
Small (k = 4) 90.2 % 91.8 %
Large (k = 16) 92.5 % 93.4 %

Training objective. We use the cross-entropy loss during training and report the average test accuracy
over the last five epochs.

Training procedure. We use Adam [42] for optimization with (β1, β2) = (0.9, 0.99), eps = 10−8,
and the learning rate of 0.001. We do not apply weight decay. We enable the learnable concatenation
after 25 epochs. We train for 200 epochs with a batch size of 128 and run tests at the end of every
epoch. We train each model using two NVIDIA V100 GPUs.

Model architecture. Each model has the following structure: Mean-Std normalization → k ×
[MonotoneBlockConv → ActNorm2d]→ Squeeze2d→ k × [MonotoneBlockConv → ActNorm2d]
→ Squeeze2d→ k × [MonotoneBlockConv → ActNorm2d]. The G-network has a DenseNet depth
and growth of 3 and 80. There are no fully-connected layers at the end. We use k = 1 for tiny
models, k = 4 for small models, and k = 16 for large models. For i-DenseNets, each MonotoneBlock
gets replaced with a ResidualBlock with the CLipSwish activation function. Classification heads
are attached after each Squeeze2d and at the end of the model. Each head consists of Conv2d→
ActNorm2d→ ReLU→ AvgPool2d, yielding a 256-dimensional feature vector per head. The vectors
are concatenated into a 768-dimensional vector, passed through a linear layer, and then fed into a
softmax layer for classification.

Classification results. We present the results in Table 6. The results clearly demonstrate that
Monotone Flows consistently outperform i-DenseNets for all model sizes considered.

C.7 Training curve for CIFAR-10 density estimation

0 200 400 600 800 1,000
3.2

3.22

3.24

3.26

3.28

3.3

Epochs

Te
st

bi
ts

/d
im

Figure 7: Loss curves for CIFAR-10 training with uniform dequantization. From top to bottom,
the cyan curve denotes the baseline i-DenseNets model; the orange curve denotes our model with
monotone formulation ablated; the blue curve denotes our model with CPila ablated; the red curve
denotes our full model.

26

D Full toy results

Dataset Sample data i-DenseNet Monotone Flow

2 Spirals

8 Gaussians

Checkerboard

Circles

Moons

Pinwheel

Rings

Swissroll

Figure 8: Full toy results.

27

E Image samples

(a) MNIST train data. (b) Monotone Flows trained on MNIST.

Figure 9: Train data and generated samples of MNIST.

(a) CIFAR-10 train data. (b) Monotone Flows trained on CIFAR-10.

Figure 10: Train data and generated samples of CIFAR-10.

28

(a) ImageNet32 train data. (b) Monotone Flows trained on ImageNet32.

Figure 11: Train data and generated samples of ImageNet32.

(a) ImageNet64 train data. (b) Monotone Flows trained on ImageNet64.

Figure 12: Train data and generated samples of ImageNet64.

29

F Limitations and negative societal impact

Similar to previous works: i-ResNets, Residual Flows, i-DenseNets, and Implicit Normalizing Flows,
our Monotone Flows involve fixed-point equations, which often leads to computational overhead.
However, the speed will likely improve as the methods for solving fixed-point equations, including
neural solvers and better initialization schemes, continue to evolve. Also, although our model as
a normalizing flow has the advantage of training stability and not suffering from mode collapses,
the generated images generally do not yet achieve high fidelity. This is a common weakness of
normalizing flow models, and we leave this for future work.

For potential negative societal impact, we note that while the improved modeling capacity of
Monotone Flows can benefit many downstream applications of normalizing flows, they have the risk
of being misused for the generation of fake images, just like other generative models. Hence, they
may facilitate the spread of misinformation or deep fakes, negatively impacting society.

30

	Proofs and derivations
	Proof of the strong monotonicity of a single residual block
	Proof of Theorem 2
	Derivation of equation (5)
	Derivation of equation (6)
	Derivation of equation (7)
	Proof of Theorem 4
	Equivalence under the limit L->1-
	The properties of monotone operators built from L-Lipschitz operators

	Computation
	Forward and backward algorithms for a single monotone layer

	Experimental details
	1D toy experiment
	2D toy experiments
	Image experiments
	Variational dequantization
	Ablation studies
	Classification experiments
	Training curve for CIFAR-10 density estimation

	Full toy results
	Image samples
	Limitations and negative societal impact

